Problem 12 1. (5 points) Determine the Laplace transform of so f(t) = 0

Answers

Answer 1

The Laplace transform of f(t) = 0 is: L{f(t)} = 0

The Laplace transform is a mathematical technique that is used to convert a function of time into a function of a complex variable, s, which represents the frequency domain.

The Laplace transform is particularly useful for solving linear differential equations with constant coefficients, as it allows us to convert the differential equation into an algebraic equation in the s-domain.

The Laplace transform of the function f(t) = 0 is given by:

L{f(t)} = ∫[0, ∞] e^(-st) * f(t) dt

Since f(t) = 0 for all t, the integral becomes:

L{f(t)} = ∫[0, ∞] e^(-st) * 0 dt

Since the integrand is zero, the integral evaluates to zero as well. Therefore, the Laplace transform of f(t) = 0 is:

L{f(t)} = 0

To know more about Laplace transform click on below link :

https://brainly.com/question/30759963#

#SPJ11


Related Questions

The measured width of the office is 30mm. If the scale of 1:800 is used, calculate the actual width of the building in metres

Answers

Answer:

To calculate the actual width of the building in meters, given the measured width of 30mm and a scale of 1:800, we can use the concept of proportions.

Since 1 unit on the scale represents 800 units in reality, we can set up the following proportion:

1 unit on the scale / 800 units in reality = 30mm / x meters

To solve for x (the actual width of the building in meters), we can cross-multiply and solve for x:

1 * x = 800 * 30mm

x = (800 * 30mm) / 1

Now, let's convert the width from millimeters to meters:

x = (800 * 30) / 1000

x = 24 meters

Therefore, the actual width of the building is 24 meters.

Step-by-step explanation:

Let B be the region in the first octant inside both x2 + y2 + x2 = 1 and 2 = 2 Z 24 + y2 a) Find the triple integral B SIS, 3ydv. b) Find the triple integral SII SIS (az

Answers

In the first octant, there is a region B defined by two surfaces: x^2 + y^2 + x^2 = 1 and 2 = 2z^2 + y^2. The problem asks for the evaluation of two triple integrals over this region.

a) To evaluate the triple integral of 3y over region B, we first need to determine the limits of integration. We can rewrite the equation x^2 + y^2 + x^2 = 1 as x^2 + y^2 = 1 - x^2, which represents a cylinder centered along the y-axis with a radius of 1 and a height of 2. The limits for y are from 0 to √(1 - x^2), and for x, it goes from 0 to 1. The limits for z are from 0 to √((2 - y^2)/2). Thus, the triple integral becomes ∫∫∫(3y) dzdydx over the given limits of integration.

b) The second integral involves the vector (az). Since it has only the z-component, it implies that the integral will only depend on the z-coordinate. Therefore, the triple integral of (az) over region B can be simplified to ∫∫∫(az) dzdydx, where the limits of integration remain the same as in part a) since (az) is not affected by the x and y coordinates.

To learn more about integrals click here :

brainly.com/question/31059545

#SPJ11

= over the interval (3, 6] using four approximating Estimate the area under the graph of f(x) = rectangles and right endpoints. X + 4 Rn = Repeat the approximation using left endpoints. In =

Answers

The estimated area under the graph (AUG) of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and right endpoints is approximately 26.625.

The estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and left endpoints is approximately 24.375.

To estimate the area under the graph of the function f(x) = x + 4 over the interval (3, 6] using rectangles and right endpoints, we can divide the interval into subintervals and calculate the sum of the areas of the rectangles.

Let's start by dividing the interval (3, 6] into four equal subintervals:

Subinterval 1: [3, 3.75]

Subinterval 2: (3.75, 4.5]

Subinterval 3: (4.5, 5.25]

Subinterval 4: (5.25, 6]

Using right endpoints, the x-values for the rectangles will be the right endpoints of each subinterval. Let's calculate the area using this method:

Subinterval 1: [3, 3.75]

Right endpoint: x = 3.75

Width: Δx = 3.75 - 3 = 0.75

Height: f(3.75) = 3.75 + 4 = 7.75

Area: A1 = Δx * f(3.75) = 0.75 * 7.75 = 5.8125

Subinterval 2: (3.75, 4.5]

Right endpoint: x = 4.5

Width: Δx = 4.5 - 3.75 = 0.75

Height: f(4.5) = 4.5 + 4 = 8.5

Area: A2 = Δx * f(4.5) = 0.75 * 8.5 = 6.375

Subinterval 3: (4.5, 5.25]

Right endpoint: x = 5.25

Width: Δx = 5.25 - 4.5 = 0.75

Height: f(5.25) = 5.25 + 4 = 9.25

Area: A3 = Δx * f(5.25) = 0.75 * 9.25 = 6.9375

Subinterval 4: (5.25, 6]

Right endpoint: x = 6

Width: Δx = 6 - 5.25 = 0.75

Height: f(6) = 6 + 4 = 10

Area: A4 = Δx * f(6) = 0.75 * 10 = 7.5

Now, we can calculate the total area under the graph by summing up the areas of the individual rectangles:

Total area ≈ A1 + A2 + A3 + A4

≈ 5.8125 + 6.375 + 6.9375 + 7.5

≈ 26.625

Therefore, the estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and right endpoints is approximately 26.625.

To repeat the approximation using left endpoints, the x-values for the rectangles will be the left endpoints of each subinterval. The rest of the calculations remain the same, but we'll use the left endpoints instead of the right endpoints.

Let's recalculate the areas using left endpoints:

Subinterval 1: [3, 3.75]

Left endpoint: x = 3

Width: Δx = 3.75 - 3 = 0.75

Height: f(3) = 3 + 4 = 7

Area: A1 = Δx * f(3) = 0.75 * 7 = 5.25

Subinterval 2: (3.75, 4.5]

Left endpoint: x = 3.75

Width: Δx = 4.5 - 3.75 = 0.75

Height: f(3.75) = 3.75 + 4 = 7.75

Area: A2 = Δx * f(3.75) = 0.75 * 7.75 = 5.8125

Subinterval 3: (4.5, 5.25]

Left endpoint: x = 4.5

Width: Δx = 5.25 - 4.5 = 0.75

Height: f(4.5) = 4.5 + 4 = 8.5

Area: A3 = Δx * f(4.5) = 0.75 * 8.5 = 6.375

Subinterval 4: (5.25, 6]

Left endpoint: x = 5.25

Width: Δx = 6 - 5.25 = 0.75

Height: f(5.25) = 5.25 + 4 = 9.25

Area: A4 = Δx * f(5.25) = 0.75 * 9.25 = 6.9375

Total area ≈ A1 + A2 + A3 + A4

≈ 5.25 + 5.8125 + 6.375 + 6.9375

≈ 24.375

Therefore, the estimated area under the graph of f(x) = x + 4 over the interval (3, 6] using four approximating rectangles and left endpoints is approximately 24.375.

To know more about area under the graph (AUG), visit the link : https://brainly.com/question/15122151

#SPJ11

A dropped object (with zero initial velocity) accelerates at a constant rate of a = - 32 ft/sec^2.
Find its average velocity during the first 11 seconds (assuming it does not land during this time). Average velocity = ________ ft/s Give exact answer, no decimals.

Answers

If there is no landing, the object will have a mean velocity of -176 feet per second for the first 11 seconds of its flight.

When something is dropped, the force of gravity causes it to start moving at a faster rate. In this scenario, the acceleration of the object is said to be -32 feet per second squared, which indicates that it is accelerating in a downward direction. Since there is no initial velocity, we can calculate the average velocity by using the following formula:

The formula for calculating the average velocity is as follows: (starting velocity + final velocity) / 2.

Because the object begins its journey in a stationary position, its initial velocity is zero. We can use the equation of motion to figure out the ultimate velocity as follows:

Ultimate velocity is equal to the beginning velocity plus the acceleration multiplied by the amount of time.

After plugging in the provided values, we get the following:

ultimate velocity = 0 plus (-32 feet/second squared times 11 seconds) which is -352 feet per second.

Now that we have all of the data, we can determine the average velocity:

The average velocity is calculated as (0 + (-352 ft/s)) divided by 2, which equals -176 ft/s.

Therefore, assuming there is no landing, the object will have an average velocity of -176 feet per second over the first 11 seconds of its flight.

Learn more about formula here:

https://brainly.com/question/30539710

#SPJ11


Please answer all Multiple Choice questions.
Thank you
1. If ū = [2,3,4] and v = (-7,-6, -5] find 2ū – 30 a) [9,9,9] b) (-17, -12, -7] c) [25, 24, 23] d) [25, -12,9) 2. If ū = [2,3,4] and = (-7,-6, -5] find | 2ū – 30 + 5) | a) 2525 b) /1995 c) 625

Answers

If ū = [2,3,4] and v = (-7,-6, -5] multiplying each component, The correct answer is c) 625.

To find the value of 2ū – 30, we first need to compute 2ū, which is obtained by multiplying each component of ū by 2:

2ū = 2[2, 3, 4] = [4, 6, 8].

Next, we subtract 30 from each component of 2ū:

2ū – 30 = [4, 6, 8] – [30, 30, 30] = [-26, -24, -22].

Therefore, 2ū – 30 is equal to [-26, -24, -22].

For the second part of the question, to find |2ū – 30 + 5|, we need to add 5 to each component of 2ū – 30:

|2ū – 30 + 5| = |[-26, -24, -22] + [5, 5, 5]| = |[-21, -19, -17]|.

Finally, taking the absolute value of each component gives:

|2ū – 30 + 5| = [21, 19, 17].

To find the magnitude of this vector, we calculate the square root of the sum of the squares of its components:

|2ū – 30 + 5| = √(21² + 19² + 17²) = √(441 + 361 + 289) = √1091 = 625.

Therefore, the correct answer is c) 625.

To learn more about absolute value click here

brainly.com/question/17360689

#SPJ11

Write an equivalent double integral with the order of integration reversed. 9 2y/9 SS dx dy 0 0 O A. 2 2x/9 B. 29 s dy dx SS dy dx OTT o 0 0 0 9x/2 O C. x 972 OD. 2x/9 S S dy dx s S S dy dx 0 0 оо

Answers

The equivalent double integral with the order of integration reversed is B. 2x/9 S S dy dx.

To reverse the order of integration, we need to change the limits of integration accordingly. In the given integral, the limits are from 0 to 9 for x and from 0 to 2y/9 for y. Reversing the order, we integrate with respect to y first, and the limits for y will be from 0 to 9x/2. Then we integrate with respect to x, and the limits for x will be from 0 to 9. The resulting integral is 2x/9 S S dy dx.

In this reversed integral, we integrate with respect to y first and then with respect to x. The limits for y are determined by the equation y = 2x/9, which represents the upper boundary of the region. Integrating with respect to y in this range gives us the contribution from each y-value. Finally, integrating with respect to x over the interval [0, 9] accumulates the contributions from all x-values, resulting in the equivalent double integral with the order of integration reversed.

learn more about double integral  here

brainly.com/question/2289273

#SPJ11

PLEASE HELP ASAP!!
Find, or approximate to two decimal places, the described area. The area bounded by the functions f(a) = x + 6 and g(x) = 0.7, and the lines I = 0 and 2 = 2. Preview TIP Enter your answer as a number

Answers

The area bounded by the functions f(x) = x + 6, g(x) = 0.7, and the lines x = 0 and x = 2 is 4.35 square units.

To find the area, we need to determine the points of intersection between the functions f(x) = x + 6 and g(x) = 0.7. Setting the two functions equal to each other, we get:

x + 6 = 0.7

Solving for x, we find:

x = -5.3

Thus, the point of intersection between the two functions is (-5.3, 0.7). Next, we need to determine the area between the two functions within the given interval. The area can be calculated as the integral of the difference between the two functions over the interval from x = 0 to x = 2. The integral is:

∫[(f(x) - g(x))]dx = ∫[(x + 6) - 0.7]dx

Simplifying the integral, we have:

∫[x + 5.3]dx

Evaluating the integral, we get:

(1/2)[tex]x^{2}[/tex]+ 5.3x

Evaluating the integral between x = 0 and x = 2, we find the area is approximately 4.35 square units.

Learn more about integral here: https://brainly.com/question/31040425

#SPJ11

Evaluate the integrals
•S₁² In(kx) 3 1 X dx, where k is a constant number.

Answers

The calculated value of the integral [tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx[/tex] is [tex]\frac{2\ln(k) + 1}{4}[/tex]

How to evaluate the integral

From the question, we have the following parameters that can be used in our computation:

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx[/tex]

The above expression can be integrated using integration by parts method which states that

∫uv' = uv - ∫u'v

Where

u = ln(kx) and v' = 1/x³ d(x)

This gives

u' = 1/x and g = -1/2x²

So, we have

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = -\frac{\ln(kx)}{2x^2} - \int\limits^{\infty}_1 -\frac{1}{2x^3} \, dx[/tex]

Factor out -1/2

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = -\frac{\ln(kx)}{2x^2} + \frac{1}{2}\int\limits^{\infty}_1 \frac{1}{x^3} \, dx[/tex]

Integrate

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = -\frac{\ln(kx)}{2x^2} - \frac{1}{4x^2}|\limits^{\infty}_1[/tex]

Recall that the x values are from 1 to ∝

This means that

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = 0 -(-\frac{\ln(k * 1}{2(1)^2} - \frac{1}{4 * 1^2})[/tex]

So, we have

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = \frac{\ln(k)}{2} + \frac{1}{4}[/tex]

Express as a single fraction

[tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx = \frac{2\ln(k) + 1}{4}[/tex]

Hence, the value of the integral [tex]\int\limits^{\infty}_1 {\frac{\ln(kx)}{x^3} \, dx[/tex] is [tex]\frac{2\ln(k) + 1}{4}[/tex]

Read more about derivatives at

brainly.com/question/5313449

#SPJ4

Consider the first quadrant region bounded by y=4 - x, y = x,
and x = 4. Find the volume of the solid or revolution when this
region is rotated about:
(i) The line y = -2
(ii) The line x = 5

Answers

To find the volume of the solid of revolution when the first quadrant region bounded by y = 4 - x, y = x, and x = 4 is rotated about different lines, we can use the method of cylindrical shells.

(i) Rotating about the line y = -2:

In this case, the line y = -2 is located below the region bounded by the curves. The resulting solid of revolution will have a hole in the center. To find the volume, we integrate the circumference of each cylindrical shell multiplied by its height.

The height of each shell is given by the difference between the upper and lower curves: (4 - x) - (-2) = 6 - x.

The radius of each shell is the distance from the line y = -2 to the axis of rotation, which is x + 2.

Integrating the volume formula, we have:

V = ∫[x=0 to x=4] 2π(x + 2)(6 - x) dx

Simplifying and integrating, we get:

V = ∫[x=0 to x=4] (12πx - 2πx²) dx

V = [6πx² - (2/3)πx³] evaluated from x = 0 to x = 4

V = 6π(4²) - (2/3)π(4³) - (0 - 0)

V = 96π - (128/3)π

V = (288 - 128)π/3

V = (160/3)π cubic units

Therefore, the volume of the solid of revolution when the region is rotated about y = -2 is (160/3)π cubic units.

(ii) Rotating about the line x = 5:

In this case, the line x = 5 is located to the right of the region bounded by the curves. The resulting solid of revolution will have a cylindrical shape. Again, we integrate the circumference of each cylindrical shell multiplied by its height.

The height of each shell is given by the difference between the rightmost boundary x = 4 and the leftmost boundary x = 5, which is 4 - 5 = -1. However, since the height cannot be negative, we take the absolute value: |(-1)| = 1.

The radius of each shell is the distance from the line x = 5 to the axis of rotation, which is 5 - x.

Integrating the volume formula, we have:

V = ∫[x=0 to x=4] 2π(5 - x)(1) dx

Simplifying and integrating, we get:

V = ∫[x=0 to x=4] 2π(5 - x) dx

V = [2π(5x - (1/2)x²)] evaluated from x = 0 to x = 4

V = 2π(5(4) - (1/2)(4²)) - 2π(5(0) - (1/2)(0²))

V = 2π(20 - 8) - 2π(0 - 0)

V = 24π

Therefore, the volume of the solid of revolution when the region is rotated about x = 5 is 24π cubic units.

In summary:

(i) When rotated about y = -2, the volume is (160/3)π cubic units.

(ii) When rotated about x = 5, the volume is 24π cubic units.

Visit here to learn more about quadrant region:

brainly.com/question/31652106

#SPJ11

= The Leibnitz notation for the chain rule is dy dx = dy du du dx The factors are Suppose y = sin(x2 + 4x – 3). We can write y sin(u), where u = dy du (written as a function of u ) and du dx = Now s

Answers

The derivative dy/dx of the function y = sin(x² + 4x - 3) is given by (cos(x² + 4x - 3)) * (2x + 4).

The Leibniz notation for the chain rule states that dy/dx = dy/du * du/dx. In this notation, dy/dx represents the derivative of y with respect to x, dy/du represents the derivative of y with respect to u, and du/dx represents the derivative of u with respect to x.

Suppose we have the function y = sin(x² + 4x - 3). We can rewrite this as y = sin(u), where u = x² + 4x - 3.

To find dy/du, we differentiate y with respect to u. Since y = sin(u), the derivative of sin(u) with respect to u is cos(u). Therefore, dy/du = cos(u).

Next, we need to find du/dx, which is the derivative of u with respect to x. In this case, u = x² + 4x - 3, so we differentiate u with respect to x. Using the power rule and the derivative of a constant, we get du/dx = 2x + 4.

Now we can apply the chain rule by multiplying dy/du and du/dx:

dy/dx = (dy/du) * (du/dx) = (cos(u)) * (2x + 4).

Since u = x² + 4x - 3, we substitute it back into the expression:

dy/dx = (cos(x² + 4x - 3)) * (2x + 4).

Learn more about derivative:

https://brainly.com/question/23819325

#SPJ11

Evaluate dy and Ay for the function below at the indicated values. 2 y=f(x)=81 1- = 81 (1- x = X ; x = 3, dx = Ax= -0.5 dy=

Answers

The values for the given function at x=3 and dx=-0.5 are dy=-162 and Ay=1/12.

To evaluate dy and Ay for the function y = 81(1-x)^2 at x=3 and dx=-0.5, we need to find the derivative of the function and use the given values in the derivative formula.

First, let's find the derivative of y with respect to x:

dy/dx = 2*81(1-x)*(-1) = -162(1-x)

Now, we can use the given values to find dy and Ay:

At x=3, dx=-0.5

dy = dy/dx * dx = -162(1-3)*(-0.5) = -162

Ay = |dy/y| * |dx/x| = |-162/81| * |-0.5/3| = 1/12

To know more about values refer here:

https://brainly.com/question/30781415#

#SPJ11

A bouncy ball is dropped such that the height of its first bounce is 4.5 feet and each
successive bounce is 73% of the previous bounce's height. What would be the height
of the 10th bounce of the ball? Round to the nearest tenth (if necessary).

Answers

Answer:The height of the 10th bounce of the ball would be approximately 0.5 feet.

Step-by-step explanation:

The area of a circle increases at a rate of 2 cm cm? / s. a. How fast is the radius changing when the radius is 3 cm? b. How fast is the radius changing when the circumference is 4 cm? a. Write an equation relating the area of a circle, A, and the radius of the circle, r.

Answers

when the circumference is 4 cm, the rate at which the radius is changing is approximately 2 / π cm/s.

a. To find how fast the radius is changing when the radius is 3 cm, we need to use the relationship between the area of a circle and its radius.

The equation relating the area of a circle, A, and the radius of the circle, r, is given by:

A = πr^2

To find the rate at which the radius is changing, we can take the derivative of both sides of the equation with respect to time (t):

dA/dt = d(πr^2)/dt

Since the rate at which the area is changing is given as 2 cm^2/s, we can substitute dA/dt with 2:

2 = d(πr^2)/dt

Now, we can solve for dr/dt, which represents the rate at which the radius is changing:

dr/dt = 2 / (2πr)

Substituting r = 3 cm:

dr/dt = 2 / (2π(3))

      = 2 / (6π)

      = 1 / (3π)

Therefore, when the radius is 3 cm, the rate at which the radius is changing is approximately 1 / (3π) cm/s.

b. To find how fast the radius is changing when the circumference is 4 cm, we need to relate the circumference and the radius of a circle.

The equation relating the circumference, C, and the radius, r, is given by:

C = 2πr

To find the rate at which the radius is changing, we can take the derivative of both sides of the equation with respect to time (t):

dC/dt = d(2πr)/dt

Since the rate at which the circumference is changing is given as 4 cm/s, we can substitute dC/dt with 4:

4 = d(2πr)/dt

Now, we can solve for dr/dt, which represents the rate at which the radius is changing:

dr/dt = 4 / (2π)

Simplifying, we have:

dr/dt = 2 / π

To know more about equation visit;

brainly.com/question/10724260

#SPJ11

Consider the following hypothesis statement using a = 0.10 and the following data from two independent samples:
H0:p1−p2>0.
H1:p1−p2<0.
x1=60, x2=72,n1=150,n2=160.
(A) Calculate the appropriate test statistic and interpret the result.
(B) Calculate the p-value and interpret the result.
(C) Verify your results using PHStat.

Answers

Based on the given data and hypothesis statement, a one-tailed hypothesis test is conducted with a significance level of 0.10. The calculated test statistic is z = -2.446.

To find the hypothesis test, we calculate the sample proportion , denoted by p, which is :

[tex]\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}[/tex]

Putting the given values, we find:

[tex]\hat{p} = \frac{{60 + 72}}{{150 + 160}} = \frac{{132}}{{310}} \approx 0.426[/tex]

Next, we calculate the standard error of the difference in proportions, denoted by SE (p1 - p2), using the formula:

[tex]SE(p1 - p2) =\sqrt{ \frac{{\hat{p} \cdot (1 - \hat{p})}}{{n1}}+\frac{{\hat{p} \cdot (1 - \hat{p})}}{{n2}}}[/tex]

Substituting the values, we get:

SE(p1 - p2)  ≈ 0.046

To calculate the test statistic, we use the formula:

[tex]z=\frac{{(p_1 - p_2) - 0}}{{SE(p_1 - p_2)}}[/tex]

Substituting the values, we obtain:

z =  -2.446

The calculated test statistic is approximately -2.446. To find the p-value associated with this test statistic, we see the area at the standard normal curve to the left of -2.446. Thee p-value is approximately 0.007.

Since the p-value (0.007) is less than the significance level (0.10), we reject the null hypothesis.

Learn more about hypothesis tests here:

https://brainly.com/question/17099835

#SPJ11

i will rate
Cost, revenue, and profit are in dollars and x is the number of units. If the total profit function is P(x) = 9x – 27, find the marginal profit MP. MP =

Answers

The marginal profit (MP) is 9. This means that for each additional unit sold, the profit increases by $9.

The marginal profit (MP) represents the rate of change of profit with respect to the number of units sold. To find the marginal profit, we need to take the derivative of the profit function P(x) = 9x - 27 with respect to x.

Taking the derivative of P(x) with respect to x, we get:

dP/dx = 9

The derivative of the constant term -27 is 0, as it does not depend on x. Thus, it disappears when taking the derivative.

Therefore, the marginal profit is a constant value of 9 dollars per unit. This means that for each additional unit sold, the profit increases by $9.

To know more about marginal profit refer here:

https://brainly.com/question/30236297

#SPJ11








7. (-/5 points) DETAILS TANAPCALC10 2.1.006.MI. Let y be the function defined by g(x) = -x + 10x. Find g(a + h), 9(-a), 9(a), a + g(a), and 1 g(a) 9(a+h)- 9(-a) = (va)و 1 + 9(a)- 1 Need Help? Raadit

Answers

For function g(x) = -x + 10x the values of g(a + h) = 9a + 9h, g(-a) = -9a, g(√a) = 9√a, a + g(a) = 10a, and 1/g(a) = 1/9a.

To find the values of g(a + h), g(-a), g(√a), a + g(a), and 1/g(a) for the function g(x) = -x + 10x, we substitute the given values into the function.

g(a + h):

g(a + h) = -(a + h) + 10(a + h)

= -a - h + 10a + 10h

= 9a + 9h

g(-a):

g(-a) = -(-a) + 10(-a)

= a - 10a

= -9a

g(√a):

g(√a) = -√a + 10√a

= 9√a

a + g(a):

a + g(a) = a + (-a + 10a)

= 10a

1/g(a):

1/g(a) = 1/(-a + 10a)

= 1/(9a)

= 1/9a

Therefore, the values are:

g(a + h) = 9a + 9h

g(-a) = -9a

g(√a) = 9√a

a + g(a) = 10a

1/g(a) = 1/9a

Learn more about function at

https://brainly.com/question/30721594

#SPJ4

The question is -

Let g be the function defined by g(x) = -x + 10x. Find g(a + h), g(-a), g(√a), a+g(a), and 1/g(a).

Fahad starts a business and purchases 45 watches for a total of £247.50 that he intends to sell for a profit. During the next month he sells 18 of the watches for £9.95 each. What is the profit for the month? Select one: O A. £80.10 OB. -£68.40 O C. £200.25 OD. None of the above

Answers

The profit for the month is £80.10. Therefore the correct option is A. £80.10.

1. Fahad purchases 45 watches for a total of £247.50. To find the cost per watch, we divide the total cost by the number of watches: £247.50 / 45 = £5.50 per watch.

2. Fahad sells 18 watches for £9.95 each. To find the total revenue from these sales, we multiply the selling price per watch by the number of watches sold: £9.95 * 18 = £179.10.

3. The total cost of the watches sold is the cost per watch multiplied by the number of watches sold: £5.50 * 18 = £99.

4. The profit for the month is calculated by subtracting the total cost from the total revenue: £179.10 - £99 = £80.10.

5. Therefore, the profit for the month is £80.10.

In summary, Fahad's profit for the month is £80.10, calculated by subtracting the total cost (£99) from the total revenue (£179.10) obtained from selling 18 watches for £9.95 each.

Learn more about total revenue:

https://brainly.com/question/25717864

#SPJ11

1. the most important statement in any research proposal is the hypothesis and/ or the research question. please provide an example of a working hypothesis and a null hypothesis.

Answers

These speculations would be tried and broke down utilizing proper exploration strategies and measurable investigation to decide if there is adequate proof to help the functioning theory or reject the invalid theory.

For a research proposal on the effects of exercise on mental health, here is an illustration of a working hypothesis and a null hypothesis:

Work Concept: Physical activity improves mental health and reduces symptoms of depression and anxiety.

Null Hypothesis: Mental prosperity and side effects of tension and gloom don't altogether vary between customary exercisers and non-exercisers.

The functioning speculation for this situation proposes that participating in active work decidedly affects emotional wellness, especially regarding working on prosperity and diminishing side effects of tension and misery. On the other hand, the null hypothesis is based on the assumption that people who exercise on a regular basis and people who don't have significantly different mental health or symptoms of anxiety and depression.

These speculations would be tried and broke down utilizing proper exploration strategies and measurable investigation to decide if there is adequate proof to help the functioning theory or reject the invalid theory.

To know more about Null Hypothesis  refer to

https://brainly.com/question/30821298

#SPJ11

Match each linear inequality equation with the letter for the graph

Answers

The Inequality equations can be correctly matched with the given graphs as 3 - D, 2 - A, 1 - C and 4 - B.

Here, we have,

The Inequality equation is given below.

y ≥ -3x + 4 is correctly matched with 2

y≤ -3x/5 - 5  is correctly matched with 4

y≤ 4x/3 -4 is correctly matched with 1

y > 3x/2 - 5 is correctly matched with 3.

Therefore, the matching for linear inequality equation with the letter for the graph are:

2= y ≥ -3x + 4

4= y≤ -3x/5 - 5

1=  y≤ 4x/3 -4

3=  y > 3x/2 - 5

Learn more about linear Inequality equation hare:

brainly.com/question/27772024

#SPJ1









Outcomes D&D7 The Chain Rule (3.6) and Derivatives of Inverse Trigonome Functions (3.7) dy Find where y=sin-'(5x + 5). 2 dx F lg(x)) = FIG = Filo
TI one A particle travels along a horizontal line ac

Answers

To find the derivative of y = sin^(-1)(5x + 5), we can use the chain rule. The chain rule states that if we have a composition of functions, such as f(g(x)), the derivative of this composition can be found by taking the derivative of the outer function f'(g(x)) and multiplying it by the derivative of the inner function g'(x).

In this case, the outer function is sin^(-1)(x) (also denoted as arcsin(x)), and the inner function is 5x + 5. The derivative of sin^(-1)(x) is 1/sqrt(1 - x^2). Applying the chain rule, we differentiate the outer function and multiply it by the derivative of the inner function, which is simply 5:

dy/dx = (1/sqrt(1 - (5x + 5)^2)) * 5

Simplifying the expression further, we have:

dy/dx = 5/(sqrt(1 - (5x + 5)^2))

Therefore, the derivative of y = sin^(-1)(5x + 5) with respect to x is dy/dx = 5/(sqrt(1 - (5x + 5)^2)).

This derivative represents the rate of change of y with respect to x. It tells us how y is changing as x varies. The expression involves the inverse trigonometric function arcsine and a linear function (5x + 5) inside it. The denominator of the derivative involves the square root of the difference between 1 and the square of (5x + 5). This reflects the relationship between the angles and the trigonometric function sin^(-1). The derivative allows us to analyze the behavior of y as x changes, which can be useful in various applications such as physics, engineering, or optimization problems.

Learn more about trigonometric function here: brainly.com/question/31540769

#SPJ11

Please answer the following two questions. Thank you.
1.
2.
A region, in the first quadrant, is enclosed by. - x² + 2 = Y = Find the volume of the solid obtained by rotating the region about the line x 6.
A region, in the first quadrant, is enclosed by. y =

Answers

The volume of the solid obtained by rotating the region about the line x=6 is −64π/3 cubic units.

What is volume?

A volume is simply defined as the amount of space occupied by any three-dimensional solid. These solids can be a cube, a cuboid, a cone, a cylinder, or a sphere. Different shapes have different volumes.

To find the volume of the solid obtained by rotating the region enclosed by the curves y = −x² + 2 and y=0 in the first quadrant about the line x=6, we can use the method of cylindrical shells.

First, let's plot the two curves to visualize the region:

To set up the integral for calculating the volume, we need to express the differential volume element as a function of y.

The radius of each cylindrical shell will be the distance from the line of rotation (x=6) to the curve y =−x² + 2, which is given by r = 6−x. We can express x in terms of y by rearranging the equation y=−x² +2 as x= √2−y.

The height of each cylindrical shell will be the difference between the two curves: ℎ = y−0 = y

The differential volume element can be expressed as = 2ℎ dV=2πrh dy.

Now, let's set up the integral for the volume:

[tex]V=\int\limits^0_2 2\pi(6- 2-y)ydy[/tex]

We integrate with respect to y from 0 to 2 because the region is bounded by the curve y=−x² +2 and the x-axis (where y=0).

To solve this integral, we need to split it into two parts:

[tex]V= 2\pi\int\limits^0_2 6ydy - 2\pi\int\limits^0_2y\sqrt{2-y}dy[/tex]

Integrating the first part:

[tex]V=2\pi[6y^2/2]^0_2 - 2\pi \int\limits^0_2 y \sqrt{2-y} dy[/tex]

[tex]V=2\pi(12) - 2\pi \int\limits^0_2 y \sqrt{2-y} dy[/tex]

V = -64π/3

Therefore, the volume of the solid obtained by rotating the region about the line x=6 is −64π/3 cubic units.

To learn more about the volume visit:

https://brainly.com/question/14197390

#SPJ4

Let f(x) = 1+x² . Find the average slope value of f(x) on the interval [0,2]. Then using the Mean Value Theorem, find a number c in [0,2] so that f '(c) = the average slope value.

Answers

The average slope value of f(x) on the interval [0,2] is c =  4/3 then by using the Mean Value Theorem, c= 2/3.

f(x) = 1 + x²

Here, we have to find the average slope value of f(x) on the interval [0,2] and then using the Mean Value Theorem, find a number c in [0,2] so that f'(c) = the average slope value.

To find the average slope value of f(x) on the interval [0,2], we use the formula:

(f(b) - f(a))/(b - a)

where, a = 0 and b = 2

Hence, the average slope value of f(x) on the interval [0,2] is 4/3.

To find the number c in [0,2] so that f'(c) = the average slope value, we use the Mean Value Theorem which states that if a function f(x) is continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a number c in (a,b) such that:f'(c) = (f(b) - f(a))/(b - a)

Here, a = 0, b = 2, f(x) = 1 + x² and the average slope value of f(x) on the interval [0,2] is 4/3.

Substituting these values in the formula above, we get:f'(c) = (4/3)

Simplifying this, we get:2c = 4/3c = 2/3

Therefore, c = 2/3 is the required number in [0,2] such that f'(c) = the average slope value.

To know more about slope refer here:

https://brainly.com/question/3605446#

#SPJ11

Find a basis for the subspace U of R' spanned by S= {(1,2,4), (-1,3,4), (2,3,1)), then find dim(U)."

Answers

To find a basis for the subspace U of R³ spanned by S = {(1,2,4), (-1,3,4), (2,3,1)}, we can use the concept of linear independence to select a subset of vectors that form a basis. The dimension of U can be determined by counting the number of vectors in the basis.

The vectors in S = {(1,2,4), (-1,3,4), (2,3,1)} are the columns of a matrix. To find a basis for the subspace U spanned by S, we can perform row reduction on the matrix and identify the pivot columns.

Row reducing the matrix, we obtain the row echelon form [1 0 1; 0 1 2; 0 0 0]. The pivot columns correspond to the columns of the original matrix that contain leading 1's in the row echelon form.

In this case, the first two columns have leading 1's, so we can select the corresponding vectors from S, which are {(1,2,4), (-1,3,4)}, as a basis for U.

The dimension of U is determined by the number of vectors in the basis, which in this case is 2. Therefore, dim(U) = 2.

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11

The basis for the subspace U of ℝ³ spanned by the set S = {(1,2,4), (-1,3,4),(2,3,1)} is B = {(1,2,4), (-1,3,4)} and the dimension of U comes out to be 2.

To find a basis for the subspace U, we need to determine a set of linearly independent vectors that span U. We can start by considering the vectors in S and check if any of them can be expressed as a linear combination of the others.

By inspection, we see that the third vector in S, (2,3,1), can be expressed as a linear combination of the first two vectors:

(2,3,1) = 3(1,2,4) + (-1,3,4).

Thus, we can remove the third vector from S without losing any information about the subspace U. The remaining vectors, (1,2,4) and (-1,3,4), form a set of linearly independent vectors that span U.

Therefore, the basis for U is B = {(1,2,4), (-1,3,4)}. Since B consists of two linearly independent vectors, the dimension of U is 2.

Learn more about basis of a set here:

https://brainly.com/question/32388026

#SPJ11

Use the following diagram to match the terms and examples.


PLEASE ANSWER IF YOU KNOW

Answers

PT = Line

RP = Segment

SR = Ray

∠2 and ∠3 = adjacent angles

∠2 and ∠4 = Vertical angles.

What is a line segment?

A line segment is a section of a straight line that is bounded by two different end points and contains every point on the line between them. The Euclidean distance between the ends of a line segment determines its length.

A line segment is a finite-length section of a line with two endpoints. A ray is a line segment that stretches in one direction endlessly.

Learn more about vertical angles:
https://brainly.com/question/1673457
#SPJ1

bo What is the radius of convergence of the series (x-4)2n n=o 37 O√3 3 02√3 √3 2

Answers

The radius of convergence of the series is √3. Option A

How to determine the radius

From the information given, we have that;

The radius at which a power series diverges is defined as the distance between its center and the point of divergence. The series is centered at the value of x, which is 4.

The ratio test can be employed to determine the radius of convergence. According to the ratio test, a series will converge if the limit of the quotient between its terms is lower than 1. The proportion of the elements is expressed by the following ratio:

aₙ/a{n+1} = (x-4)2n/3ⁿ / (x-4)2n+2/3ⁿ⁺¹

Substitute the values, we have;

= (x-4)²/³

As n approaches infinity, the limit is equal to absolute value:

x-4/ 3.

Then, we have that there is convergence if |x-4|/3 < 1.

Radius of convergence is √3.

Learn more about radius at: https://brainly.com/question/27696929

#SPJ4

The complete question:

What is the radius of convergence of the series ₙ₋₀ ∑ (x - 4)²ⁿ/3ⁿ

O√3

O 3

O 2√3

O √3/ 2

Help for a grade help asap if you do thx so much

Answers

The area of the given figure is 15.62 square feet which has rectangle and triangle.

The figure is a combined form of the rectangle and triangle.

Let us convert 6 in to feet, which is 0.5 feet.

Now 5 in is 0.42 feet.

Area of rectangle = length × width

=22×0.5

=11 square feet.

Area of triangle is half times of base and height.

Area of triangle =1/2×22×0.42

=11×0.42

=4.62 square feet.

Total area = 11+4.62

=15.62 square feet.

Hence, the area of the given figure is 15.62 square feet.

To learn more on Area click:

https://brainly.com/question/20693059

#SPJ1

suppose that you run a regression and find for observation 11 that the observed value is 12.7 while the fitted value is 13.65. what is the residual for observation 11?

Answers

The residual for observation 11 can be calculated as the difference between the observed value and the fitted value. In this case, the observed value is 12.7 and the fitted value is 13.65. Therefore, the residual for observation 11 is 0.95.

The residual is a measure of the difference between the observed value and the predicted (fitted) value in a regression model. It represents the unexplained variation in the data.

To calculate the residual for observation 11, we subtract the fitted value from the observed value:

Residual = Observed value - Fitted value

= 12.7 - 13.65

= -0.95

Therefore, the residual for observation 11 is -0.95. This means that the observed value is 0.95 units lower than the predicted value. A negative residual indicates that the observed value is lower than the predicted value, while a positive residual would indicate that the observed value is higher than the predicted value.

Learn more about  regression model here:

https://brainly.com/question/31969332

#SPJ11

Determine the degree of the MacLaurin polynomial that should be used to approximate cos (2) so that the error is less than 0.0001.

Answers

The approximation of cos(2) using the MacLaurin polynomial of degree 3 is approximately -1/3.

The MacLaurin polynomial for a function f(x) is given by the formula:

P(x) = f(0) + f'(0)x + (f''(0)/2!)x² + (f'''(0)/3!)x³ + ...

We observe that the derivatives of cos(x) cycle between cosine and sine functions, alternating in sign. Since we are interested in the maximum error, we can assume that the maximum value of the derivative occurs when x = 2.

Using the simplified error term, we can write:

|f^(n+1)(c)| * |x^(n+1)| / (n+1)! < 0.0001

Now, we substitute f^(n+1)(x) with the alternating sine and cosine functions, and x with 2:

|sin(c)| * |2^(n+1)| / (n+1)! < 0.0001

To find the degree of the MacLaurin polynomial, we can start with n = 0 and increment it until the inequality is satisfied. We continue increasing n until the left side of the inequality is less than 0.0001. Once we find the smallest value of n that satisfies the inequality, that value will be the degree of the MacLaurin polynomial.

Let's calculate the values for different values of n:

For n = 0: |sin(c)| * 2 / 1 = |sin(c)| * 2

For n = 1: |sin(c)| * 4 / 2 = 2|sin(c)|

For n = 2: |sin(c)| * 8 / 6 = 4/3 |sin(c)|

For n = 3: |sin(c)| * 16 / 24 = 2/3 |sin(c)|

For n = 4: |sin(c)| * 32 / 120 = 2/15 |sin(c)|

By calculating the above expressions, we can see that as n increases, the error term decreases. We want the error term to be less than 0.0001, so we need to find the smallest value of n for which the error is less than or equal to 0.0001.

Based on the calculations, we find that when n = 3, the error term is less than 0.0001. Therefore, the degree of the MacLaurin polynomial that should be used to approximate cos(2) with an error less than 0.0001 is 3.

Using the MacLaurin polynomial of degree 3, we can approximate cos(2) as follows:

P(x) = cos(0) + (-sin(0))x + (-cos(0))/2! * x² + (sin(0))/3! * x³

Simplifying the expression, we get:

P(x) = 1 - (x²)/2 + (x³)/6

Finally, substituting x = 2, we find the approximation of cos(2) using the MacLaurin polynomial:

P(2) = 1 - (2²)/2 + (2³)/6 = 1 - 2 + 8/6 = 1 - 2 + 4/3 = -1/3

To know more about MacLaurin polynomial here

https://brainly.com/question/31962620

#SPJ4

Find the Fourier series of the even-periodic extension of the function
f(x) = 3, for x € (-2,0)

Answers

The Fourier series of the even-periodic extension is given as : [tex]f(x) = 1/2a_o + \sum_{n = 1}^\infty(a_n cos(nx))= 3/2 + 3/\pi *\sum_{n = 1}^\infty((1-cos(n\pi))/n) cos(nx)[/tex].

The Fourier series of the even-periodic extension of the function f(x) = 3, for x € (-2,0) is given by;

f(x) = 1/2a₀ + Σ[n = 1 to ∞] (an cos(nx) + bn sin(nx))

Where; a₀ = 1/π ∫[0 to π] f(x) dxan = 1/π ∫[0 to π] f(x) cos(nx) dx for n ≥ 1bn = 1/π ∫[0 to π] f(x) sin(nx) dx for n ≥ 1

Let's compute the various coefficients of the Fourier series;

a₀ = 1/π ∫[0 to π] f(x) dx = 1/π ∫[0 to π] 3 dx = 3/πan = 1/π ∫[0 to π] f(x) cos(nx) dx= 1/π ∫[-2 to 0] 3 cos(nx) dx= 3/π * (sin(nπ) - sin(2nπ))/n for n ≥ 1

Thus, an = 0 for n ≥ 1bn = 1/π ∫[0 to π] f(x) sin(nx) dx= 1/π ∫[-2 to 0] 3 sin(nx) dx= 3/π * ((1-cos(nπ))/n) for n ≥ 1

The even periodic extension of f(x) = 3 for x € (-2,0) is given by;f(x) = 3, for x € [0,2)f(-x) = f(x) = 3, for x € [-2,0)

Thus, the Fourier series of the even periodic extension of the function f(x) = 3, for x € (-2,0) is given by;

f(x) = 1/2a₀ + Σ[n = 1 to ∞] (an cos(nx))= 3/2 + 3/π * Σ[n = 1 to ∞] ((1-cos(nπ))/n) cos(nx)

The Fourier series of the even-periodic extension of the function f(x) = 3, for x € (-2,0) is given by;

[tex]f(x) = 1/2a_o + \sum_{n = 1}^\infty(a_n cos(nx))= 3/2 + 3/\pi *\sum_{n = 1}^\infty((1-cos(n\pi))/n) cos(nx)[/tex]

Learn more about Fourier series :

https://brainly.com/question/31046635

#SPJ11

We have two vectors of magnitudes 10 and 13. Angle between the two vectors is 10° What is the dot product of those two vectors?

Answers

The dot product of two vectors with magnitudes 10 and 13, and an angle of 10° between them, is 119.4.

The dot product of two vectors is calculated as the product of their magnitudes multiplied by the cosine of the angle between them. In this case, the dot product can be found using the formula: dot product = magnitude1 * magnitude2 * cos(angle).

Substituting the given values, we have: dot product = 10 * 13 * cos(10°). Evaluating this expression, we find that the cosine of 10° is approximately 0.9848. Multiplying this by 10 and 13 gives us approximately 127.82.

Therefore, the dot product of the two vectors is approximately 119.4.

Learn more about Dot product click here :brainly.com/question/29097076

#SPJ11


Other Questions
Which of the following are true when solving a decision tree? O The value of a decision node is computed by taking the weighted average of the successor nodes' values. The decision tree represents a time ordered sequence of decisions and events from left to right. The values of the terminal nodes are weighted averages. O Exactly two of the answers are correct. O The EMV of an event node is computed by taking the weighted average of the predecessor nodes' values. Circle the error in the problem and rewrite what the correct step should be The following cash flows are given. Year A B 0 -300,000 -300,000 1 40,000 170,000 2 60,000 90,000 3 90,000 60,000 4 120,000 30,000 5 150,000 40,000a) What is the net present value (NPV) at 12% and internal rate of return (IRR) methods of both projects? Which would you recommend and why?b) What is the cross-over rate? Explain the significance of this rate. c) What two consecutive cash flows in years 4 and 5 of project B would equalize its NPV to the NPV of project A, assuming a 12% rate of return The unbalanced equation for the combustion of propane is given below. Give the coefficients of the substances in the equation in the order that the substances appear in the equation.__ C3H8 (g) + __ O2 (g) __ CO2 (g) + H2O (1)A. 1, 5, 3, 4B. 1, 1, 1, 1C. 2, 10, 6, 8D. 1, 8, 3, 8 Part 1 Use differentiation and/or integration to express the following function as a power series (centered at x = 0). f(x) = 1 (4 + x)2 f(x) = n=0 Part 2 Use your answer above (and more differentiation/integration) to now express the following function as a power series (centered at x = 0). g(x) = 1 (4+ x)3 g(x) = $ n=0 Part 3 Use your answers above to now express the function as a power series (centered at 2 = 0). 72 h(2) = (4 + x)3 h(x) = n=0 ||v|| = 3||w|| = 1The angle between v and w is 1.3 radiansGiven this information, calculate the following:||v|| = 3 ||w|| = 1 The angle between v and w is 1.3 radians. Given this information, calculate the following: (a) v. w = (b) ||4v + lw|| = (c) ||20 2w|| = | Which one of the following modes of entry offers the highest level of control to the investing firms? a. Contractual Agreements b. Joint Venture c. Equity Participation d. FDI What could thy the ansewr diddly dot be? 1. In a competitive market a. no single buyer or seller can influence the price of the product. b. there is a small number of sellers.c. the goods offered by the different sellers are markedly different. d. All of the above are correct a particular ion of oxygen is composed of 8 protons, 10 neutrons, and 7 electrons. in terms of the elementary charge , what is the total charge of this ion? if foreign companies decide not to invest their dollars in the united states, the domestic money supply is Assuming that a sample (N = 504) has a sample standard deviation of 2.26, what is the estimated standard error? a. .004. b. .101. c. 223.009. d. 226 A town divided into two districts, A and B, is proposing to build a new filtration system to remove some contaminant from its drinking water. The town estimates the demand by residents of the two districts to be represented by the following functions: MWTPA = 10 -0.1204 and MWTPB = 15-.18Q5, where Q is the % of the contaminant that is expected to be filtered by the system. The supply function is estimated to be MC = 4 +0.75Q. 1. a) What is the aggregate demand (MWTP) function for this public good? 2. b) Graph the aggregate MWTP and MC functions equations in the same diagram, where % filtration of the contaminant is measured on the x axis. 3. c) What is the socially efficient % filtration of the contaminant? NOTE: Do not change % into decimal form for the calculation 4. d) What is the TOTAL cost of achieving the optimal percent filtration? What TOTAL amount are residents of EACH district willing to pay for the socially efficient % filtration? Is total willingness to pay by residents of both districts considered together enough to cover total cost of supplying it? 5. e) As long as total WTP is sufficient to cover total cost, it would make sense for a private company instead of government to supply the filtration system. Do you agree with this statement? Explain. what relationship exists between the densities of predator and prey populations, according to the graph population, change of a predator and its prey over time. The assignment for this lesson is to compare and contrast the language in Andrew Jackson's "On Indian Removal" speech to Congress and Michael Rutledge's "Samuel's Memory." occupational therapy in community and population health practice _____ are graphical representations of the decision problems that show the sequential nature of the decision-making process.a. Influence diagrams b. Utility functions c. Decision trees d. Payoff tables 7. Find fif /"(x) = 2 + x + x (8pts) 8. Use L'Hospital Rule to evaluate : et -0 (b) lim (12pts) Having trouble locating the incomplete error. Please help me identify my issue.After the success of the companys first two months, Santana Rey continues to operate Business Solutions. The November 30, 2021, unadjusted trial balance of Business Solutions (reflecting its transactions for October and November of 2021) follows.Number Account Title Debit Credit101 Cash $ 38,264106 Accounts receivable 12,618126 Computer supplies 2,545128 Prepaid insurance 2,220131 Prepaid rent 3,300163 Office equipment 8,000164 Accumulated depreciationOffice equipment $ 0167 Computer equipment 20,000168 Accumulated depreciationComputer equipment 0201 Accounts payable 0210 Wages payable 0236 Unearned computer services revenue 0307 Common stock 73,000318 Retained earnings 0319 Dividends 5,600403 Computer services revenue 25,659612 Depreciation expenseOffice equipment 0613 Depreciation expenseComputer equipment 0623 Wages expense 2,625637 Insurance expense 0640 Rent expense 0652 Computer supplies expense 0655 Advertising expense 1,728676 Mileage expense 704677 Miscellaneous expenses 250684 Repairs expenseComputer 805901 Income summary 0Totals $ 98,659 $ 98,659Business Solutions had the following transactions and events in December 2021.December 2 Paid $1,025 cash to Hillside Mall for Business Solutions's share of mall advertising costs.December 3 Paid $500 cash for minor repairs to the companys computer.December 4 Received $3,950 cash from Alexs Engineering Company for the receivable from November.December 10 Paid cash to Lyn Addie for six days of work at the rate of $125 per day.December 14 Notified by Alexs Engineering Company that Business Solutions's bid of $7,000 on a proposed project has been accepted. Alexs paid a $1,500 cash advance to Business Solutions.December 15 Purchased $1,100 of computer supplies on credit from Harris Office Products.December 16 Sent a reminder to Gomez Company to pay the fee for services recorded on November 8.December 20 Completed a project for Liu Corporation and received $5,625 cash.December 22-26 Took the week off for the holidays.December 28 Received $3,000 cash from Gomez Company on its receivable.December 29 Reimbursed S. Rey for business automobile mileage (600 miles at $0.32 per mile).December 31 Paid $1,500 cash for dividends.The following additional facts are collected for use in making adjusting entries prior to preparing financial statements for the companys first three months.The December 31 inventory count of computer supplies shows $580 still available.Three months have expired since the 12-month insurance premium was paid in advance.As of December 31, Lyn Addie has not been paid for four days of work at $125 per day.The computer system, acquired on October 1, is expected to have a four-year life with no salvage value.The office equipment, acquired on October 1, is expected to have a five-year life with no salvage value.Three of the four months' prepaid rent have expired. a risk of coopetition is if the companies actions are perceived as group of answer choices collusion. partnering. forbearance. competitive. Steam Workshop Downloader