Problem 1 (13 marks) Find the first derivative of each of the following functions. (a) [5 marks] sin (ecos(x)). (b) [3 marks] cos(x)e". (c) [5 marks] x2+1 cos(x)

Answers

Answer 1

(a) The first derivative of sin(ecos(x)) is cos(ecos(x)) * (-sin(x)) * ecos(x).

To find the derivative of the function sin(ecos(x)), we apply the chain rule. The derivative of the outer function sin(u) with respect to u is cos(u), and the derivative of the inner function ecos(x) with respect to x is -sin(x) * ecos(x). Multiplying these two derivatives together using the chain rule, we obtain cos(ecos(x)) * (-sin(x)) * ecos(x).

(b) The first derivative of cos(x)e^x is -sin(x)e^x + cos(x)e^x.

To find the derivative of the function cos(x)e^x, we apply the product rule. The derivative of the first term cos(x) with respect to x is -sin(x), and the derivative of the second term e^x with respect to x is e^x. Multiplying the first term by the derivative of the second term and the second term by the derivative of the first term, we get -sin(x)e^x + cos(x)e^x.

(c) The first derivative of x^2 + 1 * cos(x) is 2x - sin(x).

To find the derivative of the function x^2 + 1 * cos(x), we apply the product rule. The derivative of the first term x^2 with respect to x is 2x, and the derivative of the second term cos(x) with respect to x is -sin(x). Adding these two derivatives together, we obtain 2x - sin(x).

Learn more about derivative here:

brainly.com/question/18722002

#SPJ11


Related Questions

Find the distance between x=1 and y = The distance between x and y is (Type an exact answer, using radicals as needed.) Find the distance between ...

Answers

the distance between x = 1 and y = √2 is √3.

To find the distance between two points (x1, y1) and (x2, y2) in a two-dimensional coordinate system, we can use the distance formula:

Distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)

In this case, we want to find the distance between x = 1 and y = √2.

Let's consider the points (1, 0) and (0, √2) as the coordinates (x1, y1) and (x2, y2), respectively.

Using the distance formula:

Distance = sqrt((0 - 1)^2 + (√2 - 0)^2)

= sqrt((-1)^2 + (√2)^2)

= sqrt(1 + 2)

= sqrt(3)

To know more about coordinate visit:

brainly.com/question/22261383

#SPJ11

Identify a counterexample to disprove n^3 ≤ 3n^2, where n is a real number.
a. n = 0
b. n = −1
c. n = 0.5
d. n = 4

Answers

The counterexample that disproves the inequality n³ ≤ 3n² is n = 4.

To disprove the statement n³ ≤ 3n², we need to find a counterexample, which is a value of n for which the inequality is false.

Let's evaluate the inequality for the given options:

a. n = 0:

0³ ≤ 3(0)²

0 ≤ 0

The inequality holds for n = 0.

b. n = -1:

(-1)³ ≤ 3(-1)²

-1 ≤ 3

The inequality holds for n = -1.

c. n = 0.5:

(0.5)³ ≤ 3(0.5)²

0.125 ≤ 0.75

The inequality holds for n = 0.5.

d. n = 4:

4³ ≤ 3(4)²

64 ≤ 48

The inequality does not hold for n = 4.

Therefore, the counterexample that disproves the inequality n³ ≤ 3n² is n = 4.

Learn more about Inequality here:

https://brainly.com/question/20383699

#SPJ1

Calculate the Taylor polynomials T 2

and T 3

centered at x=a for the function f(x)=23ln(x+1),a=0. (Express numbers in exact form. Use symbolic notation and fractions where needed.)

Answers

the Taylor polynomial T2 centered at x = 0 is 23x - (23/2)x^2, and the Taylor polynomial T3 centered at x = 0 is 23x - (23/2)x^2 + (23/3)x^3.

To find the Taylor polynomials T2 and T3 centered at x = a for the function f(x) = 23ln(x+1), where a = 0, we need to calculate the function's derivatives at x = a and evaluate them at a.

First, let's find the derivatives:

f(x) = 23ln(x+1)

f'(x) = 23 * 1/(x+1) * (d/dx)(x+1) = 23/(x+1)

f''(x) = (d/dx)(23/(x+1)) = -23/(x+1)^2

f'''(x) = (d/dx)(-23/(x+1)^2) = 46/(x+1)^3

Now, let's evaluate the derivatives at x = a = 0:

f(0) = 23ln(0+1) = 23ln(1) = 23 * 0 = 0

f'(0) = 23/(0+1) = 23/1 = 23

f''(0) = -23/(0+1)^2 = -23/1 = -23

f'''(0) = 46/(0+1)^3 = 46/1 = 46

Now we can construct the Taylor polynomials:

T2(x) = f(0) + f'(0)(x-a) + (f''(0)/2!)(x-a)^2

= 0 + 23(x-0) + (-23/2)(x-0)^2

= 23x - (23/2)x^2

T3(x) = T2(x) + (f'''(0)/3!)(x-a)^3

= 23x - (23/2)x^2 + (46/6)(x-0)^3

= 23x - (23/2)x^2 + (23/3)x^3

Therefore, the Taylor polynomial T2 centered at x = 0 is 23x - (23/2)x^2, and the Taylor polynomial T3 centered at x = 0 is 23x - (23/2)x^2 + (23/3)x^3.

Learn more about polynomial here:

https://brainly.com/question/11536910

#SPJ11

The best line is the Least Squares Line because it has the largest sum of squares error (SSE) A. True B. False

Answers

Answer:

False

explain:

The statement "The best line is the Least Squares Line because it has the largest sum of squares error (SSE)" is false.In fact, the Least Squares Line is chosen to minimize the sum of squared errors (SSE), which is the sum of the squared differences between the predicted values and the actual values of the response variable. This line is obtained by finding the line that minimizes the sum of the squared residuals, which is also known as the sum of squared errors or SSE.The SSE represents the amount of variability in the response variable that is not explained by the regression model. Therefore, the goal of regression analysis is to find the line that minimizes this variability, and the least squares line is the line that achieves this goal.Therefore, the statement that the best line is the Least Squares Line because it has the largest sum of squares error (SSE) is false. In fact, the Least Squares Line is the line that minimizes the SSE, and it is considered to be the best line for fitting a linear regression model to a set of data points.

is the model a good fit for the data? explain. a. no; the data are too far from the line of fit. b. no; the data are too close to the line of fit. c. yes; the data are distributed evenly around the line of fit. d. yes; the line of fit touches at least one point in the data set.

Answers

According to the statement the correct answer is option C - yes, the data are distributed evenly around the line of fit.

To determine if a model is a good fit for a data set, one needs to evaluate how closely the data points align with the line of fit. The line of fit represents the best possible straight line that can be drawn through the data points. If the data points are too far from the line of fit or too close to the line of fit, then it is an indication that the model is not a good fit for the data.
Option A states that the data points are too far from the line of fit, indicating that the model is not a good fit for the data. Option B states that the data points are too close to the line of fit, which is not necessarily a good or bad thing as it depends on the level of accuracy required for the analysis. Option C states that the data points are evenly distributed around the line of fit, which indicates that the model is a good fit for the data. Lastly, option D states that the line of fit touches at least one point in the data set, which is not sufficient to determine if the model is a good fit for the entire data set.
Therefore, the correct answer is option C - yes, the data are distributed evenly around the line of fit.

To know more about data set visit :

https://brainly.com/question/28479961

#SPJ11

please include steps
Determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system. [1 h 5 4 12 15

Answers

For any value of h that is not equal to 3, the matrix represents the augmented matrix of a consistent linear system.

To determine the value(s) of h such that the matrix represents the augmented matrix of a consistent linear system, we need to check if the matrix can be row reduced to the form [A | B] where A is a non-singular matrix (has full rank) and B is a column vector.

Let's perform row reduction on the given matrix:

[1  h   5]

[4  12  15]

Row 2 minus 4 times Row 1:

[1   h    5]

[0   12-4h  -5]

We need to ensure that the second row is not all zeros, which would make the system inconsistent.

Therefore, we set 12-4h ≠ 0.

Solving for h:

12 - 4h ≠ 0

-4h ≠ -12

h ≠ 3

Thus, for any value of h that is not equal to 3, the matrix represents the augmented matrix of a consistent linear system.

Learn more about matrices click;

https://brainly.com/question/30646566

#SPJ4

give an example of 2×2 matrix with non zero entries
that has no inverse

Answers

A 2×2 matrix with non zero entries that has no inverse is:
[1 2]
[2 4]

To find the inverse of a matrix, we need to calculate its determinant. The determinant of this matrix is 0 because the second row is a multiple of the first row. Therefore, this matrix does not have an inverse.

Another way to explain why this matrix has no inverse is to use the formula for the inverse of a 2×2 matrix. If A is a 2×2 matrix with non zero entries, its inverse is given by:
A^-1 = 1/det(A) × [d -b]
                         [-c a]
where det(A) is the determinant of A, and a, b, c, and d are the entries of A.
For the matrix [1 2] [2 4], we have det(A) = 1×4 - 2×2 = 0. Therefore, the formula for the inverse is not defined, and this matrix has no inverse.
In general, a matrix with determinant 0 is called singular, and it does not have an inverse. Such matrices can arise in many contexts, including linear systems of equations, transformations in geometry, and quantum mechanics. It is important to identify singular matrices and handle them appropriately, as they can lead to numerical instability and incorrect results.

To know more about matrix  visit :-

https://brainly.com/question/29132693

#SPJ11

show that cov(x,y)=0 if x,y are independent. hint: find a computational formula for covariance, similar to the computational formula for variance, var(x)=e(x2)[e(x)]2.

Answers

If x and y are independent, then the covariance between x and y, cov(x, y), is equal to 0.

Covariance measures the linear relationship between two random variables. If x and y are independent, it means that the occurrence of one variable does not affect the occurrence of the other. In other words, there is no linear relationship between x and y.

The computational formula for covariance is given by:

cov(x, y) = E[(x - E[x])(y - E[y])],

where E[x] and E[y] are the expected values of x and y, respectively.

If x and y are independent, it implies that E[x] and E[y] are also independent, and therefore the term (x - E[x])(y - E[y]) will equal 0 for all possible values of x and y. Consequently, the expected value of this term will also be 0.    

Since cov(x, y) is defined as the expected value of (x - E[x])(y - E[y]), and this term is 0, it follows that cov(x, y) must be equal to 0.

Hence, if x and y are independent, their covariance cov(x, y) is always 0, indicating that there is no linear relationship between the variables.

Visit here to learn more about covariance:

brainly.com/question/28135424

#SPJ11

according to the national retail federation, the average shopper will spend $1,007.24 during the holiday shopping season. what is the null and alternate hypothesis?
a. Sample population is needed to complete the hypothesis
b. Hθ:ն≥1007.24;HAն≤1007.24
c. Hθ:ն≠1007.24;HAն≤1007.24
d. Hθ:ն=1007.24;HAն≤1007.24

Answers

Option B  Hθ:ն≥1007.24;HAն≤1007.24  represents the null hypothesis (H₀) stating that the average expenditure is equal to or greater than $1,007.24, and the alternative hypothesis (Hₐ) stating that the average expenditure is less than $1,007.24.

The null hypothesis (H₀) and alternative hypothesis (Hₐ) for the given scenario can be determined as follows:

Null Hypothesis (H₀): The average shopper will spend an amount equal to or greater than $1,007.24 during the holiday shopping season.

Alternative Hypothesis (Hₐ): The average shopper will spend an amount less than $1,007.24 during the holiday shopping season.

Based on the given options, the correct choice is:

b. Hθ:ն≥1007.24;HAն≤1007.24

To know more about hypothesis,

https://brainly.com/question/25804900

#SPJ11

In a recent poll of 350 likely voters, 42% of them preferred the incumbent candidate. At the 95% confidence level, which of the following would be closest to the margin of error of this statistic?
a. 2.6% b. 4.2% c. 3.7% d. 5.3%

Answers

The answer closest to the margin of error is option b: 4.2%.

To determine the margin of error at the 95% confidence level for the proportion of likely voters who prefer the incumbent candidate, we can use the formula:

Margin of Error = (Z * √(p*(1-p))/√n)

Where:

Z is the Z-score corresponding to the desired confidence level (95% corresponds to approximately 1.96)

p is the proportion of voters who prefer the incumbent candidate (42% or 0.42)

n is the sample size (350)

Calculating the margin of error:

Margin of Error = (1.96 * √(0.42*(1-0.42))/√350)

Using a calculator, the closest value to the margin of error is approximately 4.2%. Therefore, the answer closest to the margin of error is option b: 4.2%.

To know more about margin of error refer here:

https://brainly.com/question/29419047

#SPJ11

Find the area of the region enclosed by one loop of the curve. r = sin(10)

Answers

The curve given by r = sin(10) is a polar curve with one loop.

To find the area enclosed by one loop of the curve, we can use the formula for the area of a polar region, which is given by:

A = (1/2)∫θ2θ1 [r(θ)]^2 dθ

Since the curve has one loop, we need to find the values of θ that correspond to one complete revolution around the origin. Since sin(θ) has period 2π, we have:

r = sin(10) = sin(10 + 2π) for all values of θ

So, one complete revolution occurs when θ increases from 0 to 2π. Thus, the area enclosed by one loop of the curve is:

A = (1/2)∫02π [sin(10)]^2 dθ

Using the identity sin^2(θ) = (1/2)(1 - cos(2θ)), we can simplify this integral to:

A = (1/2)∫02π (1/2)(1 - cos(20θ)) dθ

Simplifying further, we get:

A = (1/4)∫02π (1 - cos(20θ)) dθ

Evaluating this integral gives:

A = (1/4) [θ - (1/20)sin(20θ)]02π

A = (1/4) (2π)

A = π/2

Therefore, the area enclosed by one loop of the curve r = sin(10) is π/2 square units.

To learn more about polar curve click here: brainly.com/question/26193139

#SPJ11

A random sample of 7 patients are selected from a group of 25 and their cholesterol levels were recorded as follows:
128, 127, 153, 144, 132, 120, 115
Find the sample mean.
a. 142.87
b. 135.16
c. 131.29
d. 130.32
e. 143.26

Answers

The correct answer is option (c) 131.29. To find the sample mean, we need to calculate the average of the given cholesterol levels. The sample mean is computed by summing up all the values and dividing by the total number of values.

In this case, the cholesterol levels of the 7 patients are given as follows: 128, 127, 153, 144, 132, 120, 115.

To find the sample mean:

Sample mean = (Sum of all values) / (Total number of values)

Sum of all values = 128 + 127 + 153 + 144 + 132 + 120 + 115 = 919

Total number of values = 7

Sample mean = 919 / 7 = 131.29

Therefore, the sample mean of the given cholesterol levels is 131.29.

Hence, the correct answer is option (c) 131.29.

Learn more about sample mean here:

brainly.com/question/17514579

#SPJ11

can someone explain this

Answers

Aaron has $53 in his account and he spends $3.25 per lunch.

After spending money the balance reflects the amount left in account.

So after paying for 4 lunches the balance is:

53 - 4*3.25 = 40

After paying for 6 lunches the balance is:

53 - 6*3.25 = 33.5

After paying for n lunches the balance is:

53 - n*3.25 = 53 - 3.25n

Help me please with this answer

Answers

The side length of the square are as follows:

Square C = √26

Square B = 4.2

Square A = √11

How to find the side of a square?

A square is a quadrilateral with 4 sides equal to each other. The opposite sides of a square is parallel to each other.

Therefore, the sides of square can be found as follows:

Square A is smaller than square B.

Square B is smaller than square C.

Therefore, the square sides are √26, 4.2 and √11.

Therefore,

Square C = √26

Square B = 4.2

Square A = √11

learn more on square here: https://brainly.com/question/29253009

#SPJ1

How do I find absolute value of an equation

Answers

To find the absolute value of an equation, you set up two separate equations representing the positive and negative cases, solve each equation, and check the solutions by substituting them back into the original equation.

Finding the absolute value of an equation involves determining the magnitude or distance of a number or expression from zero on the number line. The absolute value function is denoted by the symbol "|" surrounding the number or expression. The absolute value function always returns a positive value or zero, regardless of the sign of the number or expression inside it. Here's how you can find the absolute value of an equation:

Identify the number or expression inside the absolute value notation.

For example, consider the equation |x - 5| = 3.

Set up two separate equations.

The first equation represents the positive case:

x - 5 = 3

The second equation represents the negative case:

-(x - 5) = 3

Solve each equation separately.

Solve the first equation:

x - 5 = 3

x = 3 + 5

x = 8

Solve the second equation:

-(x - 5) = 3

-x + 5 = 3

-x = 3 - 5

-x = -2

x = 2 (multiply both sides by -1 to remove the negative sign)

Check the solutions.

Substitute the found values of x back into the original equation to ensure they satisfy the absolute value condition.

For |x - 5| = 3:

When x = 8: |8 - 5| = 3 (True)

When x = 2: |2 - 5| = |-3| = 3 (True)

State the solutions.

The solutions to the equation |x - 5| = 3 are x = 8 and x = 2.

In summary, to find the absolute value of an equation, you set up two separate equations representing the positive and negative cases, solve each equation, and check the solutions by substituting them back into the original equation.

For more such questions on absolute value, click on:

https://brainly.com/question/24368848

#SPJ8

Can you please help me with
this question showing detailed work?
Question 1:
Find dy dx x=0 if y= (x-2)³-(2x+1)4 2x. √√x+8 Use logarithmic differentiation.

Answers

the value of dy/dx at x = 0 is 41/972.

Given, y = (x - 2)³ - (2x + 1)4² √x + 8.

To find: dy/dx at x = 0.Using logarithmic differentiation to find the derivative,Firstly, take natural logarithms on both sides of the given equation ln

y = ln [(x - 2)³ - (2x + 1)4² √x + 8].

ln y = ln [(x - 2)³ - (2x + 1)4² √x + 8].

ln y = ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].

Differentiating with respect to x ln

y = ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].1/y dy/dx

= d/dx ln [(x - 2)³ - (2x + 1)16 (x + 8)¹/²].1/y dy/dx

= [3(x - 2)² - 32(2x + 1)(x + 8)¹/²]/[(x - 2)³ - (2x + 1)16 (x + 8)¹/²].

Now, put x = 0 in the above equation,

1/y dy/dx = [3(-2)² - 32(2 × 0 + 1)(0 + 8)¹/²]/[(-2)³ - (2 × 0 + 1)16 (0 + 8)¹/²].1/y dy/dx

= -82/80 y

= (x - 2)³ - (2x + 1)4² √x + 8.

Then, at x = 0,

y = (-1)⁴ (2)³ - (2 × 0 + 1)4² √0 + 8.y

= -27.

Substituting the value of y and dy/dx in the first equation, we get,

-27 dy/dx

= -82/80.dy/dx

= 82/80 * 1/27.dy/dx

= 41/972.So, the value of dy/dx at

x = 0 is 41/972.

To know more about logarithmic visit;

brainly.com/question/30226560

#SPJ11

find the sum of all numbers that are congruent to 1 ( modulo 3)
from 1 to 100

Answers

We need to find the sum of all numbers that are congruent to 1 (modulo 3) from 1 to 100. We can solve this problem by using an arithmetic series formula.

The formula to find the sum of the first n terms of an arithmetic series is Sn = n/2(a1 + an), where a1 is the first term, an is the nth term, and n is the number of terms. In this problem, the common difference between each term is 3, since we are looking at numbers congruent to 1 (modulo 3). Therefore, we can write the nth term as 3n - 2. To find the number of terms, we can divide 100 by 3 and round up to the nearest whole number, since we want to include the last term.

This gives us n = 34. Therefore, we can plug in these values to the formula to get: Sn = 34/2(1 + 99) = 34/2(100) = 1700. So the sum of all numbers that are congruent to 1 (modulo 3) from 1 to 100 is 1700.

To know more about congruent visit:

brainly.com/question/30596171

#SPJ11

Question 10 of 10
If you know the circumference of a circle, which step(s) can you follow to find
its radius?
O
A. Divide by 2, then multiply by .
B. Divide by .
C. Divide by 2.
D. Divide by , then divide by 2.

Answers

Answer: Divide by [tex]\pi[/tex], then divide it by 2

Step-by-step explanation:

Circumference formula: [tex]\pi[/tex]*(r*2)

[tex]\pi[/tex]*(r*2)/[tex]\pi[/tex]=r*2

(r*2)/2=r

So, divide by exactly pi (or 3.14), then divide by 2. DON'T divide by 2 first, then pi because you won't end up with the same answer.


Write an equation of the line using the points you chose above.
y-0
c. About how many miles per hour do you travel?
You travel about
miles per hour.
d. About how far were you from home when you started?
When you started, you were about [
15
miles from home.
e. Predict the distance from home in 7 hours.
In 7 hours, you will be about miles from home.

Answers

c) You travel about 50 miles per hour.

d) You were 15 miles from home when you started.

e) After 7 hours, you will be 365 miles away from home.

How to define a linear function?

The slope-intercept representation of a linear function is given by the equation shown as follows:

y = mx + b

The coefficients m and b have the meaning presented as follows:

m is the slope of the function, representing the increase/decrease in the output variable y when the input variable x is increased by one.b is the y-intercept of the function, representing the numeric value of the function when the input variable x has a value of 0. On a graph, it is the value of y when the graph of the function crosses or touches the y-axis.

When x = 0, y = 15, hence the intercept b is given as follows:

b = 15.

In six hours, the distance increased by 300 miles, hence the slope m is given as follows:

m = 300/6 = 50.

Hence the equation is:

y = 50x + 15.

After seven hours, the predicted distance is given as follows:

y = 50(7) + 15 = 365 miles.

Missing Information

The points on the line are:

(0,15) and (6, 315).

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ1

Q16
QUESTION 16 1 POINT Find the domain of the following function. Give your answer in interval notation. f(x)=√4x-24

Answers

The domain of the given function is [6, ∞) in interval notation. The above domain of f(x) ensures that the expression inside the square root is non-negative.

The given function is f(x) = √4x - 24. The domain of a function is the set of all possible values of x for which the function is defined and gives real outputs.

Since f(x) is a square root function, its argument must be greater than or equal to 0.

Thus,4x - 24 ≥ 0 ⇒ 4x ≥ 24 ⇒ x ≥ 6 .

Hence, the domain of the given function is [6, ∞) in interval notation.

The above domain of f(x) ensures that the expression inside the square root is non-negative.

To know more about Function  visit :

https://brainly.com/question/30721594

#SPJ11

*1. Test for convergence or divergence. 2n n! 1·3·5...(2n — 1) · (2n + 1) n=1

Answers

The terms of the series do not approach zero, and the series diverges.

To test for convergence or divergence of the given series, let's analyze the terms of the series and check for any patterns.

The given series is:

[tex]\dfrac{2n \times n!} { (1.3.5...(2n -1) . (2n + 1))}[/tex], with n starting from 1.

Let's simplify the terms:

[tex]2n \times n! = 2n \times n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1\\(1.3.5...(2n - 1) . (2n + 1)) = (2n + 1) \times (2n - 1) \times (2n - 3) \times ... \times 5 \times 3 \times 1[/tex]

Now, we can rewrite the given series as:

[tex]\dfrac{(2n \times n!)}{((2n + 1) \times (2n - 1) \times (2n - 3) \times ... \times 5 \times 3 \times 1)}[/tex]

Notice that each term in the numerator is twice the previous term, while each term in the denominator alternates between odd and even numbers. We can observe that the numerator grows much faster than the denominator.

As n approaches infinity, the numerator grows exponentially, while the denominator grows at a slower rate. Therefore, the terms of the series do not approach zero, and the series diverges.

In conclusion, the given series diverges.

To know more about the function follow

https://brainly.com/question/31585447

#SPJ4

Find P(A or B or C) for the given probabilities.
P(A) = 0.35, P(B) = 0.23, P(C) = 0.18
P(A and B) = 0.13, P(A and C) = 0.03, P(B and C) = 0.07
P(A and B and C) = 0.01
P(A or B or C)

Answers

The probability of A or B or C occurring is 0.54.

To find P(A or B or C), we need to use the principle of inclusion-exclusion.

P(A or B or C) = P(A) + P(B) + P(C) - P(A and B) - P(A and C) - P(B and C) + P(A and B and C)

Substituting the given probabilities:

P(A or B or C) = 0.35 + 0.23 + 0.18 - 0.13 - 0.03 - 0.07 + 0.01

P(A or B or C) = 0.54

Therefore, the probability of A or B or C occurring is 0.54.

To know more about probability refer here:

https://brainly.com/question/32117953

#SPJ11

find a quadratic function f whose graph matches the one in the figure. (-7,0),(-3,4)

Answers

In summary, the quadratic function f whose graph matches the points (-7,0) and (-3,4) is:
f(x) = -0.5x^2 + 2.5x + 14

To find the quadratic function f whose graph matches the given points (-7,0) and (-3,4), we can start by using the standard form of a quadratic equation, y = ax^2 + bx + c.
We can use the two given points to form a system of equations:
0 = a(-7)^2 + b(-7) + c
4 = a(-3)^2 + b(-3) + c
Simplifying these equations, we get:
49a - 7b + c = 0
9a - 3b + c = 4
We can then solve for one of the variables, such as c:
c = -49a + 7b
c = -9a + 3b - 4
Setting these two equations equal to each other, we get:
-49a + 7b = -9a + 3b - 4
Simplifying, we get:
40a = 4b - 4
10a = b - 1
We can substitute this value of b into one of our original equations, such as:
0 = a(-7)^2 + b(-7) + c
0 = 49a - 7(10a + 1) + c
0 = 29a - 7 + c
c = 7 - 29a
So now we have the values of a, b, and c, and we can write the equation for f:
f(x) = ax^2 + bx + c
f(x) = a(x^2) + (b - 1)x + (7 - 29a)

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

3) Given the function f(x)=-6x² +15x, evaluate Зpts 4) Solve fx +4x+2=2

Answers

(A) The function f(x) = -6x² + 15x when x = 3, f(x) = -9

(B) The solution to the equation fx + 4x + 2 = 2 is x = 0.

To evaluate the function f(x) = -6x² + 15x, we need to substitute the given values of x into the function and simplify the expression.

Let's evaluate f(x) at x = 3:

f(3) = -6(3)² + 15(3)

= -6(9) + 45

= -54 + 45

= -9

Therefore, when x = 3, f(x) = -9.

To solve the equation fx + 4x + 2 = 2, we need to isolate the variable x.

fx + 4x + 2 = 2

First, let's simplify the equation:

fx + 4x = 0

Combine like terms:

5x = 0

Divide both sides by 5:

x = 0

Therefore, the solution to the equation fx + 4x + 2 = 2 is x = 0.

To know more about function click here :

https://brainly.com/question/26582052

#SPJ4

suppose that you learn that the die landed on a number strictly greater than 10 only if it landed on a multiple of four. what is the probability that it landed on a multiple of four that is no greater than 10?

Answers

The probability that it landed on a multiple of four that is no greater than 10 is 0.3333.

If we know that the die landed on a number strictly greater than 10 only if it landed on a multiple of four, it means that if the dice landed on a number less than or equal to 10, it cannot be a multiple of four.

There are three multiples of four that are less than or equal to 10: 4, 8, and 12 (which we exclude since it's greater than 10).

Out of these three possibilities, only one satisfies the condition that the die landed on a number strictly greater than 10 only if it landed on a multiple of four, which is 8.

Therefore, the probability that the die landed on a multiple of four that is no greater than 10 is 1 out of 3, or 1/3.

In other words, the probability is approximately 0.3333.

Learn more about probability at https://brainly.com/question/13143685

#SPJ11

Find the center and radius of the circle with a diameter that has endpoints (-10, 1) and (6, 10). Enter the center as an ordered pair, e.g. (2,3): Enter the radius as a decimal correct to three decimal places:

Answers

The center of the circle is (−2, 5.5) and the radius is 8.131.

   To find the center of the circle, need to find the midpoint of the line segment connecting the endpoints of the diameter.

   The x-coordinate of the midpoint can be found by taking the average of the x-coordinates of the endpoints: (−10 + 6)/2 = −2.

   Similarly, the y-coordinate of the midpoint can be found by taking the average of the y-coordinates of the endpoints: (1 + 10)/2 = 5.5.

   Therefore, the center of the circle is (−2, 5.5).

   The radius of the circle is half the length of the diameter. It can calculate the length of the diameter using the distance formula.

   The distance formula is given by: √[(x2 - x1)² + (y2 - y1)²].

   Substituting the values of the endpoints, the length of the diameter is: √[(-10 - 6)² + (1 - 10)²] = √[256 + 81] = √337.

   Therefore, the radius of the circle is half of √337, which is approximately 8.131 when rounded to three decimal places.

To learn more about midpoint- brainly.com/question/15209124

#SPJ11

the distribution of leaves falling from trees in the month of november is positively skewed. this means that:

Answers

A positively skewed distribution means that the majority of the data is clustered toward the lower end of the range, with a long tail to the right indicating a smaller number of extreme values on the higher end. In the case of the distribution of leaves falling from trees in November, this suggests that most trees lose a similar number of leaves, but there are some trees that lose a very large number of leaves, resulting in a long tail to the right of the distribution.

The right triangle on the right is a scaled copy of the right triangle on the left. Identify
the scale factor. Express your answer as a fraction in simplest form.
3
3
11

Answers

The scale factor is found dividing one side length of the right triangle on the right by the equivalent side length on the right triangle on the left.

We have,

A dilation happens when the coordinates of the vertices of an image are multiplied by the scale factor, changing the side lengths of a figure.

For this problem, we have that the original and the dilated figures are given as follows:

Original: right triangle on the left.

Dilated: right triangle on the right.

Hence the scale factor is found dividing one side length of the right triangle on the right by the equivalent side length on the right triangle on the left.

More can be learned about dilation at

brainly.com/question/3457976

#SPJ1

complete question:

The problem is incomplete,

The right triangle on the right is a scaled copy of the right triangle on the left. Identify the scale factor. Express your answer as a fraction in simplest form.

hence the general procedure to obtain the scale factor was presented.

lime a has an equation of y = 1/3x - 5. line t is perpendicular to line a and passes through (-2, 9). what is the equation of line t?

Answers

The equation for the line t is:

f(x) = -3x + 3

How to find the equation of the line t?

Let's say that line t can be written as:

f(x) = a*x + b

Remember that two lines are perpendicular if the product between the slopes is -1, then if our line is perpendicular to:

y = 1/3x - 5

Then we will have:

a*(1/3) = -1

a = -3

The line is:

f(x) = -3*x + b

And this line must pass through (-2, 9), then:

9 = -3*-2 + b

9 = 6 + b

9 - 6 = b

3 = b

The line t is:

f(x) = -3x + 3

Learn more about linear equations at:

https://brainly.com/question/1884491

#SPJ1


6. What is the difference in the populations means if a 95%
Confidence Interval for μ1 - μ2 is (-2.0,8.0)
a. 0
b. 5
c. 7
d. 8
e. unknown
8. A 95% CI is calculated for comparison of two population me

Answers

The solution for this question is (e) unknown is not the estimated difference in means.

6. The difference in the population means is estimated to be between -2.0 and 8.0 with a 95% confidence interval. The midpoint of this interval gives us the estimate of the difference in means.

Midpoint = (Upper bound + Lower bound) / 2

Midpoint = (8.0 + (-2.0)) / 2

Midpoint = 6.0 / 2

Midpoint = 3.0

Therefore, the estimated difference in the population means is 3.0.

(a) 0 is not the estimated difference in means.

(b) 5 is not the estimated difference in means.

(c) 7 is not the estimated difference in means.

(d) 8 is not the estimated difference in means.

(e) unknown is not the estimated difference in means.

The correct answer is (e) unknown.

8. The question about the comparison of two population means is incomplete. Please provide the complete question, and I'll be happy to help you with it.

To know more about Population related question visit:

https://brainly.com/question/15889243

#SPJ11

Other Questions
There are 72 grapes in a bag. Four friends are sharing the grapes.Enter an equation that can be used to find out how many grapes g each friend will get if each friend gets the same number of grapes.The equation is ? * i need 2 anwser for this question Determine if the function defines an inner product on R3, where u = (u1,u2,u3) and V=(v1,v2,v3) (Select all that apply.)(u,v)= ( u12v12+u22v22+u32v32)a) satisfies (u,v)=(v,u)b) does not satisfy (u, v)=(v,u)c) satisfies (u, v+w) = (u,v)+(u,w)d) does not satisfy (u, v+w) = (u,v)+(u,w)e)satisfies c (u,v) = (cu, v)f) does not satisfies c (u,v) = (cu, v)g) satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0h) does not satisfies (v, v) >= 0 and(v,v)=0 if and only if v=0 A cylinder has a height of 13 inches and a radius of 5 inches. What is its volume? Use 3.14 and round your answer to the nearest hundredth. g 50.0 l of nacl solution is added to 10.0 l of 2.7 m of koh.what is the final molarity or final molar concentration of thekoh solution? (answer: 0.45 m) How far do the golfers at country clubs drive a ball? A histogram of the average driving distances of the 202 leading golfers at country clubs in 2004 is shown to the right, along with summary statistics. Complete parts a) through c).count = 202mean = 285.4 yardsStdDev = 8.5 yardsa) find a 95% confidence interval for the mean drive distanceb) interpreting this interval raises some problems, what's the problem?A.The 10% condition is not satisfied because the sample size is too large.B.The sample is not random because only the top golfers were chosen.C.The histogram shows that the data is skewed so the Student's t-distribution does not work.c) The data are the mean driving distance for each golfer. Is that a concern in interpreting the interval?A.) No, the mean driving distances give a more accurate interval since they are based on the means of individual golfers' drives.B.) Yes, the mean driving distances are less variable than the data on which they are based. This can result in an inaccurate interval. which of these are proven approaches to achieving a sustainable competitive advantage? (check all that apply) group of answer choices localization low pricing specialization team selection (T/F) Market share alone is highly unlikely to lead to antitrust action, but a high market share acquired and/or maintained via abusive conduct may be challenged. which control charts cannot be used individually to determine if a process is in or out of control? (check all that apply) Johann Nepomuk Mlzel is credited with inventing which musical device?a. The metronomeb. The harmonicac. The pipe organd. The baton. a sound wave has a wavelength of 5 meters and a freuqnecy of 1000 cycles per second. the velocity of the sound is Your organization sometimes needs to securely share information with three clients organizations. What will you use so your clients get partial access to resources on your organizations network? A rectangular tank, 3m long, 2m broad and 1m deep, is filled with water to a depth of 3/4m. How any bricks measuring 1/5m by 1/8m by 1/10m can be put into it before the water overflows? Toe board or mesh fencing installed on scaffolding protects workers below the scaffolding from what hazards? Which of the following would decrease the net export component of Canadian GDP? Select one: A. A bottle of Oregon wine is purchased in Japan. B. A bottle of Canadian maple syrup is purchased in Belgium C. A camera produced in Japan is purchased in Canada, D. A box of Belgian chocolate is purchased in Illinois. which of the following is not a typical organizational pattern for a persuasive speech? a. topical b. monroe's motivated sequence c. comparative advantages d. problem-cause-solution what was an important achievement of the emperor hadrian? What did Virginia governor Lord Dunmore promise slaves in 1775?A) They would be freed if they helped the colonial cause.B) They could return to Africa if they continued to serve Virginia until after the revolution.C) Their children would be considered free citizens if they did not fight for the British.D) They would be granted refuge if they had escaped from FloridaE) If they were able-bodied and helped in restoring royal authority over rebel colonists, they would be granted freedom. Solve the equation below for x. If there is no solution type NS. If your answer is not an integer type it as a reduced fraction. logs (x+6)- logs (x) = logs (58) x= 100 Points! Algebra question. Photo attached. Please show as much work as possible. Thank you! which of the following options should be classified as a molecular compound? i. hs ii. br iii. cao