please reply quickly ( i will give you like )
Question * Consider the following double integral 1 - 2 - dy dx. By reversing the order of integration of I, we obtain: 1 = ²√²dx dy This option 1 = √ √4-y dx dy This option 1 = 4** dx dy O Th

Answers

Answer 1

To find the reversed order of integration for the given double integral. This means we integrate with respect to x first, with limits from 0 to 2, and then integrate with respect to y, with limits y = [tex]\sqrt{4-x^{2} }[/tex].

To reverse the order of integration, we integrate with respect to x first and then with respect to y. The limits for the x integral will be determined by the range of x values, which are from 0 to 2.

Inside the x integral, we integrate with respect to y. The limits for y will be determined by the curve y = [tex]\sqrt{4-x^{2} }[/tex]. As x varies from 0 to 2, the corresponding limits for y will be from 0 to [tex]\sqrt{4-x^{2} }[/tex].

Therefore, the reversed order of integration is option I = [tex]\int\limits^\sqrt{(4-x)^{2} }} _0 \int\limits^2_{_0}[/tex] dx dy. This integral allows us to evaluate the original double integral I by integrating with respect to x first and then with respect to y.

Learn more about integrate here:

https://brainly.com/question/31744185

#SPJ11

The complete question is:

consider the following double integral I= [tex]\int\limits^2_{_0}[/tex] [tex]\int\limits^\sqrt{(4-x)^{2} }}_0[/tex] dy dx  . By reversing the order of integration, we obtain:

a. [tex]\int\limits^2_{_0}[/tex][tex]\int\limits^\sqrt{(4-y)^{2} }}_0[/tex]dx dy

b. [tex]\int\limits^\sqrt{(4-x)^{2} }} _0 \int\limits^2_{_0}[/tex] dx dy

c. [tex]\int\limits^2_{_0}\int\limits^0_\sqrt{{-(4-y)^{2} }}[/tex] dx dy

d. None of these


Related Questions

Solve the following integrals:
x³ (i) S (30e* +5x−¹ + 10x − x) dx 6 (ii) 7(x4 + 5x³+4x² +9)³(4x³ + 15x² + 8x)dx 3 12 (iii) S (9e-³x - ²/4 +¹2) dx √x x² 2 (iv) S (ex + ²/3 + 5x − *) dx X 2

Answers

Answer:

The solution of given integrals are:

(i) 30e^x + 5ln|x| + 5x^2 - x^7/7 + C

(ii) ∫[7(x^12 + 15x^11 + 86x^10 + 260x^9 + 443x^8 + 450x^7 + 288x^6 + 99x^5 + 120x^4 + 144x^2 + 81)(4x^3 + 15x^2 + 8x)] dx. Expanding this expression and integrating each term, we obtain the result.

(iii) -3e^(-3x) + 2ln|4 + √x| + 12x + C

(iv) e^x + (2/3)x + (5/2)x^2 - x^3/3 + C

(i) ∫(30e^x + 5x^(-1) + 10x - x^6) dx

To integrate each term, we can use the power rule and the rule for integrating exponential functions:

∫e^x dx = e^x + C

∫x^n dx = (x^(n+1))/(n+1) + C (for n ≠ -1)

∫(30e^x) dx = 30e^x + C1

∫(5x^(-1)) dx = 5ln|x| + C2

∫(10x) dx = 5x^2 + C3

∫(-x^6) dx = -x^7/7 + C4

Combining all the terms and adding the constant of integration, the final result is:

30e^x + 5ln|x| + 5x^2 - x^7/7 + C

(ii) ∫[7(x^4 + 5x^3 + 4x^2 + 9)^3(4x^3 + 15x^2 + 8x)] dx

To integrate the given expression, we can expand the cube of the polynomial and then integrate each term using the power rule:

∫(x^n) dx = (x^(n+1))/(n+1) + C

Expanding the cube and integrating each term, we have:

∫[7(x^4 + 5x^3 + 4x^2 + 9)^3(4x^3 + 15x^2 + 8x)] dx

= ∫[7(x^12 + 15x^11 + 86x^10 + 260x^9 + 443x^8 + 450x^7 + 288x^6 + 99x^5 + 120x^4 + 144x^2 + 81)(4x^3 + 15x^2 + 8x)] dx

Expanding this expression and integrating each term, we obtain the result.

(iii) ∫(9e^(-3x) - 2/(4 + √x) + 12) dx

For this integral, we will integrate each term separately:

∫(9e^(-3x)) dx = -3e^(-3x) + C1

∫(2/(4 + √x)) dx = 2ln|4 + √x| + C2

∫12 dx = 12x + C3

Combining the terms and adding the constants of integration, we get:

-3e^(-3x) + 2ln|4 + √x| + 12x + C

(iv) ∫(e^x + 2/3 + 5x - x^2) dx

To integrate each term, we can use the power rule and the rule for integrating exponential functions:

∫e^x dx = e^x + C1

∫(2/3) dx = (2/3)x + C2

∫(5x) dx = (5/2)x^2 + C3

∫(-x^2) dx = -x^3/3 + C4

Combining all the terms and adding the constants of integration, we obtain:

e^x + (2/3)x + (5/2)x^2 - x^3/3 + C

Learn more about "integrals ":

https://brainly.com/question/22008756

#SPJ11

Find the area bounded by the graphs of the indicated equations over the given interval. y = -x2 +22; y = 0; -35x53

Answers

The area bounded by the graphs of the equations [tex]\(y = -x^2 + 22\), \(y = 0\)[/tex], and [tex]\(x = -35\)[/tex] over the interval [tex]\([-5, 3]\)[/tex] is 92 square units.To find the area bounded by the graphs of the given equations, we need to find the region enclosed between the curves [tex]\(y = -x^2 + 22\)[/tex] and [tex]\(y = 0\)[/tex], and between the vertical lines [tex]\(x = -5\)[/tex] and [tex]\(x = 3\)[/tex].

First, we find the x-values where the curves intersect by setting [tex]\(-x^2 + 22 = 0\)[/tex]. Solving this equation, we get [tex]\(x = \pm \sqrt{22}\)[/tex]. Since the interval of interest is [tex]\([-5, 3]\)[/tex], we only consider the positive value, [tex]\(x = \sqrt{22}\)[/tex].

Next, we integrate the difference of the two curves from [tex]\(x = -5\) to \(x = \sqrt{22}\)[/tex] to find the area. Using the formula for finding the area between two curves, the integral becomes [tex]\(\int_{-5}^{\sqrt{22}} (-x^2 + 22) \,dx\)[/tex]. Evaluating this integral, we get [tex]\(\frac{-254\sqrt{22}}{3}\)[/tex].

To find the total area, we subtract the area of the triangle formed by the region between the curve and the x-axis from the previous result. The area of the triangle is [tex]\(\frac{1}{2} \times 8 \times (\sqrt{22} - (-5)) = 4(\sqrt{22} + 5)\)[/tex].

Finally, we subtract the area of the triangle from the total area to get the final result: [tex]\(\frac{-254\sqrt{22}}{3} - 4(\sqrt{22} + 5) = 92\)[/tex].

Therefore, the area bounded by the given equations over the interval [tex]\([-5, 3]\)[/tex] is 92 square units.

To learn more about area bounded refer:

https://brainly.com/question/32257232

#SPJ11




Find the Laplace transform of the function f(t) =tsin(4t) +1.

Answers

The Laplace transform of [tex]f(t) = tsin(4t) + 1\ is\ F(s) = (8s ^2 - 1) / ((s ^2 - 4) ^2).[/tex]

What is the Laplace transform of tsin(4t) + 1?

Apply the linearity property of the Laplace transform.

The Laplace transform of tsin(4t) can be found by applying the linearity property of the Laplace transform.

This property states that the Laplace transform of a sum of functions is equal to the sum of the Laplace transforms of the individual functions.

Therefore, we can split the function f(t) = tsin(4t) + 1 into two parts: the Laplace transform of tsin(4t) and the Laplace transform of 1.

Find the Laplace transform of tsin(4t).

To find the Laplace transform of tsin(4t), we need to use the table of Laplace transforms or the definition of the Laplace transform.

The Laplace transform of tsin(4t) can be found to be [tex](8s^2) / ((s^2 + 16)^2)[/tex] using either method.

Now, find the Laplace transform of 1.

The Laplace transform of 1 is a well-known result.

The Laplace transform of a constant is given by the expression 1/s.

Combining the results, we obtain the Laplace transform of [tex]f(t) = tsin(4t) + 1\ as\ F(s) = (8s \ ^ 2) / ((s \ ^2 + 16)\ ^2) + 1/s.[/tex]

Learn more about Laplace transform

brainly.com/question/31040475

#SPJ11

Consider the relation R on the set of all strings of English letters of length four where x is related to y if they have different letters as their first character. Answer the following about R. Include your justification in the file your upload in the end.
A. Is Rreflexive? B. Is R Symmetric? C. Is R Antisymmetric? D. Is R Transitive? E. Is Ran equivalence relation? F. If R is an equivalence relation, what would the equivalence classes look like?

Answers

Since R is not an equivalence relation, we cannot define equivalence classes for this relation.

A. Is R reflexive?

No, R is not reflexive. For a relation to be reflexive, every element in the set must be related to itself. However, in this case, since we are considering strings of English letters of length four, a string cannot have a different first letter from itself.

B. Is R symmetric?

No, R is not symmetric. For a relation to be symmetric, if x is related to y, then y must also be related to x. In this case, if two strings have different letters as their first character, it does not guarantee that switching the positions of the first characters will still result in different letters.

C. Is R antisymmetric?

Yes, R is antisymmetric. Antisymmetry means that if x is related to y and y is related to x, then x and y must be the same element. In this case, if two strings have different letters as their first character, they cannot be the same string. Therefore, if x is related to y and y is related to x, it implies that x = y.

D. Is R transitive?

No, R is not transitive. For a relation to be transitive, if x is related to y and y is related to z, then x must be related to z. However, in this case, even if x and y have different letters as their first character and y and z have different letters as their first character, it does not imply that x and z will have different letters as their first character.

E. Is R an equivalence relation?

No, R is not an equivalence relation. To be an equivalence relation, a relation must satisfy three properties: reflexivity, symmetry, and transitivity. As discussed above, R does not satisfy reflexivity, symmetry, or transitivity.

F. If R were an equivalence relation, what would the equivalence classes look like?

To know more about equivalence visit:

brainly.com/question/25197597

#SPJ11

Suppose the demand for an exhaustible resource is Q₁ = 300 - p₁, the interest rate is 10%, the initial amount of the resource is 146.33 pounds, and the marginal cost of extraction is zero. Assuming all of the resource will be extracted in two periods, what is the price in the first period? $ (Enter your response rounded to two decimal places.) How much is extracted in the first period? pounds (Enter your response rounded to two decimal places.) What is the price in the second period? $ (Enter your response rounded to two decimal places.) How much is extracted in the second period? pounds (Enter your response rounded to two decimal places.)

Answers

To determine the price in the first period and the amount extracted in each period, we can use the Hotelling's Rule for exhaustible resources. According to Hotelling's Rule, the price of an exhaustible resource increases over time at a rate equal to the interest rate.

To determine the price and amount of exhaustible resource extracted in two periods, we can use the Hotelling's rule which states that the price of a non-renewable resource will increase at a rate equal to the rate of interest.

In the first period, the initial amount of the resource is 146.33 pounds, and assuming all of it will be extracted in two periods, we can divide it equally between the two periods, which gives us 73.165 pounds in the first period.

Using the demand function Q₁ = 300 - p₁, we can substitute Q₁ with 73.165 and solve for p₁:

73.165 = 300 - p₁

p₁ = 226.835

Therefore, the price in the first period is $226.84, rounded to two decimal places.

In the second period, there is no initial amount of resource left, so the entire remaining amount must be extracted in this period which is also equal to 73.165 pounds.

Since the interest rate is still 10%, we can use Hotelling's rule again to find the price in the second period:

p₂ = p₁(1 + r)

p₂ = 226.835(1 + 0.1)

p₂ = 249.519

Therefore, the price in the second period is $249.52, rounded to two decimal places.

The amount extracted in the second period is also 73.165 pounds.

To know more about Hotelling's Rule refer here:

https://brainly.com/question/13800844#

#SPJ11

Let X1, X be identically distributed (but not independent) random variables with
CDF F. Define the random variables U; = 1 - F(X) for i = 1, 2 and the joint distribution of (U1, U2) be given with copula function C. Calculate the joint distribution of (X1, X2)
and derive the copula of X1, X2.

Answers

Given the identically distributed random variables X1 and X2 with cumulative distribution function (CDF) F, and the defined random variables U1 = 1 - F(X1) and U2 = 1 - F(X2), we can calculate the joint distribution of (X1, X2) and derive the copula function of X1 and X2.

To find the joint distribution of (X1, X2), we need to express it in terms of the random variables U1 and U2. Since U1 = 1 - F(X1) and U2 = 1 - F(X2), we can rearrange these equations to obtain X1 = F^(-1)(1 - U1) and X2 = F^(-1)(1 - U2), where F^(-1) represents the inverse of the cumulative distribution function.

By substituting the expressions for X1 and X2 into the joint distribution function of (X1, X2), we can transform it into the joint distribution function of (U1, U2). This transformation is based on the probability integral transform theorem.

The copula function, denoted as C, describes the joint distribution of the random variables U1 and U2. It represents the dependence structure between U1 and U2, independent of their marginal distributions. The copula can be derived by considering the relationship between the joint distribution of (U1, U2) and the marginal distributions of U1 and U2.

Overall, by performing the necessary transformations and calculations, we can obtain the joint distribution of (X1, X2) and derive the copula function of X1 and X2.

Learn more about cumulative distribution function here:

https://brainly.com/question/30402457

#SPJ11

n1 (a) Find the series' radius and interval of convergence. Find the values of x for which the series converges (b) absolutely and (c) conditionally. Σ (-17"* (x + 10)" n10" n=1 (a) The radius of con

Answers

The given series Σ (-17"*(x + 10)" n10" n=1 converges conditionally for -1 ≤ x + 10 ≤ 1.

Given series is Σ (-17"*(x + 10)" n10" n=1, we need to find its radius and interval of convergence and also the values of x for which the series converges absolutely and conditionally.

A power series of the form Σc[tex](x-n)^{n}[/tex] has the same interval of convergence and radius of convergence, R.

Let's use the ratio test to determine the radius of convergence:

We can determine the radius of convergence by using the ratio test. Let's solve it:

R = lim_{n \to \infty} \bigg| \frac{a_{n+1}}{a_n} \bigg|

For the given series, a_n = -17*[tex](x+10)^{n}[/tex]

Therefore,a_{n+1} = -17×[tex](x+10)^{n+1}[/tex]a_n = -17×[tex](x+10)^{n}[/tex]

So, R = lim_{n \to \infty} \bigg| \frac{-17×[tex](x+10)^{n+1}[/tex]}{-17×[tex](x+10)^{n}[/tex]} \bigg| R = lim_{n \to \infty} \bigg| x+10 \bigg|On applying limit, we get, R = |x + 10|

We can say that the series is absolutely convergent for all the values of x where |x + 10| < R.So, the interval of convergence is (-R, R)

The interval of convergence = (-|x + 10|, |x + 10|)Putting the values of R = |x + 10|, we get the interval of convergence as follows:

The interval of convergence = (-|x + 10|, |x + 10|) = (-|x + 10|, |x + 10|)Absolute ConvergenceWe can say that the given series is absolutely convergent if the series Σ|a_n| is convergent.

Let's solve it:Σ|a_n| = Σ |-17×[tex](x+10)^{n}[/tex]| = 17 Σ |[tex](x+10)^{n}[/tex]

Now, Σ |[tex](x+10)^{n}[/tex] is a geometric series with a = 1, r = |x+10|On applying the formula of the sum of a geometric series, we get:

Σ|a_n| = 17 \left( \frac{1}{1-|x+10|} \right)

The series Σ|a_n| is convergent only if 1 > |x + 10|

Hence, the series Σ (-17"×(x + 10)" n10" n=1 converges absolutely for |x+10| < 1

Conditionally ConvergenceFor conditional convergence, we can say that the given series is conditionally convergent if the series Σa_n is convergent and the series Σ|a_n| is divergent.

Let's solve it:

For a_n = -17×[tex](x+10)^{n}[/tex], the series Σa_n is convergent if x+10 is between -1 and 1.

To know  more about series converges

https://brainly.com/question/30275628

#SPJ11

how many different 7-digit license plates can be made if the first digit must not be a 0 and no digits may be repeated

Answers

There are 9 choices for the first digit (1-9), 9 choices for the second (0 and the remaining 8), and then 8, 7, 6, 5, and 4 choices for the subsequent digits. So, there are 9*9*8*7*6*5*4 = 326592 different 7-digit license plates.

To solve this problem, we will use the counting principle. The first digit cannot be 0, so there are 9 possible choices for the first digit (1-9). For the second digit, we can use 0 or any of the remaining 8 digits, making 9 choices. For the third digit, we have 8 choices left, as we cannot repeat any digit. Similarly, we have 7, 6, 5, and 4 choices for the next digits.

Using the counting principle, we multiply the number of choices for each digit:
9 (first digit) * 9 (second digit) * 8 * 7 * 6 * 5 * 4 = 326592

There are 326592 different 7-digit license plates that can be made under the given conditions.

To know more about counting priciple visit:

https://brainly.com/question/30661718

#SPJ11

B0/1 pt 5399 Details A roasted turkey is taken from an oven when its temperature has reached 185 Fahrenheit and is placed on a table in a room where the temperature is 75 Fahrenheit. Give answers accurate to at least 2 decimal places. (a) If the temperature of the turkey is 155 Fahrenheit after half an hour, what is its temperature after 45 minutes? Fahrenheit (b) When will the turkey cool to 100 Fahrenheit? hours. Question Help: D Video Submit Question

Answers

(a) The temperature after 45 minutes is approximately 148.18 Fahrenheit.

(b) The turkey will cool to 100 Fahrenheit after approximately 1.63 hours.

(a) After half an hour, the turkey will have cooled to:$$\text{Temperature after }30\text{ minutes} = 185 + (155 - 185) e^{-kt}$$Where $k$ is a constant. We are given that the turkey cools from $185$ to $155$ in $30$ minutes, so we can solve for $k$:$$155 = 185 + (155 - 185) e^{-k \cdot 30}$$$$\frac{-30}{155 - 185} = e^{-k \cdot 30}$$$$\frac{1}{3} = e^{-30k}$$$$\ln\left(\frac{1}{3}\right) = -30k$$$$k = \frac{1}{30} \ln\left(\frac{1}{3}\right)$$Now we can use this value of $k$ to solve for the temperature after $45$ minutes:$$\text{Temperature after }45\text{ minutes} = 185 + (155 - 185) e^{-k \cdot 45} \approx \boxed{148.18}$$Fahrenheit.(b) To solve for when the turkey will cool to $100$ Fahrenheit, we set the temperature equation equal to $100$ and solve for time:$$100 = 185 + (155 - 185) e^{-k \cdot t}$$$$\frac{100 - 185}{155 - 185} = e^{-k \cdot t}$$$$\frac{3}{4} = e^{-k \cdot t}$$$$\ln\left(\frac{3}{4}\right) = -k \cdot t$$$$t = -\frac{1}{k} \ln\left(\frac{3}{4}\right) \approx \boxed{1.63}$$Hours.

learn more about temperature here;

https://brainly.com/question/31335812?

#SPJ11

11. (6 points) For an experiment, Esmerelda sends an object into a tube as shown: Tube interior 10 The object's velocity t seconds after it enters the tube is given by o(t) = 30 – (where a positive velocity indicates movement to the right) (a) How far from the tube opening will the object be after 7 seconds? (b) How rapidly will the object's velocity be changing after 4 seconds?

Answers

(a) To determine how far from the tube opening the object will be after 7 seconds, we need to integrate the velocity function o(t) over the interval [0, 7].

∫[0,7] o(t) dt = ∫[0,7] (30 – t) dt

= [30t – (t^2)/2] evaluated from 0 to 7

= (30*7 – (7^2)/2) – (30*0 – (0^2)/2)

= 210 – 24.5

= 185.5

Therefore, the object will be 185.5 units away from the tube opening after 7 seconds.

(b) To determine how rapidly the object's velocity will be changing after 4 seconds, we need to find the derivative of the velocity function o(t) with respect to time t at t = 4.

o(t) = 30 – t

o'(t) = -1

Therefore, the object's velocity will be changing at a constant rate of -1 unit per second after 4 seconds.

To know more about velocity function refer here:

https://brainly.com/question/28939258#

#SPJ11

A company produces parts that must undergo several treatments and meet very strict Standards. Despite the care taken in the manufacture of these parts, there are still 4% of the parts produced that are not marketable. Calculate the probability that, out of 10, 000 parts produced,
a) 360 are not marketable.
b) 9800 are marketable.
c) more than 350 are not marketable.

Answers

The given problem involves a binomial distribution, where each part has a probability of 0.04 of being non-marketable.

a) To calculate the probability that 360 out of 10,000 parts are not marketable, we can use the binomial probability formula:P(X = 360) = C(10000, 360) * (0.04)³⁶⁰ * (1 - 0.04)⁽¹⁰⁰⁰⁰ ⁻ ³⁶⁰⁾

b) To calculate the probability that 9800 out of 10,000 parts are marketable, we can again use the binomial probability formula:

P(X = 9800) = C(10000, 9800) * (0.04)⁹⁸⁰⁰ * (1 - 0.04)⁽¹⁰⁰⁰⁰ ⁻ ⁹⁸⁰⁰⁾

c) To calculate the probability that more than 350 parts are not marketable, we need to sum the probabilities of having 351, 352, ..., 10,000 non-marketable parts:P(X > 350) = P(X = 351) + P(X = 352) + ...

note that calculating the exact probabilities for large values can be computationally intensive. It may be more practical to use a statistical software or calculator to find the precise probabilities in these cases.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Use partial fractions to evaluate ef -x-5 3x25x2 dr.

Answers

Using partial fractions, the integral of (e^(-x) - 5)/(3x^2 + 5x + 2) can be evaluated as -ln(3x + 1) - 2ln(x + 2) + C.

To evaluate the integral of (e^(-x) - 5)/(3x^2 + 5x + 2), we can decompose the fraction into partial fractions. First, we factorize the denominator as (3x + 1)(x + 2). Next, we express the given fraction as A/(3x + 1) + B/(x + 2), where A and B are constants. By finding the common denominator and equating the numerators, we get (A(x + 2) + B(3x + 1))/(3x^2 + 5x + 2).

Equating coefficients, we find A = -2 and B = 1. Thus, the fraction becomes (-2/(3x + 1) + 1/(x + 2)). Integrating each term, we obtain -2ln(3x + 1) + ln(x + 2) + C. Simplifying further, the final result is -ln(3x + 1) - 2ln(x + 2) + C, where C is the constant of integration.

Learn more about  partial fractions here: brainly.com/question/30763571

#SPJ11

DETAILS 1/2 Submissions Used Use the Log Rule to find the indefinite integral. (Use C for the constant of integration.) X 1 = dx +² +6 | | x In(x+6) + C 9.

Answers

To find the indefinite integral of the given expression, we can use the logarithmic rule of integration.

The integral of 1/(x^2 + 6) with respect to x can be expressed as:

∫(1/(x^2 + 6)) dx

To integrate this, we make use of the logarithmic rule:

∫(1/(x^2 + a^2)) dx = (1/a) * arctan(x/a) + C

In our case, a^2 = 6, so we have:

∫(1/(x^2 + 6)) dx = (1/√6) * arctan(x/√6) + C

Hence, the indefinite integral of the given expression is:

∫(1/(x^2 + 6)) dx = (1/√6) * arctan(x/√6) + C

where C represents the constant of integration.

Learn more about logarithmic here;  

https://brainly.com/question/30226560

#SPJ11

 

2. Find the volume of the solid obtained by rotating the region bounded by y=x-x? and y = 0 about the line x = 2. (6 pts.) X

Answers

the volume of the solid obtained by rotating the region bounded by y = x - x² and y = 0 about the line x = 2 is π/6 cubic units.

To find the volume of the solid obtained by rotating the region bounded by y = x - x² and y = 0 about the line x = 2, we can use the method of cylindrical shells.

The volume of a solid generated by rotating a region about a vertical line can be calculated using the formula:

V = ∫[a,b] 2πx * f(x) dx

In this case, the region is bounded by y = x - x² and y = 0. To determine the limits of integration, we need to find the x-values where these curves intersect.

Setting x - x² = 0, we have:

x - x² = 0

x(1 - x) = 0

So, x = 0 and x = 1 are the points of intersection.

The volume of the solid is then given by:

V = ∫[0,1] 2πx * (x - x²) dx

Let's evaluate this integral:

V = 2π ∫[0,1] (x² - x³) dx

  = 2π [(x³/3) - (x⁴/4)] evaluated from 0 to 1

  = 2π [(1/3) - (1/4) - (0 - 0)]

  = 2π [(1/3) - (1/4)]

  = 2π [(4/12) - (3/12)]

  = 2π (1/12)

  = π/6

to know more about volume visit:

brainly.com/question/28338582

#SPJ11

suppose all rows of an n x n matrix a are orthogonal to some nonzero vector v. explain why a cannot be invertible

Answers

Hence, if all rows of an n x n matrix A are orthogonal to a nonzero vector v, the matrix A cannot be invertible matrix.

If all rows of an n x n matrix A are orthogonal to a nonzero vector v, it means that the dot product of each row of A with vector v is zero.

Let's assume that A is invertible. That means there exists an inverse matrix A^-1 such that A * A^-1 = I, where I is the identity matrix.

Now, let's consider the product of A * v. Since v is nonzero, the dot product of each row of A with v is zero. Therefore, the result of A * v will be a vector of all zeros.

However, if A * A^-1 = I, then we can also express A * v as (A * A^-1) * v = I * v = v.

But we have just shown that A * v is a vector of all zeros, which contradicts the fact that v is nonzero. Therefore, our assumption that A is invertible leads to a contradiction.

To know more about invertible matrix,

https://brainly.com/question/30700803

#SPJ11

2. Calculate the dot product of two vectors, à and 5 which have an angle of 150 between them, where lä] = 4 and 151 = 7.

Answers

The dot product of the vectors a and b, which have a magnitude of 4 and 7 respectively and an angle of 150 degrees between them, is approximately -24.1442.

To calculate the dot product of two vectors, a and b, you can use the formula:

a · b = ||a|| ||b|| cos(θ),

where a · b represents the dot product, ||a|| and ||b|| represent the magnitudes (or lengths) of the vectors a and b, respectively, and θ is the angle between the two vectors.

In this case, we have two vectors, a and b, with given magnitudes and an angle of 150 degrees between them. Let's substitute the values into the formula:

a · b = ||a|| ||b|| cos(θ)

= 4 * 7 * cos(150°)

First, let's convert the angle from degrees to radians, since trigonometric functions typically work with radians. We have:

θ (in radians) = 150° * (π/180)

= 5π/6

Now, we can continue calculating the dot product:

a · b = 4 * 7 * cos(5π/6)

Using a calculator or computer software, we can evaluate the cosine function:

cos(5π/6) ≈ -0.86603

Substituting this value back into the formula, we get:

a · b ≈ 4 * 7 * (-0.86603)

≈ -24.1442

Therefore, the dot product of the vectors a and b, which have a magnitude of 4 and 7 respectively and an angle of 150 degrees between them, is approximately -24.1442.

To learn more about dot product

https://brainly.com/question/30751487

#SPJ11

For each of the following, determine the intervals on which
the following functions are concave up and concave down.
(x) = 2x^5x+1"

Answers

To determine the intervals of concavity for the function f(x) = 2x^(5x+1), we need to analyze its second derivative. Let's find the first and second derivatives of f(x) first.

The first derivative of f(x) is f'(x) = 10x^(4x+1) + 10x^(5x).

Now, let's find the second derivative of f(x) by differentiating f'(x):

f''(x) = d/dx(10x^(4x+1) + 10x^(5x))

       = 10(4x+1)x^(4x+1-1)ln(x) + 10(5x)x^(5x-1)ln(x) + 10x^(5x)(ln(x))^2

       = 40x^(4x)ln(x) + 10x^(4x)ln(x) + 50x^(5x)ln(x) + 10x^(5x)(ln(x))^2

       = 50x^(5x)ln(x) + 50x^(4x)ln(x) + 10x^(5x)(ln(x))^2.

To determine the intervals of concavity, we need to find where the second derivative is positive (concave up) or negative (concave down). However, finding the exact intervals for a function as complex as this can be challenging without further constraints or simplifications. In this case, the function's complexity makes it difficult to determine the intervals of concavity without additional information or specific values for x.

It is important to note that concavity may change at critical points where the second derivative is zero or undefined. However, without explicit values or constraints, we cannot identify these critical points or determine the concavity intervals for the given function f(x) = 2x^(5x+1) with certainty.

To learn more about concave click here

 brainly.com/question/31396617

#SPJ11

Express the given product as a sum or difference containing only sines or cosines sin (4x) cos (2x)

Answers

The given product sin(4x)cos(2x) can be expressed as a sum or difference containing only sines or cosines. By using the trigonometric identity for the sine of the sum or difference of angles.

To express sin(4x)cos(2x) as a sum or difference containing only sines or cosines, we can utilize the trigonometric identity:

sin(A + B) = sin(A)cos(B) + cos(A)sin(B).

In this case, we can rewrite sin(4x)cos(2x) as:

sin(4x)cos(2x) = (sin(2x + 2x) + sin(2x - 2x)) / 2.

Simplifying further, we have:

sin(4x)cos(2x) = (sin(4x) + sin(0)) / 2.

Since sin(0) is equal to 0, we can simplify the expression to:

sin(4x)cos(2x) = sin(4x) / 2.

Therefore, the given product sin(4x)cos(2x) can be expressed as a sum or difference containing only sines or cosines as sin(4x) / 2.

To learn more about sines or cosines click here : brainly.com/question/23428798

#SPJ11

Evaluate SI 11 (+42 + 22)- dv where V is the solid hemisphere 22 + y2 + x2 < 4, 2 > 0.

Answers

The given expression involves evaluating a definite integral over a solid hemisphere. The integral is ∫∫∫ dv, where V represents the solid hemisphere defined by the inequality 22 + y2 + x2 < 4.

To evaluate this integral, we need to set up the appropriate coordinate system and determine the bounds for each variable. In this case, we can use cylindrical coordinates (ρ, φ, z), where ρ represents the radial distance from the origin, φ is the azimuthal angle, and z is the vertical coordinate. For the given solid hemisphere, we have the following constraints: 0 ≤ ρ ≤ 2 (since the radial distance is bounded by 2), 0 ≤ φ ≤ π/2 (restricted to the positive octant), and 0 ≤ z ≤ √(4 - ρ2 - y2).

Using these bounds, we can set up the triple integral as ∫₀² ∫₀^(π/2) ∫₀^(√(4 - ρ² - y²)) ρ dz dφ dρ. Unfortunately, we are missing the function or density inside the integral (represented as dv), which is necessary to compute the integral. Without this information, it is not possible to calculate the numerical value of the given expression.

Learn more about definite integral here: brainly.com/question/30760284

#SPJ11

a) Take the derivative of the function: y = ln(x/26 - 2) f 1 [x W x6 - 2 x x d dy x 6-2 b) Evaluate the indefinite integral: x + 3 dx x2 + 6x + 7

Answers

a) The derivative of y = ln(x/26 - 2) is 1/(x - 52).

b) The indefinite integral of (x + 3)/(x^2 + 6x + 7) is (1/6)ln|x + 1| + (5/6)ln|x + 7| + C.

a) To find the derivative of the function y = ln(x/26 - 2), we can use the chain rule. Let's go step by step:

Let u = x/26 - 2

Applying the chain rule, we have:

dy/dx = (dy/du) * (du/dx)

To find (dy/du), we differentiate ln(u) with respect to u:

(dy/du) = 1/u

To find (du/dx), we differentiate u = x/26 - 2 with respect to x:

(du/dx) = 1/26

Now, we can combine these results:

dy/dx = (dy/du) * (du/dx)

= (1/u) * (1/26)

= 1/(26u)

Substituting u = x/26 - 2 back into the equation:

dy/dx = 1/(26(x/26 - 2))

Simplifying further:

dy/dx = 1/(26x/26 - 52)

= 1/(x - 52)

Therefore, the derivative of y = ln(x/26 - 2) is dy/dx = 1/(x - 52).

b) To evaluate the indefinite integral of (x + 3)/(x^2 + 6x + 7), we can use the method of partial fractions.

First, we need to factorize the denominator (x^2 + 6x + 7). It can be factored as (x + 1)(x + 7).

Now, let's write the expression in partial fraction form:

(x + 3)/(x^2 + 6x + 7) = A/(x + 1) + B/(x + 7)

To find the values of A and B, we need to solve for them. Multiplying both sides by (x + 1)(x + 7) gives us:

(x + 3) = A(x + 7) + B(x + 1)

Expanding the right side:

x + 3 = Ax + 7A + Bx + B

Comparing the coefficients of like terms on both sides, we get the following system of equations:

A + B = 1 (coefficient of x)

7A + B = 3 (constant term)

Solving this system of equations, we find A = 1/6 and B = 5/6.

Now, we can rewrite the original integral as:

∫[(x + 3)/(x^2 + 6x + 7)] dx = ∫[A/(x + 1) + B/(x + 7)] dx

= ∫(1/6)/(x + 1) dx + ∫(5/6)/(x + 7) dx

Integrating each term separately:

= (1/6)ln|x + 1| + (5/6)ln|x + 7| + C

Therefore, the indefinite integral of (x + 3)/(x^2 + 6x + 7) is:

∫[(x + 3)/(x^2 + 6x + 7)] dx = (1/6)ln|x + 1| + (5/6)ln|x + 7| + C, where C is the constant of integration.

To learn more about indefinite integrals visit : https://brainly.com/question/22008756

#SPJ11

suppose f(x,y)=xyf(x,y)=xy, p=(3,4)p=(3,4) and v=−1i−4jv=−1i−4j. a. find the gradient of ff.

Answers

The gradient of the function f(x, y) = xy is a vector that represents the rate of change of the function with respect to its variables. The gradient of f is ∇f = (y, x).

The gradient of a function is a vector that contains the partial derivatives of the function with respect to each variable.

For the function f(x, y) = xy, we need to find the partial derivatives ∂f/∂x and ∂f/∂y.

To find ∂f/∂x, we differentiate f with respect to x while treating y as a constant.

The derivative of xy with respect to x is simply y, as y is not affected by the differentiation.

∂f/∂x = y

Similarly, to find ∂f/∂y, we differentiate f with respect to y while treating x as a constant.

The derivative of xy with respect to y is x.

∂f/∂y = x

Thus, the gradient of f is ∇f = (∂f/∂x, ∂f/∂y) = (y, x).

In this specific case, given that p = (3, 4), the gradient of f at point p is ∇f(p) = (4, 3).

The gradient vector represents the direction of the steepest increase of the function f at point p.

Note that v = -i - 4j is a vector that is not directly related to the gradient of f. The gradient provides information about the rate of change of the function, while the vector v represents a specific direction and magnitude in a coordinate system.

Learn more about derivative here:

https://brainly.com/question/30401596

#SPJ11

Consider the following sequence defined by a recurrence relation. Use a calculator analytical methods and/or graph to make a conjecture about the value of the lin or determine that the limit does not exist. an+1 =an (1-an); 2. = 0.1, n=0, 1, 2, Select the correct choice below and, if necessary, fill in the answer box to complete your choice O A. The limit of the sequence is (Simplify your answer. Type an integer or a simplified fraction.) OB. The limit does not exist

Answers

The limit of the sequence does not exist.

By evaluating the given recurrence relation an+1 = an(1 - an) for n = 0, 1, 2, we can observe the behavior of the sequence. Starting with a₀ = 0.1, we find a₁ = 0.09 and a₂ = 0.0819. However, as we continue calculating the terms, we notice that the sequence oscillates and does not converge to a specific value. The values of the terms continue to fluctuate, indicating that the limit does not exist.

To confirm this conjecture, we can use graphical methods or a calculator to plot the terms of the sequence. The graph will demonstrate the oscillatory behavior, further supporting the conclusion that the limit does not exist.

To learn more about sequence  click here

brainly.com/question/30262438

#SPJ11

11. A patio lounge chair can be reclined at various angles, one of which is illustrated below.

.
Based on the given measurements, at what angle, θ, is this chair currently reclined? Approximate to the nearest tenth of a degree.

a. 31.4 b. 33.2 c. 40.2 d. 48.6

Answers

The angle, θ, at which the chair is currently reclined is approximately 31.4 degrees. Thus, the correct option is a. 31.4.

To determine the reclined angle, θ, of the patio lounge chair, we can use trigonometry and the given measurements.

In the diagram, we can see that the chair's reclined position forms a right triangle. The length of the side opposite the angle θ is given as 1.2 meters, and the length of the adjacent side is given as 2.3 meters.

The tangent function can be used to find the angle θ:

tan(θ) = opposite/adjacent

tan(θ) = 1.2/2.3

θ = arctan(1.2/2.3)

Using a calculator, we can find the arctan of 1.2/2.3, which is approximately 31.4 degrees.

Therefore, the angle, θ, at which the chair is currently reclined is approximately 31.4 degrees. Thus, the correct option is a. 31.4.

for such more question on angle

https://brainly.com/question/25716982

#SPJ8

24. Find the maximum value of f(x, y) = x + y - (x - y)2 on the triangular + y region x = 0, y = 0, x + y s 1.

Answers

To find the maximum value of the function f(x, y) = x + y - (x - y)^2 on the triangular region defined by x = 0, y = 0, and x + y ≤ 1, we need to consider the critical points and the boundary of the region.

First, let's find the critical points by taking the partial derivatives of f(x, y) with respect to x and y and setting them equal to zero:

∂f/∂x = 1 - 2(x - y) = 0

∂f/∂y = 1 + 2(x - y) = 0

Solving these equations simultaneously, we get x = 1/2 and y = 1/2 as the critical point.

Next, we need to evaluate the function at the critical point and at the boundary of the region:

f(1/2, 1/2) = 1/2 + 1/2 - (1/2 - 1/2)^2 = 1

f(0, 0) = 0

f(0, 1) = 1

f(1, 0) = 1

The maximum value of the function occurs at the point (1/2, 1/2) and has a value of 1.

you can elaborate on the process of finding the critical points, evaluating the function at the critical points and boundary, and explaining why the maximum value occurs at (1/2, 1/2).

To learn more about critical points : brainly.com/question/32077588

#SPJ11

help asap
If f(x) is a differentiable function that is positive for all x, then f' (x) is increasing for all x. True O False

Answers

True. If f(x) is positive for all x, then its derivative f'(x) measures the rate of change of the function f(x) at any given point x. Since f(x) is always increasing (i.e. positive), f'(x) must also be increasing.

This can be seen from the definition of the derivative, which involves taking the limit of the ratio of small changes in f(x) and x. As x increases, so does the size of these changes, which means that f'(x) must increase to keep up with the increasing rate of change of f(x). Therefore, f'(x) is increasing for all x if f(x) is positive for all x.

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

Xavier is taking a math course in which four tests are given. To get a B, he must average at least 80 on the four tests. He got scores of 83, 71, and 73 on the first three
tests. Determine (in terms of an inequality) what scores on the last test will allow him to get at least a B

Answers

Xavier needs to determine the scores he must achieve on the last test in order to obtain at least a B average in the math course. Given that he has scores of 83, 71, and 73 on the first three tests, we can express the inequality 80 ≤ (83 + 71 + 73 + x)/4.

where x represents the score on the last test. Solving this inequality will determine the minimum score required on the final test for Xavier to achieve at least a B average.

To determine the minimum score Xavier needs on the last test, we consider the average of the four test scores. Let x represent the score on the last test. The average score is calculated by summing all four scores and dividing by 4:

(83 + 71 + 73 + x)/4

To obtain at least a B average, this value must be greater than or equal to 80. Therefore, we can express the inequality as follows:

80 ≤ (83 + 71 + 73 + x)/4

To find the minimum score required on the last test, we can solve this inequality for x. First, we multiply both sides of the inequality by 4:

320 ≤ 83 + 71 + 73 + x

Combining like terms:

320 ≤ 227 + x

Next, we isolate x by subtracting 227 from both sides of the inequality:

320 - 227 ≤ x

93 ≤ x

Therefore, Xavier must score at least 93 on the last test to achieve an average of at least 80 and earn a B in the math course.

To learn more about average: -brainly.com/question/27646993#SPJ11

Use the Ratio Test to determine whether the series is convergent or divergent. 00 n! 845 n=1 Σ Identify an Evaluate the following limit. an +1 lim an n-60 Since lim n-00 an + 1 an ✓ 1, the series is divergent

Answers

Using the Ratio Test, it can be determined that the series ∑ (n!) / (845^n), where n starts from 1, is divergent.

The Ratio Test is a method used to determine the convergence or divergence of a series. For a series ∑an, where an is a sequence of positive terms, the Ratio Test states that if the limit of the absolute value of the ratio of consecutive terms, lim(n→∞) |(an+1 / an)|, is greater than 1, then the series diverges. Conversely, if the limit is less than 1, the series converges.

In this case, we have the series ∑(n!) / (845^n), where n starts from 1. Applying the Ratio Test, we calculate the limit of the ratio of consecutive terms:

[tex]\lim_{n \to \infty} ((n+1)! / (845^(n+1))) / (n! / (845^n))[/tex]|

Simplifying this expression, we can cancel out common terms:

lim(n→∞) [tex]\lim_{n \to \infty} |(n+1)! / n!| * |845^n / 845^(n+1)|[/tex]

The factorial terms (n+1)! / n! simplify to (n+1), and the terms with 845^n cancel out, leaving us with:

[tex]\lim_{n \to \infty} |(n+1) / 845|[/tex]

Taking the limit as n approaches infinity, we find that lim(n→∞) |(n+1) / 845| = ∞.

Since the limit is greater than 1, the Ratio Test tells us that the series ∑(n!) / (845^n) is divergent.

Learn more about series here:

https://brainly.com/question/11346378

#SPJ11

A cruise ship maintains a speed of 23 knots (nautical miles per hour) sailing from San Juan to Barbados, a distance of 600 nautical miles. To avoid a tropical storm, the captain heads out of San Juan at a direction of 17" off a direct heading to Barbados. The captain maintains the 23-knot speed for 10 hours after which time the path to Barbados becomes clear of storms (a) Through what angle should the captain turn to head directly to Barbados? (b) Once the turn is made, how long will it be before the ship reaches Barbados if the same 23 knot spoed is maintained?

Answers

(a) The captain should turn through an angle of approximately 73° to head directly to Barbados.
(b) It will take approximately 15.65 hours to reach Barbados after making the turn.

(a) To find the angle the captain should turn, we can use trigonometry. The distance covered in the 10 hours at a speed of 23 knots is 230 nautical miles (23 knots × 10 hours). Since the ship is off a direct heading by 17°, we can calculate the distance off course using the sine function: distance off course = sin(17°) × 230 nautical miles. This gives us a distance off course of approximately 67.03 nautical miles.

Now, to find the angle the captain should turn, we can use the inverse sine function: angle = arcsin(distance off course / distance to Barbados) = arcsin(67.03 / 600) ≈ 73°.

(b) Once the captain turns and heads directly to Barbados, the remaining distance to cover is 600 nautical miles - 67.03 nautical miles = 532.97 nautical miles. Since the ship maintains a speed of 23 knots, we can divide the remaining distance by the speed to find the time: time = distance / speed = 532.97 / 23 ≈ 23.17 hours.

Therefore, it will take approximately 15.65 hours (23.17 - 7.52) to reach Barbados after making the turn, as the ship has already spent 7.52 hours sailing at a 17° off-course angle.

Learn more about Trigonometry click here :brainly.com/question/11967894

#SPJ11

(15 points] Using implicit differentiation find the tangent line to the curve 4x²y + xy - In(43) = 3 = at (x, y) = (-1,1).

Answers

The equation of the tangent line to the curve at the point (-1, 1) is y = -9x + 8.

To find the tangent line to the curve 4x²y + xy - ln(43) = 3 at the point (-1, 1), we can use implicit differentiation.

First, we differentiate the equation with respect to x using the rules of implicit differentiation:

d/dx [4x²y + xy - ln(43)] = d/dx [3]

Applying the chain rule, we get:

(8xy + 4x²(dy/dx)) + (y + x(dy/dx)) - (1/43)(d/dx[43]) = 0

Simplifying and substituting the coordinates of the given point (-1, 1), we have:

(8(-1)(1) + 4(-1)²(dy/dx)) + (1 + (-1)(dy/dx)) = 0

Simplifying further:

-8 - 4(dy/dx) + 1 - dy/dx = 0

Combining like terms:

-9 - 5(dy/dx) = 0

Now, we solve for dy/dx:

dy/dx = -9/5

We have determined the slope of the tangent line at the point (-1, 1). Using the point-slope form of a line, we can write the equation of the tangent line:

y - 1 = (-9/5)(x - (-1))

y - 1 = (-9/5)(x + 1)

y - 1 = (-9/5)x - 9/5

y = -9x + 8

To know more about   implicit differentiation click on below link:

https://brainly.com/question/11887805#

#SPJ11




Determine whether the following series are absolutely convergent, conditionally convergent or divergent. Specify any test you use and explain clearly your rea- soning too sin n (a) (5 points) 2n n=1

Answers

To determine the convergence of the series ∑(n=1 to infinity) sin(n)/(2n), we will analyze its convergence using the Comparison Test.

In the given series, we have sin(n)/(2n). To apply the Comparison Test, we need to find a series with non-negative terms that can help us determine the convergence behavior of the given series.

For n ≥ 1, we know that sin(n) lies between -1 and 1, while 2n is always positive. Therefore, we have 0 ≤ |sin(n)/(2n)| ≤ 1/(2n) for all n ≥ 1.

Now, let's consider the series ∑(n=1 to infinity) 1/(2n). This series is a harmonic series, and we know that it diverges. Since the terms of the given series, |sin(n)/(2n)|, are bounded by 1/(2n), we can conclude that the given series also diverges by comparison with the harmonic series.

Hence, the series ∑(n=1 to infinity) sin(n)/(2n) is divergent.

To learn more about harmonic series: -brainly.com/question/31582846#SPJ11

Other Questions
blossom is a marketer for studygen, an online tutoring service company targeting children. blossom's current efforts to change the company's focus to target new markets and change the image and logo of a studygen brand are called brand repositioning. brand collusion. brand dilution. co-branding. brand extraction. Which of the following best describes the way genes shape an individual human life?a. Each gene acts independently of the other.b.Genes strictly determine the possibility of any individual human life.c. Each gene programs one specific protein in the human body.d. Many genes collaborate with each other as well as with nongenetic factors. write clearly pls4) Write the series in sigma notation and find the sum of the series by associating the series as a the Taylor Series of some function evaluated at a number. See section 10.2 for Taylor Series 4 1+2+ How many times bigger is 12^8 to 12^7. "As I reached home" essay 200-250 words which command can be used to create a new command that will monitor the contents of auth.log as they get added to the file? In a lab experiment monitoring the change in concentration of a reddish-brown substance, FeNCS2+, a wavelength of 455 nm is used. Is this wavelength appropriate to use? What other wavelengths might you consider using for FeNCS2+ spectroscopy? Toss a fair coin repeatedly. On each toss, you are paid 1 dollar when you get a tail and Odollar when you get a head. You must stop coin tossing once you have two consecutive heads.Let X be the total amount you get paid. Find E(X). A chemical manufacturing plant can produce z units of chemical Z given p units of chemical P and r units of chemical R, where: z = 120p.870.2 Chemical P costs $500 a unit and chemical R costs $4,500 a unit. The company wants to produce as many units of chemical Z as possible with a total budget of $900,000. A) How many units each chemical (P and R) should be "purchased" to maximize production of chemical Z subject to the budgetary constraint? Units of chemical P, p = Units of chemical R, r = B) What is the maximum number of units of chemical Z under the given budgetary conditions? (Round your answer to the nearest whole unit.) Max production, 2= units The commercial property owner traditionally has three basic leasing options when it comes to determining who is primarily responsible for finding tenants and negotiating lease terms. Which of the following individuals is an employee of the property owner who devotes 100% of his or her time to coordinating leasing arrangements for the owners property or properties? a)asset manager b)in-house leasing agent c)property manager d)leasing broker Find the radius of convergence and interval of convergence of the series. (.x - 3)" (-1)" 6n +1 ( n=0 Acompanyats per les budget for et four months as follows March 10,900 units. April 13,400, May 16,800 and June 21,200. The Company's ending finished goods inventory poly of the former les Marching inveror's projected to be 1000 units. How many units will be produced in March 11.15 13:400 16.30 10.00 4. [-/0.17 Points] DETAILS SCALCET9 6.4.006. 0/100 Submissions Used The table shows values of a force function f(x), where x is measured in meters and f(x) in newtons. X 3 5 7 9 11 13 15 17 19 f(x) 5 Which of the following are true regarding costs to defend intangible rights?-If the defense is unsuccessful, the legal costs should be expensed immediately.-If a defense is unsuccessful, the company should reduce the book value of the intangible to net realizable value. I WILL THUMBS UP YOURPOSTA chemical manufacturing plant can produce z units of chemical Z given p units of chemical P and r units of chemical R, where: 2 = 140p0.75 0.25 Chemical P costs $400 a unit and chemical R costs $1,20 Calculate the hydroxide ion concentration (OH) for human urine (pH = 6.2). Notice this is about hydroxide. 1.6 10M 1.8. 107M 6.3 10M 63. 10M 8.9. 107M the front section of a two-piece drive shaft is supported at its rear end by a center bearing called a: Given the given cost function C(x) = 4100 + 570x + 1.6x2 and the demand function p(x) 1710. Find the production level that will maximaze profit. Question Help: D Video Calculator Submit Question Jump 6/in a study investigating the effect of car speed on accident severity, the reports of fatal automobile accidents were examined, and the vehicle speed at impact was recorded for each one. the average speed was 48 mph and standard deviation was 15 mph, respectively. a histogram revealed that the vehicle speed at impact distribution was approximately normal. (a) roughly what proportion of vehicle speeds were between 33 and 63 mph? (b) roughly what proportion of 18 vehicles of average speed exceeded 51 mph? Which pairs of substances below can be mixed together in water to produce a buffer solution? a. HCIO4 and NaCl04 b. HNO3 and NaNO3 c. H2SO4 and NaHSO4 d. H3PO4 and NaH2PO4 e. HCl and NaCl f. HF and NaF g. HBr and NaBr h. NH3 and NH C1 i. HCl and NaOH j. NH3 and HCI k. HCl and NH C1