Answer:
10
Step-by-step explanation:
Floor 1: 52 windows
Floor 2: 52 - 6 = 46 windows
Floor 3: 46 - 6 = 40 windows
Floor 4: 40 - 6 = 34 windows
Floor 5: 34 - 6 = 28 windows
Floor 6: 28 - 6 = 22 windows
Floor 7: 22 - 6 = 16 windows
Floor 8: 16 - 6 = 10 windows
or, use the arithmetic sequence formula: an = a1 + (n - 1)d
a₈ = 52 + (8 - 1)(6) = 52 - 42 = 10
Answer:
10
Step-by-step explanation:
use an=a1+(n-1)d
d= -6
a1= 52
n=8
a8 = a52 + (8 - 1) (-6)
= 52 + (7) (-6)
= 52 + (-42)
a8 = 10
3. For what value(s) of k will|A| = 1 k 2 - 2 0 - 0? 3 1 [3 marks]
The value of k that satisfies the condition |A| = 1 is k = 1/3.
To find the value(s) of k for which the determinant of matrix A equals 1, we set up the equation:
|A| = 1
Using the given matrix:
|k 2|
|0 3|
The determinant of a 2x2 matrix is calculated as the product of the diagonal elements minus the product of the off-diagonal elements:
|A| = (k * 3) - (2 * 0)
Simplifying the equation, we have:
|A| = 3k - 0 = 3k
We set 3k equal to 1:
3k = 1
Dividing both sides by 3, we find:
k = 1/3
Therefore, the value of k for which the determinant of matrix A is equal to 1 is k = 1/3.
Explanation:
The determinant of a matrix is a scalar value that provides information about the matrix's properties. In this case, we are given a 2x2 matrix A and need to find the value of k for which the determinant equals 1.
We apply the formula for the determinant of a 2x2 matrix and set it equal to 1. By expanding the determinant expression and simplifying, we obtain the equation 3k = 1.
To isolate k, we divide both sides of the equation by 3, resulting in k = 1/3.
To know more about determinant click on below link:
https://brainly.com/question/29574958#
#SPJ11
suppose i have a vector x <- 1:4 and y <- 2:3. what is produced by the expression x y?
The dot product between the two vectors is equal to 14.
What is produced by the expression x·y?If we have two vectors:
A = <x, y>
B = <z, k>
The dot product between these two is:
A·B = x*z + y*k
Here we have the vectors.
x = <-1, 4> and y = <-2, 3>
Then the dot produict x·y gives:
x·y = -1*-2 + 4*3
= 2 + 12
= 14
The dot product is 14.
Learn more about vectors at:
https://brainly.com/question/3184914
#SPJ1
The exterior angle of a regular polygon is 30'. Find the number of sides, a) 3 b) 12 c) 9 d) 10 12) Suppose sin 8 > 0.
(a) The number of sides of a regular polygon with an exterior angle of 30° is 12.
(b) Since sin 8 > 0, the given inequality is already satisfied.
(a) The formula for calculating the exterior angle of a regular polygon is 360° divided by the number of sides. In this case, we are given that the exterior angle is 30°. So, we can set up the equation:
360° / n = 30°
Simplifying the equation, we have:
12 = n
Therefore, the number of sides of the regular polygon is 12.
(b) The inequality sin 8 > 0 states that the sine of angle 8 is greater than 0. Since the sine function is positive in the first and second quadrants, any angle within that range will satisfy the inequality sin 8 > 0. Therefore, the given inequality is already true and no further steps or conditions are required.
Therefore, the correct answer is (a) 12 for the number of sides of the regular polygon, and the given inequality sin 8 > 0 is already satisfied.
To learn more about polygon click here : brainly.com/question/17756657
#SPJ11
suppose a = {0,2,4,6,8}, b = {1,3,5,7} and c = {2,8,4}. find: (a) a∪b (b) a∩b (c) a −b
The result of each operation is given as follows:
a) a U b = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
b) a ∩ b = {}.
c) a - b = {0, 2, 4, 6, 8}.
How to obtain the union and intersection set of the two sets?The union and intersection sets of multiple sets are defined as follows:
The union set is composed by the elements that belong to at least one of the sets.The intersection set is composed by the elements that belong to at all the sets.Item a:
The union set is composed by the elements that belong to at least one of the sets, hence:
a U b = {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Item B:
The two sets are disjoint, that is, there are no elements that belong to both sets, hence the intersection is given by the empty set.
Item c:
The subtraction is all the elements that are on set a but not set b, hence:
a - b = {0, 2, 4, 6, 8}.
More can be learned about union and intersection at brainly.com/question/4699996
#SPJ1
we have four wedding invitation cards and accompanying envelopes. but oops — we’ve randomly mixed the cards and the envelopes ! what’s the probability that we’ll get at least one correct match ?
a) 1/8
b) 3/8
c) 5/8
d) 7/8
The probability of getting at least one correct match when randomly mixing the cards and envelopes is 5/8 (option c).
There are a total of 4! = 24 possible ways to match the cards and envelopes. Out of these, only one way is the correct matching where all the cards are paired correctly with their corresponding envelopes.
The probability of not getting any correct match is the number of permutations with no correct match divided by the total number of permutations. To calculate this, we can use the principle of derangements. The number of derangements of 4 objects is given by D(4) = 4! (1/0! - 1/1! + 1/2! - 1/3! + 1/4!) = 9.
Therefore, the probability of not getting any correct match is 9/24 = 3/8.
Finally, the probability of getting at least one correct match is the complement of the probability of not getting any correct match. Thus, the probability of getting at least one correct match is 1 - 3/8 = 5/8.
Learn more about probability here:
https://brainly.com/question/31828911
#SPJ11
Suppose a parabola has focus at (-8, 2), opens downward, has a horizontal directrix, and passes through the point (24, 62). The directrix will have equation (Enter the equation of the directrix) The equation of the parabola will be (Enter the equation of the parabola)
The standard equation for a parabola with a focus at (a, b) is given by:$[tex](y - b)^2[/tex] = 4p(x - a)$where p is the distance from the vertex to the focus.
If the parabola opens downward, the vertex is the maximum point and is given by (a, b + p).
If the parabola has a horizontal directrix, then it is parallel to the x-axis and is of the form y = k, where k is the distance from the vertex to the directrix.
Since the focus is at (-8, 2) and the parabola opens downward, the vertex is at (-8, 2 + p).
Also, since the directrix is horizontal, the equation of the directrix is of the form y = k.
To find the value of p, we can use the distance formula between the focus and the point (24, 62):
$p = \frac{1}{4}|[tex](-8 - 24)^2[/tex] + [tex](2 - 62)^2[/tex]| = 40$So the vertex is at (-8, 42) and the equation of the directrix is y = -38.
The equation of the parabola is therefore:
$(y - 42)^2 = -160(x + 8)
$Simplifying: $[tex]y^2[/tex] - 84y + 1764 = -160x - 1280$$[tex]y^2[/tex] - 84y + 3044 = -160x$
So the equation of the directrix is y = -38 and the equation of the parabola is $[tex]y^2[/tex] - 84y + 3044 = -160x$.
To know more about parabola
https://brainly.com/question/64712
#SPJ11
for U = {1, 2, 3} which one is true
(a) ∃x∀y x2 < y + 1
(b) ∀x∃y x2 + y2 < 12
(c) ∀x∀y x2 + y2 < 12
Among the given options, the statement (b) ∀x∃y x^2 + y^2 < 12 is true for the set U = {1, 2, 3}.
In statement (a) ∃x∀y x^2 < y + 1, the quantifier ∃x (∃ stands for "there exists") implies that there exists at least one value of x for which the inequality holds true for all values of y. However, this is not the case since there is no single value of x that satisfies the inequality for all values of y in set U.
In statement (c) ∀x∀y x^2 + y^2 < 12, the quantifier ∀x (∀ stands for "for all") implies that the inequality holds true for all values of x and y. However, this is not true for the set U = {1, 2, 3} since there exist values of x and y in U that make the inequality false (e.g., x = 3, y = 3). Therefore, the correct statement for the set U = {1, 2, 3} is (b) ∀x∃y x^2 + y^2 < 12, which means for every value of x in U, there exists a value of y that satisfies the inequality x^2 + y^2 < 12.
Learn more about quantifier here: brainly.com/question/24067769
#SPJ11
You have decided that you are going to start saving money, so you decided to open an
account to start putting money into for your savings. You started with $300, and you
are going to put back $30 a week from your paycheck.
Write an equation to represent the situation.
How long have you been saving in order to have $720 in your account?
Weeks.
Answer:
y=30x+300
14 weeks
Step-by-step explanation:
Part A:
To begin, we are asked to write an equation. We are given the amount you start with, which is $300, and you put $30 in every week.
We can write an equation that looks like:
y=30x+300
with x being the number of weeks you put in money.
Part B:
Part B asks us to find x, the number of weeks that you had to put in money to save a total of $720.
We have the equation:
y=30x+300
with x being the number of weeks, and y being the total amount, $720. This means we can substitute:
720=30x+300
subtract 300 from both sides
420=30x
divide both sides by 30
14=x
So, you had to have been saving for 14 weeks.
Hope this helps! :)
question 32
Q Search this course ook Hi AA Go to pg. 182 3x - 1 In Exercises 31, 32, 33 and 34, suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g(1) =
The value of [f(g(x))]' at x = 1 is -2f'(-2).
Given, f(1) = 2 and g(1) = -2, and f' (1) = -1To find the value of [f(g(x))]' at x = 1The chain rule of differentiation states that (f(g(x)))' = f'(g(x)). g'(x)Substitute x = 1 we have(f(g(1)))' = f'(g(1)). g'(1)Here, we have f'(1) and g'(1) are given as -1 and 3x - 1 respectivelyTherefore,(f(g(1)))' = f'(g(1)). g'(1) = f'(-2). (3(1) - 1) = f'(-2).(2) = -2f'(-2)Since the values of f(1), f'(1) and g(1) are given, we cannot determine the exact values of f(x) and g(x).Hence, the value of [f(g(x))]' at x = 1 is -2f'(-2).
learn more about [f(g(x))]' here;
https://brainly.com/question/29979922?
#SPJ11
The curve r vector (t) = t, t cos(t), 2t sin (t) lies on which of the following surfaces? a)X^2 = 4y^2 + z^2 b)4x^2 = 4y^2 + z^2 c)x^2 + y^2 + z^2 = 4 d)x^2 = y^2 + z^2 e)x^2 = 2y^2 + z^2
The curve r vector r(t) = (t, tcos(t), 2tsin(t)) lies on the surface described by option b) [tex]4x^2 = 4y^2 + z^2.[/tex]
We need to substitute the given parameterization of the curve, r(t) = (t, tcos(t), 2tsin(t)), into the equations of the given surfaces and see which one satisfies the equation.
Let's go through each option:
a) [tex]X^2 = 4y^2 + z^2[/tex]
Substituting the values from the curve, we have:
[tex](t^2) = 4(tcos(t))^2 + (2tsin(t))^2\\t^2 = 4t^2cos^2(t) + 4t^2sin^2(t)[/tex]
Simplifying:
[tex]t^2 = 4t^2 * (cos^2(t) + sin^2(t))\\t^2 = 4t^2[/tex]
This equation is not satisfied for all t, so the curve does not lie on the surface described by option a).
b) [tex]4x^2 = 4y^2 + z^2[/tex]
Substituting the values from the curve:
[tex]4(t^2) = 4(tcos(t))^2 + (2tsin(t))^2\\4t^2 = 4t^2cos^2(t) + 4t^2sin^2(t)[/tex]
Simplifying:
[tex]4t^2 = 4t^2 * (cos^2(t) + sin^2(t))\\4t^2 = 4t^2[/tex]
This equation is satisfied for all t, so the curve lies on the surface described by option b).
c) [tex]x^2 + y^2 + z^2 = 4[/tex]
Substituting the values from the curve:
[tex](t^2) + (tcos(t))^2 + (2tsin(t))^2 = 4\\t^2 + t^2cos^2(t) + 4t^2sin^2(t) = 4\\\\t^2 + t^2cos^2(t) + 4t^2sin^2(t) - 4 = 0[/tex]
This equation is not satisfied for all t, so the curve does not lie on the surface described by option c).
d) [tex]x^2 = y^2 + z^2[/tex]
Substituting the values from the curve:
[tex](t^2) = (tcos(t))^2 + (2tsin(t))^2\\t^2 = t^2cos^2(t) + 4t^2sin^2(t)\\t^2 = t^2 * (cos^2(t) + 4sin^2(t))[/tex]
Dividing by [tex]t^2[/tex] (assuming t ≠ 0):
[tex]1 = cos^2(t) + 4sin^2(t)[/tex]
This equation is not satisfied for all t, so the curve does not lie on the surface described by option d).
e) [tex]x^2 = 2y^2 + z^2[/tex]
Substituting the values from the curve:
[tex](t^2) = 2(tcos(t))^2 + (2tsin(t))^2\\t^2 = 2t^2cos^2(t) + 4t^2sin^2(t)\\t^2 = 2t^2 * (cos^2(t) + 2sin^2(t))[/tex]
Dividing by [tex]t^2[/tex] (assuming t ≠ 0):
[tex]1 = 2cos^2(t) + 4sin^2(t)[/tex]
This equation is not satisfied for all t, so the curve does not lie on the surface described by option e).
In summary, the curve r(t) = (t, tcos(t), 2tsin(t)) lies on the surface described by option b) [tex]4x^2 = 4y^2 + z^2.[/tex]
To learn more about curve visit:
brainly.com/question/30792458
#SPJ11
a spinner is divided into five colored sections that are not of equal size: red, blue, green, yellow, and purple. the spinner is spun several times, and the results are recorded below: spinner results color frequency red 10 blue 12 green 2 yellow 19 purple 12 if the spinner is spun 1000 more times, about how many times would you expect to land on purple? round your answer to the nearest whole number.
Based on the recorded results, purple appeared 12 times out of a total of 55 spins. If the spinner is spun 1000 more times, we can estimate that purple would appear approximately 218 times.
In the recorded results, the spinner was spun a total of 55 times, with purple appearing 12 times. To estimate the expected frequency of purple in 1000 additional spins, we can calculate the probability of landing on purple based on the recorded frequencies. The probability of landing on purple can be calculated by dividing the frequency of purple (12) by the total number of spins (55):
Probability of landing on purple = Frequency of purple / Total number of spins = 12 / 55
We can use this probability to estimate the expected frequency of purple in the additional 1000 spins:
Expected frequency of purple = Probability of landing on purple * Total number of additional spins
≈ (12 / 55) * 1000
≈ 218
Therefore, based on this estimation, we would expect purple to appear approximately 218 times if the spinner is spun 1000 more times.
Learn more about Probability here:
https://brainly.com/question/32560116
#SPJ11
Use part one of the fundamental theorem of calculus to find the derivative of the function. g(s) = ) = [² (t = 1³)² dt g'(s) =
The derivative of the function g(s) = ∫[1 to s³] t² dt is g'(s) = 3s^8.
Using the first part of the fundamental theorem of calculus, we can find the derivative of the function g(s) = ∫[1 to s³] t² dt. The derivative g'(s) can be obtained by evaluating the integrand at the upper limit of integration s³ and multiplying it by the derivative of the upper limit, which is 3s².
According to the first part of the fundamental theorem of calculus, if we have a function defined as g(s) = ∫[a to b] f(t) dt, where f(t) is a continuous function, then the derivative of g(s) with respect to s is given by g'(s) = f(s) * (ds/ds).
In our case, we have g(s) = ∫[1 to s³] t² dt, where the upper limit of integration is s³. To find the derivative g'(s), we need to evaluate the integrand t² at the upper limit s³ and multiply it by the derivative of the upper limit, which is 3s².
Therefore, g'(s) = (s³)² * 3s² = 3s^8.
Thus, the derivative of the function g(s) = ∫[1 to s³] t² dt is g'(s) = 3s^8.
Note: The first part of the fundamental theorem of calculus allows us to find the derivative of a function defined as an integral by evaluating the integrand at the upper limit and multiplying it by the derivative of the upper limit. In this case, the derivative of g(s) is found by evaluating t² at s³ and multiplying it by the derivative of s³, which gives us 3s^8 as the final result.
Learn more about limit here:
https://brainly.com/question/12207539
#SPJ11
Which of the following integrals would you have after the most appropriate substitution for evaluating the integral 2+2-2 de de 2 cos de 8 | custod 2. cos? 2 sinº e de | 12 sin® 8 + sin 0 cos e) de
The most appropriate substitution for evaluating the given integral is u = sin(θ). After the substitution, the integral becomes ∫ (2+2-2) du.
This simplifies to ∫ 2 du, which evaluates to 2u + C. Substituting back u = sin(θ), the final result is 2sin(θ) + C.
By substituting u = sin(θ), we eliminate the complicated expressions involving cosines and simplify the integral to a straightforward integration of a constant function. The integral of a constant is simply the constant multiplied by the variable of integration, which gives us 2u + C. Substituting back the original variable, we obtain 2sin(θ) + C as the final result.
Learn more about evaluating here:
https://brainly.com/question/14677373
#SPJ11
Determine the domain and range of the function f(x) = –|x| + 2.
The domain of the function is
.
The range of the function is
The domain of the function f(x) = –|x| + 2 is (-∞, ∞) because there are no restrictions on the input values x.The Range of the function is [2, ∞) because the function is shifted upwards by 2 units, resulting in non-negative output values starting from 2.
The domain of a function refers to the set of all possible input values for the function. In this case, the function is f(x) = –|x| + 2. The absolute value function |x| is defined for all real numbers, so there are no restrictions on the input values for x. Therefore, the domain of f(x) is the set of all real numbers, which can be represented as (-∞, ∞).
The range of a function refers to the set of all possible output values. In this case, the function f(x) = –|x| + 2 involves the absolute value of x, which can only yield non-negative values. The negative sign in front of the absolute value implies that the output values will be negated. However, the constant term 2 ensures that the function will be shifted upwards by 2 units.
Considering these factors, we can determine the range of f(x) by finding the maximum value of –|x| and adding 2. The maximum value of –|x| occurs when x = 0, where the absolute value is 0. Therefore, f(0) = –|0| + 2 = 2. Adding 2 to the maximum value, we get a range of [2, ∞).
In summary:
- The domain of the function f(x) = –|x| + 2 is (-∞, ∞) because there are no restrictions on the input values x.
- The range of the function is [2, ∞) because the function is shifted upwards by 2 units, resulting in non-negative output values starting from 2.
To know more about Range .
https://brainly.com/question/24326172
#SPJ8
Differentiate showing all work.
a) h(x) = 5 = 2 b) y= 5x3 – 6x+1 x? c) g(x)=x sin 2x d) h(x)= 100 e)g(x)=(sin(x)- cos(x)) f) g(x)= 4cosx х g) y= x In x - h) y=sec(e") i) g(x)= arctan( 4x’ – 3e-24) 4 j) A(r)= ar? k) Vín) =
The derivatives are:
a) h'(x) = 0
b) y' = 15x^2 - 6
c) g'(x) = sin(2x) + 2xcos(2x)
d) h'(x) = 0
e) g'(x) = cos(x) + sin(x)
f) g'(x) = -4sin(x)x + 4cos(x)
g) y' = ln(x) + 1
h) y' = sec(e^x)tan(e^x)
i) g'(x) = 8x/(1 + (4x^2 - 3e^-24)^2)
j) A'(r) = 1/(1 + r^2)
k) V'(t) = 0
a) h(x) = 5:
h'(x) = 0
The derivative of a constant is always zero.
b) y = 5x^3 - 6x + 1:
y' = 3(5)x^(3-1) - 6(1)x^(1-1)
y' = 15x^2 - 6
c) g(x) = x sin(2x):
g'(x) = (1)(sin(2x)) + (x)(cos(2x))(2)
g'(x) = sin(2x) + 2xcos(2x)
d) h(x) = 100:
h'(x) = 0
The derivative of a constant is always zero.
e) g(x) = sin(x) - cos(x):
g'(x) = cos(x) + sin(x)
f) g(x) = 4cos(x)x:
g'(x) = 4(-sin(x))x + 4cos(x)
g'(x) = -4sin(x)x + 4cos(x)
g) y = x ln(x):
y' = 1(ln(x)) + x(1/x)
y' = ln(x) + 1
h) y = sec(e^x):
y' = sec(e^x)tan(e^x)
i) g(x) = arctan(4x^2 - 3e^-24):
g'(x) = (1/(1 + (4x^2 - 3e^-24)^2))(8x)
g'(x) = 8x/(1 + (4x^2 - 3e^-24)^2)
j) A(r) = arctan(r):
A'(r) = 1/(1 + r^2)
k) V(t) = ?:
V'(t) = 0
The derivative of a constant is always zero.
Learn more about derivative here: https://brainly.com/question/2159625
#SPJ11
Sarah bought 6 apples for $4.69. The apples were selling for $4.79 per kilogram. Which is the best approximation for the average mass of each of these apples? (Also, a multi choice question)
A. 20g B. 160g C. 180g D. 200g
To find the best approximation for the average mass of each apple, we can divide the total cost of the apples by the cost per kilogram.
To calculate the average mass of each apple, we need to divide the total cost of the apples by the cost per kilogram. Since we know that Sarah bought 6 apples for $4.69 and the apples were selling for $4.79 per kilogram, we can set up the following equation:
Total cost of apples = Average mass per apple * Cost per kilogram
Let's solve for the average mass per apple:
Average mass per apple = Total cost of apples / Cost per kilogram
Substituting the given values, we have:
Average mass per apple = $4.69 / $4.79
Calculating this, we find:
Average mass per apple ≈ 0.978
To convert this to grams, we multiply by 1000:
Average mass per apple ≈ 978g
From the given options, the best approximation for the average mass of each apple is 180g, as it is closest to the calculated value of 978g.
Learn more about equation here:
https://brainly.com/question/29657983
#SPJ11
Use the four-step process to find f'(x) and then find f'(1), f'(2), and f'(4). f(x) = 16Vx+4
F'(1) = 8/√5, f'(2) = 8/√6, and f'(4) = 4√2. the four-step process to find f'(x) and then find f'(1), f'(2), and f'(4). f(x) = 16Vx+4
to find the derivative of the function f(x) = 16√(x+4) using the four-step process, we can follow these steps:
step 1: identify the function and rewrite it if necessary.f(x) = 16√(x+4)
step 2: identify the composite function and its derivative.
let u = x + 4f(u) = 16√u
f'(u) = 8/√u
step 3: apply the chain rule.f'(x) = f'(u) * u'
= (8/√u) * 1 = 8/√(x + 4)
step 4: simplify the derivative if necessary.
f'(x) = 8/√(x + 4)
now, let's find f'(1), f'(2), and f'(4) by substituting the respective values into the derivative function:
f'(1) = 8/√(1 + 4) = 8/√5
f'(2) = 8/√(2 + 4)
= 8/√6
f'(4) = 8/√(4 + 4) = 8/√8
= 8/(2√2) = 4√2
Learn more about function here:
https://brainly.com/question/30721594
#SPJ11
Construct a regular decagon inscribed in a circle of radius
1+ sqrt(5) Compute the exact side length
of the regular decagon and the angles you get ""for free"".
Exact side length of the regular decagon = 1 + [tex]\sqrt{5}[/tex], units. The angles in the decagon are 144° each.
Given that a regular decagon is inscribed in a circle of radius 1+[tex]\sqrt{5}[/tex]. We need to find the exact side length of the decagon and the angles of the decagon.
Step 1: The radius of the circle = 1 + [tex]\sqrt{5}[/tex]
Therefore, the diameter of the circle = 2(1 + [tex]\sqrt{5}[/tex]) = 2 + 2[tex]\sqrt{5}[/tex]
Step 2: Construct the circle of radius 1 + √[tex]\sqrt{5}[/tex], and draw the diameter AB, then draw the altitude AD, which is also the median of the isosceles triangle AOB.
Step 3: As OA = OB, then AD bisects the angle ∠OAB, then ∠DAB = ½ ∠OAB = ½ (360°/10)° = 18°. Also, ∠AOD = 90° since AD is the altitude of the isosceles triangle AOB.Step 4: The side of the decagon = AB/2= radius of the circle = 1 + √5unitsLength of the exact side length of the regular decagon = 1+[tex]\sqrt{5}[/tex]units
Step 5: In any regular decagon, the interior angle of a regular decagon is given by the formula:
Interior angle = (n - 2) x 180/n = (10 - 2) x 180/10 = 144°
Therefore, each exterior angle is equal to 180° - 144° = 36°.
Angles in the regular decagon are 144° each. Exact side length of the regular decagon = 1 + √5unitsThe angles in the decagon are 144° each.
Learn more about decagon here:
https://brainly.com/question/27314678
#SPJ11
The vectors a, b, and care such that a + b + c = 0. Determine the value of à: Đ+à: č + •č if al = 1,1b = 2, and = 3. (| C| . -> .
To find the value of the expression à · b + à · c + b · c, we need to first calculate the dot products of the vectors.
Given that a = (1, 1), b = (2, 2), and c = (3, 3), we can compute the dot products as follows:
à · b = (1, 1) · (2, 2) = (1 * 2) + (1 * 2) = 2 + 2 = 4
à · c = (1, 1) · (3, 3) = (1 * 3) + (1 * 3) = 3 + 3 = 6
b · c = (2, 2) · (3, 3) = (2 * 3) + (2 * 3) = 6 + 6 = 12
Now, we can substitute the calculated dot products into the expression:
à · b + à · c + b · c = 4 + 6 + 12 = 22
Therefore, the value of à · b + à · c + b · c is 22.
learn more about dot products here:
https://brainly.com/question/23477017
#SPJ11
Use the Alternating Series Test, if applicable, to determine the convergence or divergence of the series. n3 n = 1 Identify a Evaluate the following limit. lima n00 Since lim 2, ?M0 and an +1? Ma, for
The series [tex]∑((-1)^(n+1)*n^3)[/tex] diverges. The Alternating Series Test states that if the terms of an alternating series decrease in magnitude and approach zero, then the series converges.
In this case, the terms do not approach zero as n approaches infinity, so the series diverges.
The Alternating Series Test is a convergence test used to determine if an alternating series converges or diverges. It states that if the terms of an alternating series decrease in magnitude and approach zero as n approaches infinity, then the series converges. However, if the terms do not approach zero, the series diverges.
In the given series, the terms are given by (-1)^(n+1)*n^3. As n increases, n^3 increases as well, and the alternating signs (-1)^(n+1) oscillate between -1 and 1. The terms do not approach zero because n^3 keeps increasing without bound.
Since the terms do not approach zero, the series diverges according to the Alternating Series Test. Therefore, the series ∑((-1)^(n+1)*n^3) diverges.
Learn more about magnitude here:
https://brainly.com/question/31616548
#SPJ11
Which of the following series are convergent? 3n I. ง 4 I. 18 18 18 2" + 1 51 - 1 1 1 III. n!
Out of the three given series, only series I (3n) diverges, while series II (18 + 18^2 + 18^3 + ...) and series III (n!) also diverge. None of the given series are convergent.
Let's analyze each series to determine their convergence.
I. The series \(3n\) does not converge because it grows without bound as \(n\) increases. The terms of the series \(3n\) become larger and larger without approaching a specific value, indicating that the series diverges.
II. The series \(18 + 18^2 + 18^3 + \ldots\) is a geometric series with a common ratio of \(18\). For a geometric series to converge, the absolute value of the common ratio must be less than 1. In this case, \(|18|\) is greater than 1, so the series diverges.
III. The series \(n!\) represents the factorial of \(n\), which is the product of all positive integers from 1 to \(n\). The factorial function grows very rapidly, so the terms of the series \(n!\) become larger and larger as \(n\) increases. Therefore, the series \(n!\) diverges.
Learn more about geometric series here:
https://brainly.com/question/30264021
#SPJ11
Evaluate the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 1-² 9 sec²(0) tan(0) de
The indefinite integral of 9 sec^2(θ) tan(θ) dθ is ln|sec(θ)| + C.
To evaluate the integral, we can use a substitution. Let u = sec(θ), then du = sec(θ) tan(θ) dθ. Rewriting the integral using u, we have:
∫ 9 sec^2(θ) tan(θ) dθ = ∫ 9 du
Integrating with respect to u gives us:
9u + C = 9sec(θ) + C
However, we need to consider the absolute value of sec(θ) since it can be negative in certain intervals. Therefore, the final result is:
∫ 9 sec^2(θ) tan(θ) dθ = 9sec(θ) + C
where C is the constant of integration.
To learn more about integration click here
brainly.com/question/31744185
#SPJ11
The following series
is convergent only when
Select one:
True
False
Question 1 Not yet answered The following series * (2n+1)!-(x+2) Σ 2 Marked out of n = 0 25.00 is convergent only when x=2 Flag question Select one: O True O False
It is incorrect to say that the series converges only when x=2 since the value of x has no effect on the convergence of the given series. So, False.
The statement "The following series * [tex](2n+1)!-(x+2) Σ 2[/tex]
Marked out of n = 0 25.00 is convergent only when x=2" is false.
What is a series?A series is an addition of infinite numbers. If the addition of an infinite number of terms is performed, then it is referred to as an infinite series. A series is said to be convergent if it sums up to a finite number. If the addition of an infinite number of terms is performed, and it sums up to infinity or negative infinity, it is referred to as a divergent series. The convergence or divergence of the series may be determined using various techniques.
What is a convergent series?
A convergent series is one in which the sum of an infinite number of terms is a finite number. In other words, if the sequence of partial sums converges to a finite number, the infinite series is said to be convergent. If a series is convergent, it implies that the sum of an infinite number of terms is a finite number. Conversely, if a series is divergent, it implies that the sum of an infinite number of terms is infinite or negative infinite.
The given series * [tex](2n+1)!-(x+2) Σ 2[/tex]Marked out of n = 0 25.00 is convergent only when x=2 is a false statement. The reason why this statement is false is that it has a typo.
The given series * [tex](2n+1)!-(x+2) Σ 2[/tex] Marked out of n = 0 25.00 is a constant series, as it is independent of n. The sum of the series is 50.
Therefore, it is incorrect to say that the series converges only when x=2 since the value of x has no effect on the convergence of the given series.
Learn more about series here:
https://brainly.com/question/32549533
#SPJ11
Let S be the solid of revolution obtained by revolving about the z-axis the bounded region Renclosed by the curve y = x²(6 - 1) and the India. The goal of this exercise is to compute the volume of us
To compute the volume of the solid of revolution S, obtained by revolving the bounded region R enclosed by the curve y = x^2(6 - x) and the x-axis about the z-axis, we can use the method of cylindrical shells. The volume of the solid of revolution S is approximately 2440.98 cubic units. First, let's find the limits of integration for x. The curve y = x^2(6 - x) intersects the x-axis at x = 0 and x = 6.
So, the limits of integration for x will be from 0 to 6. Now, let's consider a vertical strip of thickness dx at a given x-value. The height of this strip will be the distance between the curve y = x^2(6 - x) and the x-axis, which is simply y = x^2(6 - x). To find the circumference of the cylindrical shell at this x-value, we use the formula for circumference, which is 2πr, where r is the distance from the axis of revolution to the curve. In this case, the distance from the z-axis to the curve is x, so the circumference is 2πx.
The volume of this cylindrical shell is the product of its circumference, height, and thickness. Therefore, the volume of the shell is given by dV = 2πx * x^2(6 - x) * dx. To find the total volume of the solid of revolution S, we integrate the expression for dV over the limits of x: V = ∫[0 to 6] 2πx * x^2(6 - x) dx.
Simplifying the integrand, we have: V = 2π ∫[0 to 6] x^3(6 - x) dx.
Evaluating this integral will give us the volume of the solid of revolution S. To evaluate the integral V = 2π ∫[0 to 6] x^3(6 - x) dx, we can expand and simplify the integrand, and then integrate with respect to x.
V = 2π ∫[0 to 6] (6x^3 - x^4) dx
Now, we can integrate term by term:
V = 2π [(6/4)x^4 - (1/5)x^5] evaluated from 0 to 6
V = 2π [(6/4)(6^4) - (1/5)(6^5)] - [(6/4)(0^4) - (1/5)(0^5)]
V = 2π [(3/2)(1296) - (1/5)(7776)]
V = 2π [(1944) - (1555.2)]
V = 2π (388.8)
V ≈ 2π * 388.8
V ≈ 2440.98
Therefore, the volume of the solid of revolution S is approximately 2440.98 cubic units.
Learn more about integration here: https://brainly.com/question/31040425
#SPJ11
A can of soda at 34 F is removed from a refrigerator and placed in a room where the air temperature is 73 * F. After 16 minutes, the temperature of the can has risen to 51 'F. How many minutes after the can is removed from the refrigerator will its temperature reach 62 F? Round your answer to the nearest whole minute.
Rounding to the nearest whole minute, we find that it will take approximately 26 minutes for the can's temperature to reach 62 °F after being removed from the refrigerator.
The temperature of a can of soda, initially at 34 °F, increases to 51 °F in 16 minutes when placed in a room at 73 °F. To determine how many minutes it takes for the can's temperature to reach 62 °F after being removed from the refrigerator, we can use the concept of thermal equilibrium and calculate the time using a linear approximation.
When the can is removed from the refrigerator, it starts to warm up due to the higher temperature of the room. To reach thermal equilibrium, the can's temperature will gradually increase until it matches the room temperature. We can assume that the temperature change is linear within this time frame.
From the given information, we know that the temperature increased by 17 °F (51 °F - 34 °F) over 16 minutes. This implies that the temperature increases at a rate of 1.06 °F per minute (17 °F / 16 minutes).
To find the time it takes for the can's temperature to reach 62 °F, we can set up a proportion. The difference between the final temperature (62 °F) and the initial temperature (34 °F) is 28 °F.
Using the rate of 1.06 °F per minute, we can calculate the time needed as follows:
28 °F / 1.06 °F per minute = 26.42 minutes.
Learn more about Rounding to the nearest whole number:
https://brainly.com/question/29161476
#SPJ11
Classify each pair of labeled angles as complementary, supplementary, or neither.
Drag and drop the choices into the boxes to correctly complete the table. Each category may have any number of pair of angles.
Put responses in the correct input to answer the question. Select a response, navigate to the desired input and insert the response. Responses can be selected and inserted using the space bar, enter key, left mouse button or touchpad. Responses can also be moved by dragging with a mouse.
complementary supplementary neither
Figure 1: Neither supplementary angles nor complementary
Figure 2: Complementary angles.
Figure 3: Neither supplementary angles nor complementary
Since we know that,
Complementary angles are those whose combined angle is 90 degrees or less. To put it another way, two angles are said to be complimentary if they combine to make a right angle. In this case, we say that the two angles work well together.
And we also know that,
The term "supplementary angles" refers to a pair of angles that always add up to 180°. The term "supplementary" refers to "something that is supplied to complete a thing." As a result, these two perspectives are referred to as supplements.
If two angles add up to 180°, they are considered to be supplementary angles. When supplementary angles are combined, they make a straight angle (180°).
Explanation of figure 1;
The given angles are,
90 + 89 = 179
Since it is neither 180 nor 90
Hence these angles are neither complementary nor supplementary angles.
Explanation of figure 2:
The given angles are,
61 degree and 29 degree
Then 61 + 29 = 90 degree
Therefore,
These are complementary angles.
Explanation of figure 3:
The given angles are,
63 degree and 47 degree
Then 63 + 47 = 110 degree
Therefore,
These are complementary angles.
To learn more about complementary angle visit:
https://brainly.com/question/98924
#SPJ1
(q3) Find the x-coordinates of the points of intersection of the curves y = x3 + 2x and y = x3 + 6x – 4.
The x - coordinate of the point of intersection of the curves is
x = 1.
How to determine he points of intersection of the curvesTo find the x-coordinates of the points of intersection of the curves
y = x³ + 2x and
y = x³ + 6x - 4
we equate both equations and solve for x.
Setting the equations equal
x³ + 2x = x³ + 6x - 4
2x = 6x - 4
Subtracting 6x from both sides
-4x = -4
Dividing both sides by -4, we find:
x = 1
Learn more about points of intersection at
https://brainly.com/question/29185601
#SPJ1
6
PROBLEM 1 Compute the following integrals using u-substitution as seen in previous labs. dy notes dr 11 C. xe dx O
The integral ∫xe dx using u-substitution is (1/2)|x| + c.
to compute the integral ∫xe dx using u-substitution, we can let u = x². then, du = 2x dx, which implies dx = du / (2x).
substituting these expressions into the integral, we have:
∫xe dx = ∫(x)(dx) = ∫(u⁽¹²⁾)(du / (2x)) = ∫(u⁽¹²⁾)/(2x) du
= (1/2) ∫(u⁽¹²⁾)/x du.
now, we need to express x in terms of u. from our initial substitution, we have u = x², which implies x = √u.
substituting x = √u into the integral, we have:
(1/2) ∫(u⁽¹²⁾)/(√u) du= (1/2) ∫u⁽¹² ⁻ ¹⁾ du
= (1/2) ∫u⁽⁻¹²⁾ du
= (1/2) ∫1/u⁽¹²⁾ du.
integrating 1/u⁽¹²⁾, we have:
(1/2) ∫1/u⁽¹²⁾ du = (1/2) ∫u⁽⁻¹²⁾ du = (1/2) * (2u⁽¹²⁾)
= u⁽¹²⁾ = √u.
substituting back u = x², we have:
∫xe dx = (1/2) ∫(u⁽¹²⁾)/x du
= (1/2) √u = (1/2) √(x²)
= (1/2) |x| + c.
Learn more about integral here:
https://brainly.com/question/31059545
#SPJ11
To compute the integral ∫xe^x dx, we can use the u-substitution method. By letting u = x, we can express the integral in terms of u, which simplifies the integration process. After finding the antiderivative of the new expression, we substitute back to obtain the final result.
To compute the integral ∫xe^x dx, we will use the u-substitution method. Let u = x, then du = dx. Rearranging the equation, we have dx = du. Now, we can express the integral in terms of u:
∫xe^x dx = ∫ue^u du.
We have transformed the original integral into a simpler form. Now, we can proceed with integration. The integral of e^u with respect to u is simply e^u. Integrating ue^u, we apply integration by parts, using the mnemonic "LIATE":
Letting L = u and I = e^u, we have:
∫LIATE = u∫I - ∫(d/dx(u) * ∫I dx) dx.
Applying the formula, we obtain:
∫ue^u du = ue^u - ∫(1 * e^u) du.
Simplifying, we have:
∫ue^u du = ue^u - ∫e^u du.
Integrating e^u with respect to u gives us e^u:
∫ue^u du = ue^u - e^u + C.
Substituting back u = x, we have:
∫xe^x dx = xe^x - e^x + C,
where C is the constant of integration.
In conclusion, using the u-substitution method, the integral ∫xe^x dx is evaluated as xe^x - e^x + C, where C is the constant of integration.
Learn more about antiderivative here:
https://brainly.com/question/31396969
#SPJ11
Find the absolute maximum and minimum, if either exists, for the function on the indicated interval. f(x)=(x-2)(x - 6) + 3 (A) [0,5) (B) (1.7] (C) (5, 8] (A) Find the absolute maximum. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The absolute maximum is at x = (Use a comma to separate answers as needed.) B. There is no absolute maximum.
To find the absolute maximum and minimum of the function f(x) = (x - 2)(x - 6) + 3 on the given intervals, we need to evaluate the function at the critical points and endpoints of the interval.
For interval (0, 5):
- Evaluate f(x) at the critical point(s) and endpoints within the interval.
- Critical point(s): Find the value(s) of x where f'(x) = 0 or f'(x) is undefined.
- Endpoints: Evaluate f(x) at the endpoints of the interval.
1. Find the critical point(s):
f'(x) = 2x - 8
Setting f'(x) = 0:
2x - 8 = 0
2x = 8
x = 4
2. Evaluate f(x) at the critical point and endpoints:
f(0) = (0 - 2)(0 - 6) + 3 = 27
f(5) = (5 - 2)(5 - 6) + 3 = 2
f(4) = (4 - 2)(4 - 6) + 3 = 7
The absolute maximum on the interval (0, 5) is f(0) = 27.
Therefore, the correct choice is:
A. The absolute maximum is at x = 0.
learn more about absolute maximum here:
https://brainly.com/question/31440581
#SPJ11
Verify the following general solutions and find the particular solution. 23. Find the particular solution to the differential equation y' x² = y that passes through (1.2) given that y = Ce is a general solution. 25. Find the particular solution to the differential equation = tanu that passes through (1.2). (1.2). given given that dr u = sin-¹ (eC+¹) is a general solution.
The general solution of the given differential equation is: [tex]$\frac{dy}{dx} = \tan u$[/tex].
General Solution: [tex]$y = Ce^{x^3/3}$[/tex]
The given differential equation is[tex]$y' = y / x^2$.[/tex]
To find the particular solution, we have to use the initial condition [tex]$y(1) = 2$[/tex].
Integration of the given equation gives us:
[tex]$\int \frac{dy}{y} = \int \frac{dx}{x^2}$or $\ln y = -\frac{1}{x} + C$or $y = e^{-\frac{1}{x}+C}$[/tex].
Applying the initial condition [tex]$y(1) = 2$[/tex], we get:
[tex]$2 = e^{-1 + C}$or $C = 1 + \ln 2$[/tex].
Thus, the particular solution is:
[tex]$y = e^{-\frac{1}{x} + 1 + \ln 2} = 2e^{-\frac{1}{x}+1}$[/tex]
The general solution of the given differential equation is:
[tex]$\frac{dy}{dx} = \tan u$[/tex]
Rearranging this equation gives us:
[tex]$\frac{dy}{\tan u} = dx$[/tex]
Integrating both sides of the equation:
[tex]$\int \frac{dy}{\tan u} = \int dx$[/tex]
Using the identity [tex]$\sec^2 u = 1 + \tan^2 u$[/tex] we get:
[tex]$\int \frac{\cos u}{\sin u}dy = x + C$[/tex]
Applying the initial condition [tex]$y(1) = 2$[/tex], we have:
[tex]$\int_2^y \frac{\cos u}{\sin u}du = x$[/tex]
Let , [tex]$t = \sin u$[/tex], then [tex]$dt = \cos u du$[/tex]. As [tex]$u = \sin^{-1} t$[/tex] we have:
[tex]$\int_2^y \frac{dt}{t\sqrt{1-t^2}} = x$[/tex]
Using a trigonometric substitution of [tex]$t = \sin\theta$[/tex], the integral on the left side can be evaluated as:
[tex]$\int_0^{\sin^{-1} y} d\theta = \sin^{-1} y$[/tex]
Therefore, the particular solution is:
[tex]$x = \sin^{-1} y$ or $y = \sin x$[/tex]
General Solution: [tex]$r = Ce^{\sin^{-1}e^C}$[/tex]
Differentiating with respect to [tex]$\theta$[/tex], we have:
[tex]$\frac{dr}{d\theta} = \frac{du}{d\theta}\frac{dr}{du} = \frac{du}{d\theta}(e^u)$.Given that $\frac{du}{d\theta} = \sin^{-1}(e^C)$[/tex], the equation becomes:
[tex]$\frac{dr}{d\theta} = (e^u) \sin^{-1}(e^C)$[/tex]
Integrating both sides, we get:
[tex]$r = \int (e^u) \sin^{-1}(e^C) d\theta$[/tex] Let [tex]$t = \sin^{-1}(e^C)$[/tex], so [tex]$\cos t = \sqrt{1-e^{2C}}$[/tex] and [tex]$\sin t = e^C$[/tex]. Substituting these values gives:
[tex]$r = \int e^{r\cos \theta} \sin t d\theta$[/tex]
Using the substitution [tex]$u = r \cos \theta$[/tex], the integral becomes:
[tex]$\int e^{u} \sin t d\theta$[/tex] Integrating this expression we have:
[tex]$-e^{u} \cos t + C = -e^{r\cos\theta}\sqrt{1-e^{2C}} + C$[/tex]
Substituting the value of [tex]$C$[/tex], the particular solution is:
[tex]$r = -e^{r\cos\theta}\sqrt{1-e^{2C}} - \sin^{-1}(e^C) + \sin^{-1}(e^{r \cos \theta})$[/tex]
Learn more about differential equation :
https://brainly.com/question/25731911
#SPJ11