Please Help Quickly!!!!!!!!!!

Please Help Quickly!!!!!!!!!!

Answers

Answer 1

Answer:

According to the question. ED||AB & CED ~ CAB. Given AC= 3600 ft   DC=300 ft    ED= 400 ft BC=1800 ft

According to the Similarity Theorem

[tex]\frac{CD}{BC} =\frac{ED}{AB} \\\\AB= \frac{BC*ED}{CD} = \frac{1800*400}{300} =\\\\2400 ft.[/tex]

So A. 2400 ft


Related Questions

Use horizontal strips to find the area of the region enclosed by y = 1.752 and x = a First find the y coordinates of the two points where y = 1.752 meets 2 = 3.5 - y². lower coordinate y = c = and up

Answers

The lower y-coordinate where y = 1.752 intersects the curve 2 = 3.5 - y² is approximately 1.225. The upper y-coordinate cannot be determined with the given information.

To find the y-coordinates of the intersection points, we can equate the two equations:

3.5 - y² = 2

Rearranging the equation, we have:

y² = 3.5 - 2

y² = 1.5

Taking the square root of both sides, we get:

y = ±√1.5

Since we are looking for the region enclosed by the curve, we consider the positive square root:

y = √1.5 ≈ 1.225

Now we have the lower y-coordinate, denoted as c = 1.225. The horizontal line y = 1.752 intersects the curve at this point. To find the upper y-coordinate, we substitute y = 1.752 into the equation 2 = 3.5 - y²:

2 = 3.5 - (1.752)²

2 = 3.5 - 3.067504

2 = 0.432496

This indicates that the upper y-coordinate is greater than 2, which means the region enclosed by the curve and the horizontal line extends beyond y = 2. Therefore, we cannot determine the exact value of the upper y-coordinate.

Learn more about intersection points here:

https://brainly.com/question/14217061

#SPJ11

Consider the graph and determine the open intervals on which the function is increasing and on which the function is decreasing. Enter Øto indicate the interval is empty. Enable Zoom/Pan 10 10 Answer

Answers

The function is increasing on the open interval (-∞, a) and decreasing on the open interval (b, ∞), where 'a' and 'b' are specific values.

From the given graph, we can observe that the function is increasing on the open interval to the left of a certain point and decreasing on the open interval to the right of another point. Let's denote the point where the function starts decreasing as 'b' and the point where it starts increasing as 'a'.

On the left of point 'a', the function is increasing, which means that as we move from left to right on the x-axis, the corresponding y-values of the function are increasing. Therefore, the open interval where the function is increasing is (-∞, a).

On the right of point 'b', the function is decreasing, indicating that as we move from left to right on the x-axis, the corresponding y-values of the function are decreasing. Hence, the open interval where the function is decreasing is (b, ∞). It's important to note that the specific values of 'a' and 'b' are not provided in the given question, so we cannot determine them precisely.

To learn more about graph visit:

https://brainly.com/question/17267403

#SPJ11

Express each of these statment using quantifires :
a) every student in this classes has taken exactly two mathematics classes at this school.
b) someone has visited every country in the world except Libya

Answers

Using quantifiers; a) ∀ student ∈ this class, ∃ exactly 2 mathematics classes ∈ this school that the student has taken and b) ∃ person, ∀ country ∈ the world (country ≠ Libya), the person has visited that country.

a) "Every student in this class has taken exactly two mathematics classes at this school."

In this statement, we have two main quantifiers:

Universal quantifier (∀): This quantifier denotes that we are making a statement about every individual student in the class. It indicates that the following condition applies to each and every student.

Existential quantifier (∃): This quantifier indicates the existence of something. In this case, it asserts that there exists exactly two mathematics classes at this school that each student has taken.

So, when we combine these quantifiers and their respective conditions, we get the statement: "For every student in this class, there exists exactly two mathematics classes at this school that the student has taken."

b) "Someone has visited every country in the world except Libya."

In this statement, we also have two main quantifiers:

Existential quantifier (∃): This quantifier signifies the existence of a person who satisfies a particular condition. It asserts that there is at least one person.

Universal quantifier (∀): This quantifier denotes that we are making a statement about every individual country in the world (excluding Libya). It indicates that the following condition applies to each and every country.

So, when we combine these quantifiers and their respective conditions, we get the statement: "There exists at least one person who has visited every country in the world (excluding Libya)."

In summary, quantifiers are used to express the scope of a statement and to indicate whether it applies to every element or if there is at least one element that satisfies the given condition.

Therefore, Using quantifiers; a) ∀ student ∈ this class, ∃ exactly 2 mathematics classes ∈ this school that the student has taken and b) ∃ person, ∀ country ∈ the world (country ≠ Libya), the person has visited that country.

To know more about quantifiers check the below link:

https://brainly.com/question/13146953

#SPJ4

DETAILS SCALCET8 12.5.069. Let P be a point not on the line L that passes through the points Q and R. The distance d from the point P to the line Lis d= a x b la/ where a QR and b = QP. A Use the above formula to find the distance from the point to the given line. (4, 3, -1); x = 1+t, y=3- 3t, z = 3 - 3t d= Need Help? Read It Watch it Submit Answer MY NOTES HY NOTES AS

Answers

To find the distance from the point (4, 3, -1) to the given line defined by x = 1 + t, y = 3 - 3t, z = 3 - 3t, we can use the formula provided:

d = |a x b| / |a|

where a is the direction vector of the line (QR) and b is the vector from any point on the line (Q) to the given point (P).

Step 1: Find the direction vector a of the line (QR):

The direction vector of the line is obtained by taking the coefficients of t in the equations x = 1 + t, y = 3 - 3t, z = 3 - 3t. Therefore, a = (1, -3, -3).

Step 2: Find vector b from a point on the line (Q) to the given point (P):

To find vector b, subtract the coordinates of point Q (1, 3, 3) from the coordinates of point P (4, 3, -1):

b = (4 - 1, 3 - 3, -1 - 3) = (3, 0, -4).

Step 3: Calculate the cross product of a x b:

To find the cross product, take the determinant of the 3x3 matrix formed by a and b:

| i j k |

| 1 -3 -3 |

| 3 0 -4 |

a x b = (0 - 0) - (-3 * -4) i + (3 * -4) - (3 * 0) j + (3 * 0) - (1 * -3) k

= 12i + 12j + 3k

= (12, 12, 3).

Step 4: Calculate the magnitudes of a and a x b:

The magnitude of a is |a| = √(1^2 + (-3)^2 + (-3)^2) = √19.

The magnitude of a x b is |a x b| = √(12^2 + 12^2 + 3^2) = √177.

Step 5: Calculate the distance d using the formula:

d = |a x b| / |a| = √177 / √19.

Therefore, the distance from the point (4, 3, -1) to the line x = 1 + t, y = 3 - 3t, z = 3 - 3t is d = √177 / √19.

To learn more about distance visit:

brainly.com/question/14608352

#SPJ11

Find the perimeter and area of each regular polygon to the nearest tenth.

Answers

The perimeter and area of the regular polygon, (a pentagon), obtained from the radial length of the circumscribing circle of the polygon are about 17.6 ft and 21.4 ft²

What is a regular pentagon?

A regular pentagon is a five sided polygon with the same length for the five sides of forming a loop.

The polygon is a regular pentagon, therefore;

The interior angle of a pentagon = 108°

The 3ft radial segment bisect the interior angle, such that half the length of a side, s, of the pentagon is therefore;

cos(108/2) = (s/2)/3

(s/2) = 3 × cos(108/2)

s = 2 × 3 × cos(108/2)

The perimeter of the pentagon, 5·s = 5 × 2 × 3 × cos(108°/2) ≈ 17.6

The perimeter of the pentagon is about 17.6 ft

The area of the pentagon can be obtained from the areas of the five congruent triangles in a pentagon as follows;

Altitude of one triangle = Apothem, a = 3 × sin(108°/2)

Area of one triangle, A = (1/2)·s·a = (1/2) × 2 × 3 × cos(108°/2) × 3 × sin(108°/2) = 9 × cos(108°/2) × sin(108°/2)

Trigonometric identities indicates that we get;

A = 9 × cos(108°/2) × sin(108°/2) = 9/2 × sin(108°)

The area of the pentagon = 5 × A = 5 × 9/2 × sin(108°) ≈ 21.4 ft²

Learn more on the perimeter of a polygon here: https://brainly.com/question/13303683

#SPJ1




When the price is $2.00 each, 6000 fruit bars will be sold. If the price of a fruit bar is raised by 2.00, sales will drop by 500 fruit bars. a) Determine the demand, or price, function. b) Determine the marginal revenue from the sale of 2700 bars.

Answers

The demand function is given by p(x) = 8 - 0.001x and the marginal revenue from the sale of 2700 bars is $5.30.

How can we determine the demand function and marginal revenue?

To determine the demand function, we analyze the given information about the quantity of fruit bars sold at different prices. With a price of $2.00 per bar, 6000 fruit bars are sold. When the price is increased by $2.00, the sales drop by 500 bars. By setting up a linear demand function, we can use this information to determine the relationship between price (p) and quantity (x). We can represent the demand function as p(x) = a - bx, where a represents the initial price and b represents the change in quantity per change in price. By substituting the given values, we find p(x) = 8 - 0.001x.

The marginal revenue (MR) represents the additional revenue generated from the sale of one additional unit. It is calculated by finding the derivative of the revenue function with respect to quantity. In this case, the revenue function is R(x) = xp(x). By differentiating R(x) and evaluating it at x = 2700, we can find the marginal revenue. The derivative is given by MR(x) = p(x) + xp'(x). Substituting x = 2700 and p'(x) = -0.001 into the equation, we find MR(2700) = $5.30.

Learn more about demand function

brainly.com/question/28708592

#SPJ11

Find the area between f(x) = -2x + 4 and g(x) = į x (x 1 from x = -1 to x = 1

Answers

The required area between the curves is -2.

Given f(x) = -2x + 4 and g(x) = į x (x 1 from x = -1 to x = 1.

We have to find the area between these two functions.

The area between two curves is calculated by integrating the difference of two curves. We know that

Area between two curves = ∫ [f(x) - g(x)] dx

Limits of integration are -1 and 1.

∴ Area = ∫ [f(x) - g(x)] dx from x = -1 to x = 1

Now, let's find the values of the functions f(x) and g(x) at x = -1 and x = 1.

Substitute x = -1 in f(x), f(-1) = -2(-1) + 4 = 6

Substitute x = -1 in g(x), g(-1) = 1(-1 + 1) = 0

Substitute x = 1 in f(x), f(1) = -2(1) + 4 = 2

Substitute x = 1 in g(x), g(1) = 1(1 + 1) = 2

Therefore, the area between the curves is given by:

Area = ∫ [f(x) - g(x)] dx from x = -1 to x = 1

= ∫ [-2x + 4 - į x (x + 1)] dx from x = -1 to x = 1

= ∫ [-2x + 4 - x² - x] dx from x = -1 to x = 1

= (-x² - x² / 2 + 4x) from x = -1 to x = 1

= [-1² - 1² / 2 + 4(-1)] - [-(-1)² - (-1)² / 2 + 4(-1)] = -2

The required area between the curves is -2.

To know more about area, visit:

https://brainly.com/question/30395524#

#SPJ11

3. Daquan is building a garden shaped like a trapezoid. The diagram shows the lengths of the sides. How much fence
does Daquan need to buy to go around the garden?
3x-1
x2-3x
3x2-11x
x+2

Answers

The expression which represents length of fence to cover the

trapezium = 4x² - 10x + 1

In the given trapezium,

Length of sides of trapezium are,

x²-3x, 3x-1, x+2, 3x²-11x

Here we have to find perimeter of trapezium.

Perimeter of trapezium = sum of all length of sides

                                       = x²-3x + 3x-1 +  x+2 + 3x²-11x

                                       = 4x² - 10x + 1

Therefore the expression which represents length of fence to cover the

trapezium = perimeter of trapezium

Hence,

 

length of fence to cover the

trapezium = 4x² - 10x + 1

To learn more about trapezium visit:

https://brainly.com/question/16687907

#SPJ1


What is the volume of the pyramid?
Enter your answer in the box.

Answers

Volume of pyramid = L × W × H

= 15×7×5

V = 175cm³

Graph the rational function.
3x+3
-x-2
Start by drawing the vertical and horizontal asymptotes. Then plot two points on each piece of the graph. Finally, click on the graph-a-function E



Help Pleasee

Answers

We have the vertical asymptote at x = -2, the horizontal asymptote at

y = -3, and four plotted points: (-4, -4.5), (-1, 0), (0, -1.5), and (1, -2).

We have,

To graph the rational function (3x + 3) / (-x - 2), let's start by identifying the vertical and horizontal asymptotes.

Vertical asymptote:

The vertical asymptote occurs when the denominator of the rational function is equal to zero.

In this case, -x - 2 = 0.

Solving for x, we find x = -2.

Therefore, the vertical asymptote is x = -2.

Horizontal asymptote:

To find the horizontal asymptote, we compare the degrees of the numerator and denominator.

The degree of the numerator is 1 (highest power of x), and the degree of the denominator is also 1.

When the degrees are equal, the horizontal asymptote is determined by the ratio of the leading coefficients.

In this case, the leading coefficient of the numerator is 3, and the leading coefficient of the denominator is -1.

Therefore, the horizontal asymptote is y = 3 / -1 = -3.

Now,

Let's plot some points on the graph to help visualize it.

We will choose x-values on both sides of the vertical asymptote and evaluate the function to get the corresponding y-values.

Choose x = -4:

Plugging x = -4 into the function: f(-4) = (3(-4) + 3) / (-(-4) - 2) = (-9) / 2 = -4.5

So we have the point (-4, -4.5).

Choose x = -1:

Plugging x = -1 into the function: f(-1) = (3(-1) + 3) / (-(-1) - 2) = 0 / -1 = 0

So we have the point (-1, 0).

Choose x = 0:

Plugging x = 0 into the function: f(0) = (3(0) + 3) / (-0 - 2) = 3 / -2 = -1.5

So we have the point (0, -1.5).

Choose x = 1:

Plugging x = 1 into the function: f(1) = (3(1) + 3) / (-1 - 2) = 6 / -3 = -2

So we have the point (1, -2).

Thus,

We have the vertical asymptote at x = -2, the horizontal asymptote at y = -3, and four plotted points: (-4, -4.5), (-1, 0), (0, -1.5), and (1, -2).

You can plot these points on a graph and connect them to get an approximation of the graph of the rational function.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ1

a vertical line in the xy -plane travels from left to right along the base of the solid described in part (c). the vertical line is moving at a constant rate of 7 units per second. find the rate of change of the area of the cross section above the vertical line with respect to time when the vertical line is at position x

Answers

To find the rate of change of the area of a cross-section above a moving vertical line in the xy-plane, differentiate the area function with respect to time using the chain rule and substitute the known rate of change of the vertical line's position.

To find the rate of change of the area of the cross-section above the vertical line with respect to time, we need to differentiate the area function with respect to time.

Let's denote the area of the cross-section as A(x), where x represents the position of the vertical line along the x-axis. We want to find dA/dt, the rate of change of A with respect to time.

Since the vertical line is moving at a constant rate of 7 units per second, the rate of change of x with respect to time is dx/dt = 7 units/second.

Now, we can differentiate A(x) with respect to t using the chain rule:

dA/dt = dA/dx * dx/dt

The derivative dA/dx represents the rate of change of the area with respect to the position x. It can be found by differentiating the area function A(x) with respect to x.

Once you have the expression for dA/dx, you can substitute dx/dt = 7 units/second to calculate dA/dt, the rate of change of the area of the cross-section with respect to time when the vertical line is at position x.

To know more about vertical line's,

https://brainly.com/question/32168412

#SPJ11




Use the Taylor series to find the first four nonzero terms of the Taylor series for the function In (1 +4x) centered at 0. Click the icon to view a table of Taylor series for common functions - What i

Answers

The first four nonzero terms of the Taylor series for ln(1 + 4x) centered at 0 are 4x, -8x^2, and 64x^3/3. These terms approximate the function in the neighborhood of x = 0.

To find the Taylor series for the function ln(1 + 4x) centered at 0, we can use the general formula for the Taylor series expansion of a function:

f(x) = f(a) + f'(a)(x - a)/1! + f''(a)(x - a)^2/2! + f'''(a)(x - a)^3/3! + ...

In this case, a = 0 and we need to find the first four nonzero terms. Let's calculate:

f(0) = ln(1) = 0 (ln(1) is 0)

To find the derivatives, we start with the first derivative:

f'(x) = d/dx [ln(1 + 4x)] = 4/(1 + 4x)

Now, we evaluate the first derivative at x = 0:

f'(0) = 4/(1 + 4(0)) = 4/1 = 4

For the second derivative, we differentiate f'(x):

f''(x) = d/dx [4/(1 + 4x)] = -16/(1 + 4x)^2

Evaluating the second derivative at x = 0:

f''(0) = -16/(1 + 4(0))^2 = -16/1 = -16

For the third derivative, we differentiate f''(x):

f'''(x) = d/dx [-16/(1 + 4x)^2] = 128/(1 + 4x)^3

Evaluating the third derivative at x = 0:

f'''(0) = 128/(1 + 4(0))^3 = 128/1 = 128

Now, we can write the first four nonzero terms of the Taylor series:

ln(1 + 4x) = 0 + 4x - 16x^2/2 + 128x^3/6

Simplifying, we have:

ln(1 + 4x) ≈ 4x - 8x^2 + 64x^3/3

Therefore, the first four nonzero terms of the Taylor series for ln(1 + 4x) centered at 0 are 4x, -8x^2, and 64x^3/3.

To learn more about Taylor series click here: brainly.com/question/31140778


#SPJ11

rodney's+debt+service+ratio+went+from+40%+to+20%.+which+of+the+following+statements+are+true?

Answers

Two possible true statements based on Rodney's debt service ratio decreasing from 40% to 20% are: 1. Rodney's ability to manage his debt has improved, and 2. Rodney has more disposable income.

The change in Rodney's debt service ratio from 40% to 20% implies a decrease in his debt burden. Two possible true statements based on this information are:

Rodney's ability to manage his debt has improved: A decrease in the debt service ratio indicates that Rodney is now using a smaller portion of his income to service his debt. This suggests that he has either reduced his debt obligations or increased his income, resulting in a more favorable financial situation.

Rodney has more disposable income: With a lower debt service ratio, Rodney has a higher percentage of his income available for other expenses or savings. This implies that he has more disposable income to allocate towards other financial goals or to improve his overall financial well-being.

Learn more about ratios here:

https://brainly.com/question/13419413

#SPJ11

A tank in the shape of an inverted right circular cone has height 7 meters and radius 3 meters. It is filled with 6 meters of hot chocolate. Find the work required to empty the tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is Š 1100 kg/m your answer must include the correct units Work =

Answers

The work required to empty the tank is -12929335.68 J, with the correct unit.

To calculate the work required to empty the tank by pumping the hot chocolate over the top of the tank, we need to calculate the gravitational potential energy of the hot chocolate in the tank and multiply it by -1.

This is because the work done is against the gravity.

The gravitational potential energy can be calculated as follows; GPE = mgh, where m is the mass of the hot chocolate, g is the acceleration due to gravity, and h is the height of the hot chocolate in the tank.

Since density, ρ = 1100 kg/m³, and volume, V = [tex]1/3\pi r^2h[/tex] of the tank, the mass of the hot chocolate is; m = ρV = ρ x 1/3πr²h

Substituting ρ, r, and h, we get m = [tex]1100 * 1/3 * \pi  * 3^2 * 6 = 186264 kg[/tex]

Substituting the values of m, g, and h into the GPE formula, we get; GPE = mgh = 186264 x 9.81 x 7 = 12929335.68 J

Therefore, the work required to empty the tank is given by; W = -GPE = -12929335.68 J

To learn more about volume click here https://brainly.com/question/28058531

#SPJ11

Rotate the area enclosed by the functions y = ln(x), y = 0, and < = 2 about the y-axis. Write the set-up only to find the volume. DO NOT INTEGRATE!

Answers

The actual volume generated by rotating the given area about the y-axis is π (e^4/2 - e⁴).

To find the volume generated by rotating the area enclosed by the functions y = ln(x), y = 0, and y = 2 about the y-axis, we can use the method of cylindrical shells. The setup to find the volume is as follows:

1. Determine the limits of integration:

To find the limits of integration, we need to determine the x-values where the functions y = ln(x) and y = 2 intersect. Set the two equations equal to each other:

ln(x) = 2

Solving for x, we get x = e².

Thus, the limits of integration will be from x = 1 (since ln(1) = 0) to x = e².

2. Set up the integral using the cylindrical shell method:

The volume generated by rotating the area about the y-axis can be calculated using the integral:

V = ∫[a, b] 2πx(f(x) - g(x)) dx,

where a and b are the limits of integration, f(x) is the upper function (y = 2 in this case), and g(x) is the lower function (y = ln(x) in this case).

Therefore, the setup to find the volume is:

V = ∫[1, e²] 2πx(2 - ln(x)) dx.

To find the actual volume generated by rotating the area enclosed by the functions y = ln(x), y = 0, and y = 2 about the y-axis, we can integrate the expression we set up in the previous step. The integral is as follows:

V = ∫[1, e²] 2πx(2 - ln(x)) dx.

Integrating this expression will give us the actual volume. Let's evaluate the integral:

V = 2π ∫[1, e²] x(2 - ln(x)) dx

To integrate this expression, we will need to use integration techniques such as integration by parts or substitution. Let's use integration by parts with u = ln(x) and dv = x(2 - ln(x)) dx:

du = (1/x) dx

v = (x^2/2) - (x² * ln(x)/2)

Using the integration by parts formula:

∫ u dv = uv - ∫ v du,

we can now perform the integration:

V = 2π [(x^2/2 - x² * ln(x)/2) |[1, e²] - ∫[1, e²] [(x^2/2 - x² * ln(x)/2) * (1/x) dx]

 = 2π [(e^4/2 - e⁴ * ln(e^2)/2) - (1/2 - ln(1)/2) - ∫[1, e²] (x/2 - x * ln(x)/2) dx]

 = 2π [(e^4/2 - 2e^4/2) - (1/2) - ∫[1, e²] (x/2 - x * ln(x)/2) dx]

 = 2π [(e^4/2 - e⁴) - (1/2) - [(x^2/4 - x² * ln(x)/4) |[1, e²]]

 = 2π [(e^4/2 - e⁴) - (1/2) - (e^4/4 - e⁴ * ln(e²)/4 - 1/4)]

 = 2π [(e^4/2 - e⁴) - (1/2) - (e^4/4 - e^4/2 - 1/4)]

 = 2π [(e^4/2 - e⁴ - 1/2) - (e^4/4 - e^4/2 - 1/4)]

 = 2π [(e^4/2 - e⁴ - 1/2) - (e^4/4 - e^4/2 - 1/4)]

 = 2π [(e^4/2 - e^4/4) - (e⁴ - e^4/2)]

 = 2π [(e^4/4 - e^4/2)]

 = 2π (e^4/4 - e^4/2)

 = π (e^4/2 - e⁴).

Therefore, the actual volume generated by rotating the given area about the y-axis is π (e^4/2 - e⁴).

Know more about cylindrical shell method here

https://brainly.com/question/17488786#

#SPJ11

Find constants a and b such that the graph of f(x) = x3 + ax2 + bx will have a local max at (-2, 9) and a local min at (1,7).

Answers

The constants [tex]\(a\) and \(b\) are \(a = \frac{3}{2}\) and \(b = -6\).[/tex]

How to find [tex]\(a\) and \(b\)[/tex] for local extrema?

To find the constants \(a\) and \(b\) such that the graph of [tex]\(f(x) = x^3 + ax^2 + bx\)[/tex] has a local maximum at (-2, 9) and a local minimum at (1, 7), we need to set up a system of equations using the properties of local extrema.

1. Local Maximum at (-2, 9):

At the local maximum point (-2, 9), the derivative of [tex]\(f(x)\)[/tex] should be zero, and the second derivative should be negative.

First, let's find the derivative of [tex]\(f(x)\):[/tex]

[tex]\[f'(x) = 3x^2 + 2ax + b\][/tex]

Now, let's substitute [tex]\(x = -2\)[/tex] and set the derivative equal to zero:

[tex]\[0 = 3(-2)^2 + 2a(-2) + b\][/tex]

[tex]\[0 = 12 - 4a + b \quad \text{(Equation 1)}\][/tex]

Next, let's find the second derivative of[tex]\(f(x)\):[/tex]

[tex]\[f''(x) = 6x + 2a\][/tex]

Now, substitute [tex]\(x = -2\)[/tex]  [tex]\[f''(-2) = 6(-2) + 2a < 0\][/tex] and ensure that the second derivative is negative:

[tex]\[f''(-2) = 6(-2) + 2a < 0\]\[-12 + 2a < 0\]\[2a < 12\]\[a < 6\][/tex]

2. Local Minimum at (1, 7):

At the local minimum point (1, 7), the derivative of [tex]\(f(x)\)[/tex] should be zero, and the second derivative should be positive.

Using the derivative of [tex]\(f(x)\)[/tex] from above:

[tex]\[f'(x) = 3x^2 + 2ax + b\][/tex]

Now, let's substitute [tex]\(x = 1\)[/tex] and set the derivative equal to zero:

[tex]\[0 = 3(1)^2 + 2a(1) + b\]\[0 = 3 + 2a + b \quad \text{(Equation 2)}\][/tex]

Next, let's find the second derivative of[tex]\(f(x)\):[/tex]

[tex]\[f''(x) = 6x + 2a\][/tex]

Now, substitute[tex]\(x = 1\) \\[/tex] and ensure that the second derivative is positive:

[tex]\[f''(1) = 6(1) + 2a > 0\]\[6 + 2a > 0\]\[2a > -6\]\[a > -3\][/tex]

To summarize, we have the following conditions:

[tex]Equation 1: \(0 = 12 - 4a + b\)Equation 2: \(0 = 3 + 2a + b\)[/tex]

[tex]\(a < 6\) (to satisfy the local maximum condition)\(a > -3\) (to satisfy the local minimum condition)[/tex]

Now, let's solve the system of equations to find the values of a and b

From Equation 1, we can express b in terms of a:

[tex]\[b = 4a - 12\][/tex]

Substituting this expression for b into Equation 2, we get:

[tex]\[0 = 3 + 2a + (4a - 12)\]\[0 = 6a - 9\]\[6a = 9\]\[a = \frac{9}{6} = \frac{3}{2}\][/tex]

Substituting the value of \(a\) back into Equation 1, we can find b

[tex]\[0 = 12 - 4\left(\frac{3}{2}\right) + b\]\[0 = 12 - 6 + b\]\[b = -6\][/tex]

Therefore, the constants a and b that satisfy the given conditions are[tex]\(a = \frac{3}{2}\) and \(b = -6\).[/tex]

Learn more about: extrema

brainly.com/question/2272467

#SPJ11

1. Let f(x, y, z) = xyz + x+y+z+1. Find the gradient vf and divergence div(vf), and then calculate curl(vf) at point (1,1,1).

Answers

The curl of vf is zero at every point in space, including the point (1, 1, 1).

To find the gradient vector field (vf) and divergence (div) of the function f(x, y, z) = xyz + x + y + z + 1, we first need to compute the partial derivatives of f with respect to each variable.

Partial derivative with respect to x:

∂f/∂x = yz + 1

Partial derivative with respect to y:

∂f/∂y = xz + 1

Partial derivative with respect to z:

∂f/∂z = xy + 1

Now we can construct the gradient vector field vf = (∂f/∂x, ∂f/∂y, ∂f/∂z):

vf(x, y, z) = (yz + 1, xz + 1, xy + 1)

To calculate the divergence of vf, we need to compute the sum of the partial derivatives of each component:

div(vf) = ∂(yz + 1)/∂x + ∂(xz + 1)/∂y + ∂(xy + 1)/∂z

= z + z + y + x + 1

= 2z + x + y + 1

To find the curl of vf, we need to compute the determinant of the following matrix:

css

Copy code

      i          j          k

∂/∂x (yz + 1) (xz + 1) (xy + 1)

∂/∂y (yz + 1) (xz + 1) (xy + 1)

∂/∂z (yz + 1) (xz + 1) (xy + 1)

Expanding the determinant, we have:

curl(vf) = (∂(xy + 1)/∂y - ∂(xz + 1)/∂z)i - (∂(yz + 1)/∂x - ∂(xy + 1)/∂z)j + (∂(yz + 1)/∂x - ∂(xz + 1)/∂y)k

= (x - x) i - (z - z) j + (y - y) k

= 0

Therefore, (1, 1, 1) is  the curl of vf is zero at every point in space.

To learn more about space, refer below:

https://brainly.com/question/31130079

#SPJ11

A piece of wire 60 cm. long is to be folded into a rectangle. What should be the dimensions so that the area that would be enclosed by the rectangle would be maximum?

Answers

To find the dimensions of the rectangle that would maximize the enclosed area, we can use the concept of optimization.

Let's assume the length of the rectangle is x cm. Since we have a piece of wire 60 cm long, the remaining length of the wire will be used for the width of the rectangle, which we can denote as (60 - 2x) cm.

The formula for the area of a rectangle is given by A = length × width. In this case, the area is given by A = x × (60 - 2x).

To maximize the area, we need to find the value of x that maximizes the function A.

Taking the derivative of A with respect to x and setting it equal to zero, we can find the critical point. Differentiating A = x(60 - 2x) with respect to x yields dA/dx = 60 - 4x.

Setting dA/dx = 0, we have 60 - 4x = 0. Solving for x gives x = 15.

So, the length of the rectangle should be 15 cm, and the width will be (60 - 2(15)) = 30 cm.

Therefore, the dimensions of the rectangle that would maximize the enclosed area are 15 cm by 30 cm.

To learn more about Critical point - brainly.com/question/31017064

#SPJ11

The birth rate of a population is b(t) = 2000e^.023t people per
year and the death rate is d(t) = 1450e^.017t people per year, find
the area between these two curves for 0

Answers

To find the area between the birth rate and death rate curves over a certain time interval, we can calculate the definite integral of the difference between the two functions within that interval. In this case, the birth rate function is b(t) = 2000e^0.023t people per year, and the death rate function is d(t) = 1450e^0.017t people per year.

The area between the curves for the time interval [0, t] can be found by evaluating the definite integral of [b(t) - d(t)] with respect to t from 0 to t. This will give us the net population growth (births minus deaths) over that time interval.

By substituting the given values of the birth rate and death rate functions into the integral and evaluating it within the given time interval, we can find the area between the two curves, which represents the net population growth over that period.

To learn more about definite integral : brainly.com/question/30760284

#SPJ11

Please help me with my assignment, I badly need to learn how to
get this. thank you so much.
Solve each of the following problems completely. Draw figures for each question. 1. Find the area bounded by y=r?+2 and y=x+2. (10 pts.) 2. Find the volume of solid generated by revolving the area bou

Answers

The area bounded by [tex]y = x^2 + 2[/tex] and y = x + 2 is 5/3 square units. The volume of the solid generated by revolving the area about x = 0 is [tex]4\pi (y^2 + 2)^2[/tex] cubic units, about y = 2 is (8/3)π cubic units, and about x = 6 is (-20/3)π cubic units.

1. Find the area bounded by [tex]y = x^2 + 2[/tex] and y = x + 2.

To find the area bounded by these two curves, we need to find the intersection points first. Setting the two equations equal to each other, we get:

[tex]x^2 + 2 = x + 2\\x^2 - x = 0\\x(x - 1) = 0[/tex]

So, x = 0 or x = 1.

[tex]Area = \int [0, 1] [(x + 2) - (x^2 + 2)] dx\\Area = \int [0, 1] (2 - x^2) dx\\Area = [2x - (x^3 / 3)]\\Area = [(2(1) - (1^3 / 3)] - [(2(0) - (0^3 / 3)]\\Area = (2 - 1/3) - (0 - 0)\\Area = 5/3 square units[/tex]

Therefore, the area bounded by the two curves is 5/3 square units.

2. Find the volume of the solid generated by revolving the area bounded by [tex]x = y^2 + 2[/tex], x = 0, and y = 2.

a) Revolving about x = 0:

To find the volume, we can use the method of cylindrical shells. The volume can be calculated as follows:

[tex]Volume = 2\pi \int[0, 2] y(x) (x) dy[/tex]

[tex]Volume = 2\pi \int[0, 2] (x)(x) dy\\\\Volume = 2\pi \int[0, 2] x^2 dy\\Volume = 2\pi [(x^2)y]\\Volume = 2\pi [(x^2)(2) - (x^2)(0)]\\Volume = 4\pix^2 cubic units\\Volume = 4\pi(y^2 + 2)^2\ cubic\ units[/tex]

b) Revolving about y = 2:

To find the volume, we can again use the method of cylindrical shells. The volume can be calculated as follows:

[tex]Volume = 2\pi \int[0, 2] x(y) (y - 2) dx[/tex]

[tex]Volume = 2\pi \int[0, 2] (y^2)(y - 2) dx\\Volume = 2\pi \int[0, 2] y^3 - 2y^2 dy\\Volume = 2\pi [(y^4 / 4) - (2y^3 / 3)]\\Volume = 2\pi [((2^4 / 4) - (2^3 / 3)) - ((0^4 / 4) - (2(0^3) / 3))]\\Volume = 2\pi [(16 / 4) - (8 / 3)]\\Volume = 2\pi (4 - 8/3)\\Volume = 2\pi (12/3 - 8/3)\\Volume = 2\pi (4/3)\\Volume = (8/3)\pi\ cubic\ units[/tex]

c) Revolving about x = 6:

To find the volume, we can once again use the method of cylindrical shells. The volume can be calculated as follows:

[tex]Volume = 2\pi \int[0, 2] y(x) (x - 6) dy[/tex]

[tex]Volume = 2\pi \int[0, 2] (x - 6)(x) dy\\Volume = 2\pi \int[0, 2] x^2 - 6x dy\\Volume = 2\pi [(x^3 / 3) - 3(x^2 / 2)]\\Volume = 2\pi [((2^3 / 3) - 3(2^2 / 2)) - ((0^3 / 3) - 3(0^2 / 2))]\\Volume = 2\pi [(8 / 3) - 6]\\Volume = 2\pi [(8 / 3) - (18 / 3)]\\Volume = 2\pi (-10 / 3)\\Volume = (-20/3)\pi\ cubic\ units[/tex]

Therefore, the volume of the solid generated by revolving the given area about x = 0 is [tex]4\pi(y^2 + 2)^2[/tex] cubic units, the volume of the solid generated by revolving the given area about y = 2 is (8/3)π cubic units, and the volume of the solid generated by revolving the given area about x = 6 is (-20/3)π cubic units.

To know more about area, refer here:

https://brainly.com/question/1631786

#SPJ4

A dietician wishes to mix two types of foods in such a way that the vitamin content of the mixture contains at least "m" units of vitamin A and "n" units of vitamin C. Food "I" contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C. Food "II" contains 1 unit per kg of vitamin A and 2 units per kg of vitamin C. It costs $50 per kg to purchase food "I" and $70 per kg to purchase food "II". Formulate this as a linear programming problem and find the minimum cost of such a mixture if it is known that the solution occurs at a corner point (x = 8, y = 48).

Answers

The minimum cost of the mixture, satisfying the given vitamin constraints, is $3920.

to formulate the given problem as a linear programming problem, let's define our decision variables and constraints:

decision variables:let x represent the amount (in kg) of food "i" to be mixed, and y represent the amount (in kg) of food "ii" to be mixed.

objective function:

the objective is to minimize the cost of the mixture. the cost is given by $50 per kg for food "i" and $70 per kg for food "ii." thus, the objective function is:minimize z = 50x + 70y

constraints:

1. vitamin a constraint: the vitamin a content of the mixture should be at least "m" units.2x + y ≥ m

2. vitamin c constraint: the vitamin c content of the mixture should be at least "n" units.

x + 2y ≥ n

3. non-negativity constraint: the amount of food cannot be negative.x, y ≥ 0

given that the solution occurs at a corner point (x = 8, y = 48), we can substitute these values into the objective function to find the minimum cost:

z = 50(8) + 70(48) = $560 + $3360 = $3920

Learn more about variables here:

https://brainly.com/question/31866372

#SPJ11

What is the slope of the tangent line to the graph of y = e* -e* at the point (0, 0) ?

Answers

The slope of the tangent line to the graph of y = e^x - e^(-x) at the point (0, 0) is 2.

To find the slope of the tangent line to the graph of the function y = e^x - e^(-x) at the point (0, 0), we need to take the derivative of the function and evaluate it at x = 0.

Given the function y = e^x - e^(-x), we can differentiate it using the rules of differentiation. The derivative of e^x is simply e^x, and the derivative of e^(-x) is -e^(-x).

Taking the derivative of y with respect to x, we get:

dy/dx = d/dx (e^x - e^(-x))

= e^x - (-e^(-x))

= e^x + e^(-x)

Now, we evaluate the derivative at x = 0:

dy/dx|_(x=0) = e^0 + e^(-0)

= 1 + 1

= 2

Learn more about tangent line  here:

https://brainly.com/question/14405926

#SPJ11

Find f'(x) and find the value(s) of x where f'(x) = 0. х f(x) = 2 x + 16 f'(x) = Find the value(s) of x where f'(x) = 0. x= (Simplify your answer. Use a comma to separate answers as needed.)

Answers

The derivative of the given function f(x) = 2x + 16 is f'(x) = 2.

To find the value(s) of x where f'(x) = 0, we set f'(x) equal to zero and solve for x:

2 = 0

Since the equation 2 = 0 has no solution, there are no values of x where f'(x) = 0 for the given function f(x) = 2x + 16.

The derivative f'(x) represents the rate of change of the function f(x). In this case, the derivative is a constant value of 2, indicating that the function f(x) = 2x + 16 has a constant slope of 2. Therefore, there are no critical points or turning points where the derivative equals zero.

In conclusion, there are no values of x where f'(x) = 0 for the function f(x) = 2x + 16. The derivative f'(x) is a constant value of 2, indicating a constant slope throughout the function.

To learn more about Derivatives, visit:

https://brainly.com/question/25324584

#SPJ11

Given that your cos wave has a period of 3/4, what is the value
of b?

Answers

The value of b in the cosine wave equation is 8π/3.The value of b, which represents the coefficient of the variable x in the cosine wave equation,

can be determined by analyzing the period of the cosine wave. In this case, the given cosine wave has a period of 3/4.

The general form of a cosine wave equation is cos(bx), where b determines the frequency and period of the wave.  The period of a cosine wave is given by the formula 2π/b. Therefore, in this case, we have 2π/b = 3/4.

To find the value of b, we can rearrange the equation as b = (2π)/(3/4). Simplifying this expression, we can multiply the numerator and denominator by 4/3 to obtain b = (2π)(4/3) = 8π/3.

Hence, the value of b in the cosine wave equation is 8π/3.

To know more about coefficient click here

brainly.com/question/30524977

#SPJ11

1: I've wondered whether musical taste changes as you
get older: my parents, for example, after years of listening to
relatively cool music when I was a kid, hit their mid forties and
developed a worrying obsession with country and western. This possibility worries me immensely, because if the future is listening to Garth Brooks and thinking oh boy, did I
underestimate Garth's immense talent when I was in my twenties', then it is bleak indeed. To test the ideal took two
groups (age): young people (which I arbitrarily, decided was under 40 years of age) and older people (above 40 years of
age). I split each of these groups of 45 into three smaller
groups of 15 and assigned them to listen to Fugazi, ABBA or
Barf Grooks® (music), Each person rated the music (liking) on
a scale ranging from +100 (this is sick) through O (indifference)
to -100 (I'm going to be sick). Fit a model to test my idea
(Fugazi sav), Run a two way anova to analyze the effects
of age and type of music on musical taste, Make sure to include a graph.

Answers

To test the hypothesis that musical taste changes as people age, a study was conducted involving two age groups: young people (under 40 years old) and older people (above 40 years old). Each group was further divided into three smaller groups of 15 individuals, and each group listened to different types of music (Fugazi, ABBA, or Garth Brooks). Participants rated their liking for the music on a scale ranging from +100 to -100. The goal is to fit a model and run a two-way ANOVA to analyze the effects of age and type of music on musical taste, with the inclusion of a graph.

To test the hypothesis, a statistical analysis using a two-way ANOVA can be performed. The factors in this analysis are age (young vs. old) and type of music (Fugazi, ABBA, and Garth Brooks). The dependent variable is the liking rating given by participants. The ANOVA will help determine if there are significant differences in musical taste based on age and type of music, as well as any interactions between these factors.

Additionally, a graph can be created to visually represent the data. The graph could include separate bars or box plots for each combination of age group and type of music, showing the average liking ratings and their variability.

This visualization can provide a clear comparison of musical taste across different age groups and music genres. The results of the ANOVA and the graph can together provide insights into the relationship between age, type of music, and musical preferences, helping to test the hypothesis regarding changes in musical taste with age.

Learn more about hypothesis here:

https://brainly.com/question/29576929

#SPJ11

Suppose u = (−4, 1, 1) and ở = (5, 4, −2). Then (Use notation for your vector entry in this question.): 1. The projection of u along u is 2. The projection of u orthogonal

Answers

The orthogonal projection of vector u along itself is u.

The orthogonal projection of vector u  to itself is the zero vector.

When finding the projection of a vector onto itself, the result is the vector itself. In this case, the vector u is projected onto the direction of u, which means we are finding the component of u that lies in the same direction as itself. Since u is already aligned with itself, the entire vector u becomes its own projection. Therefore, the projection of u along u is simply u.

When a vector is projected onto a direction orthogonal (perpendicular) to itself, the resulting projection is always the zero vector. In this case, we are finding the component of u that lies in a direction perpendicular to u. Since u and its orthogonal direction have no common component, the projection of u orthogonal to u is zero. This means that there is no part of u that aligns with the orthogonal direction, resulting in a projection of zero.

Learn more about Orthogonal projection click here :brainly.com/question/29740341

#SPJ11

Generally, these equations represent a relationship that some unknown function y has with its derivatives, and we typically are interested in solving for what y is. We will not be doing that here, as that's well beyond this course. Instead, we are going to verify that y=ae* + be 32, where a, b ER is a solution to the differential equation above. Here's how to proceed: a. Let y=ae* + besz. Find y' and y'. remembering that a, b are unknown constants, not variables. b. Show that y, y, and y' satisfy the equation at the top. Then, answer the following: are there any values of a, b that would make y=ae" + best not a solution to the equation? Explain.

Answers

To verify that y = ae^x + be^3x is a solution to the given differential equation, we need to substitute this function into the equation and show that it satisfies the equation.

[tex]a. Let y = ae^x + be^(3x). We will find y' and y''.y' = a(e^x) + 3b(e^(3x)) (by using the power rule for differentiation)y'' = a(e^x) + 9b(e^(3x)) (differentiating y' using the power rule again)b. Now let's substitute y, y', and y'' into the differential equation:y'' - 6y' + 9y = (a(e^x) + 9b(e^(3x))) - 6(a(e^x) + 3b(e^(3x))) + 9(a(e^x) + be^(3x))= a(e^x) + 9b(e^(3x)) - 6a(e^x) - 18b(e^(3x)) + 9a(e^x) + 9be^(3x)= a(e^x - 6e^x + 9e^x) + b(9e^(3x) - 18e^(3x) + 9e^(3x))= a(e^x) + b(e^(3x))[/tex]

Since a and b are arbitrary constants, we can see that the expression a(e^x) + b(e^(3x)) simplifies to y. Therefore, y = ae^x + be^(3x) is indeed a solution to the given differential equation.

To answer the additional question, we need to consider if there are any values of a and b that would make y = ae^x + be^(3x) not a solution to the equation. Since a and b are arbitrary constants, we can choose any values for them that we desire. As long as we substitute those values into the differential equation and the equation holds true, the solution is valid. Therefore, there are no specific values of a and b that would make y = ae^x + be^(3x) not a solution to the equation.

To learn more about  satisfies click on the link below:

brainly.com/question/31431088

#SPJ11

Find the largest number δ such that if |x − 1| < δ, then |2x − 2| < ε, where ε = 1.
δ ≤
Repeat and determine δ with ε = 0.1.
δ ≤

Answers

If ε = 1, the maximum value of δ that satisfies the condition |x - 1|. satisfied <; δ means |2x - 2| <; ε is δ ≤ 0.5. For ε = 0.1, the maximum value of δ that satisfies the condition is δ ≤ 0.05 for largest number.

We need to find the maximum value of δ such that |x - 1|. Applies <; δ, then |2x - 2| <; e.

If [tex]ε = 1[/tex]:

We begin by analyzing the inequality |2x - 2|. <; 1. Simplify this inequality to -1 <. 2x - 2 <; 1. Add 2 to all parts of the inequality and you get 1 <. 2x < 3. Dividing by 2 gives 0.5 < × < 1.5. Since the difference between the upper and lower bounds is 1, the maximum value of δ is 0.5.

If [tex]ε = 0.1[/tex]:

Apply the same procedure to the inequality |2x - 2|. Simplifying to < by 0.1 gives -0.1 <. 2x - 2 <; Add 2 to every part of 0.1 and you get 1.9 <. 2x < 2.1. Divide by 2 to get 0.95 <. × < 1.05. The difference between the upper and lower bounds is 0.1, so the maximum value of δ is 0.05.

Therefore, [tex]ε = 1 δ ≤ 0.5 and ε = 0.1 δ ≤ 0.05[/tex]. 


Learn more about largest number here:

https://brainly.com/question/19229604


#SPJ11

15. If f(u, v) = 5uv?, find f(3, 1), f(3,1), and f,(3, 1).

Answers

The values of function  f(3, 1) = 15 , f(3, 1) = 15,f(3, 1) = 15

The given function is defined as f(u, v) = 5uv. To evaluate specific values, we can substitute the provided values of u and v into the function.

Evaluating f(3, 1):

Substitute u = 3 and v = 1 into the function:

f(3, 1) = 5 * 3 * 1 = 15

Evaluating f(3, 1):

As mentioned, f(3, 1) is the same as the previous evaluation:

f(3, 1) = 15

Calculating f,(3, 1):

It appears there might be a typo in your question. If you intended to write f'(3, 1) to denote the partial derivative of f with respect to u, we can find it as follows:

Taking the partial derivative of f(u, v) = 5uv with respect to u, we treat v as a constant:

∂f/∂u = 5v

Substituting v = 1:

∂f/∂u = 5 * 1 = 5

Therefore, we have:

f(3, 1) = 15

f(3, 1) = 15

f,(3, 1) = 5

To know more about partial derivatives refer to this link-

https://brainly.com/question/32387059#

#SPJ11

Find the median and mean of the data set below: 24,44 ,10, 22

Answers

Answer:

The mean of the set is 25.

The median of the set is 23.

Step-by-step explanation:

Mean: When solving for the mean of a data set, you will add all numbers in the set, and divide by the amount of numbers in the given set.

It is given that the set is 24 , 44 , 10 , 22. Solve for the mean:

[tex]\frac{(24 + 44 + 10 + 22)}{4}\\= \frac{100}{4}\\ = 25[/tex]

The mean of the set is 25.

Median: When solving for the median of a data set, you will have to order the terms from least to greatest, and the middle term will be your median. If however, as in this question's case, your data set has a even amount of terms, you will find the mean of the two middle terms:

First, order the terms:

10 , 22 , 24 , 44

Next, solve for the mean of the two middle terms:

[tex]\frac{(22 + 24)}{2} \\= \frac{(46)}{2} \\= 23[/tex]

The median of the set is 23.

~

Learn more about solving for the median and mean of a given set, here:

https://brainly.com/question/1363341

Other Questions
your cousin jeremy has asked you to bankroll his proposed business painting houses in the summer. he plans to operate the business for 5 years to pay his way through college. he needs $5000 to purchase an old pickup, some ladders, a paint sprayer, and some other equipment. he is promising to pay you $1500 at the end of each summer (for 5 years) in return. calculate your annual rate of return. plus At the beginning of a population study, a city had 220,000 people. Each year since, the population has grown by 5.8% Let / be the number of years since start of the study. Let y be the city's population. Write an exponential function showing the relationship between y and f. 005647 P()-220,000 808 x G eosinophil numbers typically increase during allergic reactions The owners of Rollerblades Plus determine that the monthly. S, of its skates vary directly as its advertising budget, A, and inversely as the price of the skates, P. When $ 60,000 is spent on advertising and the price of the skates is $40, the monthly sales are 12,000 pairs of rollerbladesDetermine monthly sales if the amount of the advertising budget is increased to $70,000.(a) Assign a variable to represent each quantities.(b) Write the equation that represent the variation.(c) Find the constant of variation.(d) Answer the problems equation. When we use the Ration Tout on the series 37 (+1) we find that the timetim and hence the wa (-3)1+Zn (n+1) n2 31+n V n=2 lim n-00 an+1 an is the reaction more or less spontaneous under these conditions than under standard conditions? how to rank ionic compounds in order of increasing attraction between ions 2. 4 Discuss critically what the citizens' responsibility is to ensure that their environments promote a safe and healthy life [9] To be eligible for Medicare, a person must meet one of three criteria. Which of the following is not one of those criteria?a) Be over 65 years oldb) Have a disabilityc) Be a United States citizend) Have a certain income level Use Stokes' Theorem to evaluate the line integral . xzdx + rydy + , where C is the boundary of the portion of the plane 2x + y + z = 2 in the first Octant, traversed counterclockwise as viewed f why is this afn different from the one when the company pays dividends? i. under this scenario the company would have a higher level of retained earnings which would reduce the amount of additional funds needed. ii. under this scenario the company would have a higher level of retained earnings which would increase the amount of additional funds needed. iii. under this scenario the company would have a higher level of retained earnings but this would have no effect on the amount of additional funds needed. iv. under this scenario the company would have a lower level of retained earnings which would reduce the amount of additional funds needed. v. under this scenario the company would have a lower level of retained earnings but this would have no effect on the amount of additional funds needed. -select- Differentiate between hydrology of humid areas with that ofarid and semi arid areas. Help with this question pls? Which of the following activities can be accomplished using recursive algorithms?a.Going to the supermarket to buy groceriesb.Harvesting cropsc.Making lemonaded.Writing a letter to a friend Within the employee earnings record, most columns on the left side relate to employee earnings, while most columns on the right side relate to _____.Answer:A. allowancesB. deductionsC. regular hours workedD. overtime hours worked what is the main mechanism used by cisco dna center to collect data from a wireless controller? Find the area bounded by the function f(x) = 0.273 -0.82? + 17, the z-axis, and the lines = 2 and 2 = 8. Round to 2 decimal places, if necessary TIP Enter your answer as an integer or decimal number. Examples: 3, 4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity Get Help: Video eBook Points possible: 1 This is attempt 1 of 3. Lk How does Josh describe his accidental hair loss a student was instructed to carry out an experiment that illustrates the law of conservation of mass. the teacher indicated that the experiment should be carried out three times. the student plans to report the average of the three results. what can the student do to maximize the reliability of the data collected? Consider the integral 1 11 [ [ f(x, y) dyda. f(x, y) dydx. Sketch the 11x region of integration and change the order of integration. ob 92 (y) f(x, y) dxdy a a = b = 91 (y) 92 (y) 91 (y) = = Steam Workshop Downloader