To translate the sentence as an inequality, we have:
[tex]x\leq-7,x>12[/tex]Since the number is less or equal ( < = ) we use this symbol to represent it as inequality, and greater than using the symbol ( > ).
Then, we can answer the question as:
x < = -7 or x > 12.
Which inference about the man is best supported by the events in the text?
A normal distribution has a mean of 101 and a standard Deviation of 12. find the probability that a value selected at random is in the following interval.at most 13
Answer:
84.134%
Explanation:
First, determine the value of the z-score.
[tex]\begin{gathered} Z=\frac{X-\mu}{\sigma} \\ =\frac{113-101}{12} \\ =\frac{12}{12} \\ z-score=1 \end{gathered}[/tex]Next, we determine the probability that a value selected at random is at most 113:
[tex]\begin{gathered} P(X\le113)=P(x\le1)_{} \\ =0.84134 \\ =84.134\% \end{gathered}[/tex]Thus, the probability that a value selected at random is in the given interval is 84.134%.
If f(x)=2x+1, what is f(2)?
f(2) means that we must substitute the value 2 in the place of x, that is
[tex]f(2)=2\cdot2+1[/tex]which gives f(2)=5.
Tran is in charge of the school's Awards Dinner. She set up the multi-purpose room with a stage in front and round tables for parents, students, and family members to sit around for dinner. Below is the floorplan that she drew for the eventStageHow many people can be seated as the tables are arranged right now? (In the box below, type your answer as a number only
Tran has made a plan with 12 tables for 8 people each of them. Then, we have 12 tables * 8 ( amount of chairs each of them) = 96. So 96 people can be seated.
Is the following sequence arithmetic, geometric, or neither?1, 5, 25, 125, 625
This is a geometric sequence
This is because we can find the common ratio and not common difference
Crystal's favorite playlist has 80 rock songs, 40 jazz songs, 25 country songs, 30 hip hop songs, and 45 classical music songs. Which of thesestatements is true?
This problem tests the knowledge of the probability of a random event occuring: of playing a type of song from a variety of different song types
Thus, we have to compute the probability that each type of song is played.
To do this, we need to obtain the total number songs, as follows:
80 + 40 + 25 + 30 + 45 = 220
Thus, the probabilities are now easily computed as follows:
P(rock) = 80/220
P(jazz) = 40/220
P(country) = 25/220
P(hip hop) = 30/220
P(classical) = 45/220
Now:
Option 1 (the first statement in the options) claims that : P(rock) = 2 * P(hip hop)
However, 2 * P(hip hop)
The perimeter of a rectangular poster is 14 feet and the length is 4 feet. Describe how to use the perimeter formula to find the width.This calculator has a tray why the answer is not 3.2
Explanation
We are told that the perimeter of a rectangular poster is 14 feet and the length is 4 feet.
Perimeter simply means the total sum of all the sides of the rectangle
[tex]\begin{gathered} From\text{ the above} \\ let\text{ the length = y} \\ width\text{ =x} \end{gathered}[/tex]So, the perimeter is
[tex]x+x+y+y=2x+2y[/tex]Since the perimeter is 14 then
[tex]2x+2y=14[/tex]Also, the length is 4 feet
Therefore y = 4, so that
[tex]\begin{gathered} 2x+2(4)=14 \\ 2x+8=14 \\ collecting\text{ like terms} \\ 2x=14-8 \\ 2x=6 \end{gathered}[/tex]Making x the subject of the formula
[tex]\begin{gathered} x=\frac{6}{2}=3 \\ \\ x=3 \end{gathered}[/tex]Therefore, the width of the rectangle is 3 feet
The rectangle is
[tex]4+3+4+3=14[/tex]
complete the square to writey= x2 + 4x +9 in graphing form.
In order to express y = x² + 4x +9 in graphing form and graphing it we can follow these steps:
1. complete squares to express the equation in the form y = (x - p)² + q
We have to add and subtract (b/2)² on the right, where b is the coefficient of the second term of the equation
y = x² + 4x +9 + (4/2)² - (4/2)²
y = x² + 4x +9 + (2)² - (2)²
We can gorup and factor some terms of the equation by applying the following formula:
(x + a)² = x² + 2ax + a²
then by writing 4x as 2×2x we get:
y = x² + 2×2x + (2)² - (2)² +9
y = (x + 2)² - (2)² + 9
y = (x + 2)² - 4 + 9
y = (x + 2)² + 5
For an equation of the form y = (x - p)² + q, the vertex is (q, p), then, the vertex of the parabola is (-2, 5)
2. Determine the x-intercepts by replacing 0 for y and solving for x, like this:
0 = (x + 2)² + 5
0 - 5 = (x + 2)² + 5 - 5
-5 = (x + 2)²
±√-5 = √(x + 2)²
±√-5 = x + 2
x = -2 ± √-5
As you can see, on the right side the argument of the square root is a negative number, which makes the solution of this equation a complex number, then which means that the parabola won't intercept the x-axis.
3. Find the y-intercept by replacing 0 for x:
y = (0 + 2)² + 5
y = (2)² + 5
y = 4 + 5
y = 9
Then, the y-intercept of this parabola is (0, 9)
By graphing the vertex (-2, 5) and the y-intercept (0, 9) and joining them with the parabola we get the following graph:
In a nearby park, a field has been marked off for the neighborhood Pop Warner football team. If the field has a perimeter of 310 yd and an area of 4950 yd', what are the dimensions of the field?
Answer:
The dimension of the field is ( 110 x 45)
Exolanations:
Perimeter of the field, P = 310 yd
Area of the field, A = 4950 yd²
Note that the shape of a field is rectangular:
Perimeter of a rectangle, P = 2(L + B)
Area of a rectangle, A = L x B
Substituting the values of the perimeter, P, and the Area, A into the formulae above:
310 = 2(L + B)
310 / 2 = L + B
155 = L + B
L + B = 155...............................................(1)
4950 = L x B...............(2)
From equation (1), make L the subject of the formula:
L = 155 - B...................(3)
Substitute equation (3) into equation (2)
4950 = (155 - B) B
4950 = 155B - B²
B² - 155B + 4950 = 0
Solving the quadratic equation above:
B² - 110B - 45B + 4950 = 0
B (B - 110) - 45(B - 110) = 0
(B - 110) ( B - 45) = 0
B - 110 = 0
B = 110
B - 45 = 0
B = 45
Substitute the value of B into equation (3)
L = 155 - B
L = 155 - 45
L = 110
The dimension of the field is ( 110 x 45)
A basketball player shooting from the foul line has a 40% chance of getting a basket. He takes five shots. Whether he scores on one shot is independent of what he does on another shot. What is the probability that he misses at most one basket (rounded off to three decimals)?
The probability that the basketball player misses at most one basket is 0.077 as it is a mutually exclusive event.
what are mutually exclusive events in probability?Two events are said to be mutually exclusive if they cannot occur at the same time or simultaneously. This implies they are disjoint events and the probability of both events occurring at the same time will be zero.
Let us represent the probability of the player getting a basket to be p(y) and that of not getting a basket to be p(x)
then p(y)=40%=40/100=2/5
p(x)=1-(2/5)=3/5
The probability the player misses at most one basket implies his highest miss is one out of the five shots he took
So, the probability that he missed the:
1st shot= (3/5)×(2/5)×(2/5)×(2/5)×(2/5)=48/3125
2nd shot= (2/5)×(3/5)×(2/5)×(2/5)×(2/5)=48/3125
3rd shot= (2/5)×(2/5)×(3/5)×(2/5)×(2/5)=48/3125
4th shot= (2/5)×(2/5)×(2/5)×(3/5)×(2/5)=48/3125
5th shot= (2/5)×(2/5)×(2/5)×(2/5)×(3/5)=48/3125
The probability that he misses at most one basket= (48/3125)+(48/3125)+(48/3125)+(48/3125)+(48/3125)+(48/3125)= 249/3125=0.0768.
Finally, from the workings the probability that the player misses at most one basket is 0.077 rounded up to three decimals
Learn more about mutually exclusive events here: https://brainly.com/question/12961938
#SPJ1
StatusExam9 ft.15 ft.The volume ofthe figure iscubic feet.15 ft.15 ft.
Step 1:
The figure is a composite figure with a square base pyramid and a cube.
Step 1:
The volume of the composite shape is the sum of the volume of a square base pyramid and a cube.
[tex]\text{Volume = L}^3\text{ + }\frac{1}{2}\text{ base area }\times\text{ height}[/tex]Step 3:
Given data
Cube
Length of its sides L = 15 ft
Square base pyramid
Height h = 9 ft
Length of the square base = 15 ft
Step 4:
Substitute in the formula.
[tex]\begin{gathered} \text{Volume = 15}^3\text{ + }\frac{1}{3}\text{ }\times15^2\text{ }\times\text{ 9} \\ \text{= 3375 + 675} \\ =4050ft^3 \end{gathered}[/tex]The graph below shows the number of snowballs, y, needed to make x snowmen.
Number of Snowballs
15
10
S
(1,3)
(3,9)
(4, 12)
+
2
Number of Snowmen
3 4 5
How many snowballs are needed to make 2 snowmen?
The number of snowballs that are needed to make 2 snowmen is equal to 6.
How to write a proportional equation?Mathematically, a proportional relationship can be represented by the following equation:
y = kx
Where:
k is the constant of proportionality.y and x represent the variables in a proportional relationship.Next, we would determine the constant of proportionality (k) for the data points on this graph as follows:
k = y/x
k = 3/1 = 9/3 = 12/4 = 3
When the number of snowmen, x = 2, the number of snowballs, y is given by:
y = kx
y = 3 × 2
y = 6.
Therefore, the ordered pair is equal to (2, 6).
Read more on proportion here: brainly.com/question/20167968
#SPJ1
What is the standard form of the equation of a line passing through points (2,3) and (2,-5)?
Answer:
[tex]x\text{ = 2}[/tex]Explanation:
Here, we want to find the standard form of the equation
We have the standard form as:
[tex]Ax\text{ + By = C}[/tex]We can arrive at this using the two-points form:
This is:
[tex]\frac{y_2-y_1}{x_2-x_1}\text{ = }\frac{y-y_1}{x-x_1}[/tex](x1,y1) = (2,3)
(x2,y2) = (2,-5)
Now, as we can see, the line is a vertical line since the x-value is the same
Thus, we have it that:
[tex]x\text{ = c}[/tex]where c will represent the x-intercept
Thus, we have the equation of the line as:
[tex]x\text{ = 2}[/tex]Gourmet Eatery has a policy of automatically adding a 18% tip to every restaurant Bill if a restaurant bill is $12 how much is it
Let:
B = Bill
C = Cost of the meal
T = Tip
[tex]undefined[/tex]What is the slope and y-intercept?
y=3x-2
Options:
Blank # 1
Blank # 2
The value of slope is 3 and the value of y - intercept is -2.
Slope and y intercept:
The slope refers the rate of change in y per unit change in x.
The y-intercept states the y-value when the x-value is 0.
Given,
Here we have the equation
y = 3x - 2
Now, we need to find the slope and y intercept of the equation.
We know that, the standard form of the equation of the line is,
y = mx + b
Where
m represents the slope
b represents the y-intercept.
So, we have to rewrite the given equation as,
y = 3x + (-2)
So, while comparing the given equation with standard form, then we get,
the value of the slope is 3 and the value of the y intercept is -2.
To know more about Slope and Y-intercept here.
https://brainly.com/question/18636914
#SPJ1
A small town has two local high schools. High School A currently has 900 studentsand is projected to grow by 50 students each year. High School B currently has 500students and is projected to grow by 100 students each year. Let A represent thenumber of students in High School A in t years, and let B represent the number ofstudents in High School B after t years. Graph each function and determine whichhigh school is projected to have more students in 4 years.
High School A currently has 900 students and is projected to grow by 50 students each year.
We can write an equation using the above information
[tex]A=900+50t[/tex]Where A represents the number of students in High School A in t years.
High School B currently has 500 students and is projected to grow by 100 students each year.
We can write an equation using the above information
[tex]B=500+100t[/tex]Where B represents the number of students in High School B in t years.
Let us graph these two equations
Determine which high school is projected to have more students in 4 years.
Let us substitute t = 4 into both equations
[tex]\begin{gathered} A=900+50t \\ A=900+50(4) \\ A=900+200 \\ A=1100 \end{gathered}[/tex]High school A is projected to have 1100 students in 4 years.
[tex]\begin{gathered} B=500+100t \\ B=500+100(4) \\ B=500+400 \\ B=900 \end{gathered}[/tex]High school B is projected to have 900 students in 4 years.
Therefore, high school A is projected to have more students (1100) as compared to high school B (900) in 4 years.
Help math help math
What is this answer?
Answer:
24/25
Step-by-step explanation:
We are dividing 3/10 by 5/16
The area of the unshaded region is 22.5cm2 . What is the area of the rectangle?A) 11.25cm2B) 22.5cm2C) 45cm2D) 90cm2
Let's use the variable b to represent the white triangle base (which is the width of the rectangle), and the variable h to represent the white triangle height (which is the length of the rectangle).
The white triangle area is given by:
[tex]A=\frac{b\cdot h}{2}=22.5\text{ cm}^2[/tex]The area of the rectangle is given by the product of its length and its width, so we have:
[tex]A_2=b\cdot h=2\cdot(\frac{b\cdot h}{2})=2\cdot A=2\cdot22.5=45\text{ cm}^2[/tex]Therefore the correct option is C.
Solve the equation by working backward through the number trick.
x = 3
Explanations:The given equation is:
[tex]\frac{4(x+3)-6}{2}=\text{ 9}[/tex]Step 1: Cross multiply
4 ( x + 3) - 6 = 9(2)
Step 2: Remove the brackets by expanding the equation
4x + 12 - 6 = 18
4x + 6 = 18
Step 3: Collect like terms
4x = 18 - 6
4x = 12
Step 4: Divide both sides by 4
4x / 4 = 12 / 4
x = 3
subtract (7u^2+10u+6) from (3u^2_5u+4).
Given:
[tex]\mleft(3u^2-5u+4\mright)-(7u^2+10u+6)[/tex]The objective is to subtract both the terms.
[tex]\begin{gathered} \mleft(3u^2-5u+4\mright)-(7u^2+10u+6) \\ 3u^2-5u+4-7u^2-10u-6 \\ -4u^2-15u-2 \end{gathered}[/tex]Hence the subtraction of the given term is,
[tex]-4u^2-15u-2[/tex]Sobczak,€8(.8((8.8(.;77;.;&
just text
okiji
A pizza restaurant is offering a special price on pizzas with 2 toppings. They offer the toppings
below:
Pepperoni
Sausage
Chicken Green pepper
Mushroom Pineapple
Ham
Onion
Suppose that Rosa's favorite is sausage and onion, but her mom can't remember that, and she is
going to randomly choose 2 different toppings.
What is the probability that Rosa's mom chooses sausage and onion?
Choose 1 answer:
The Probability that Rosa's mom chooses sausage and onion is [tex]\frac{1}{^{8} C_{2} }[/tex]
What is Probability?Probability is the likelihood of an event occurring, measured by the ratio of the favorable cases to the whole number of cases possible.
The probability of an event happening = number of possible outcomes/total number of outcomes.
The number of possible outcomes is 8 exactly 1 of the total possible groups of toppings is sausage and onion.
The total number of outcome is 8 ways, because she has to choose the 2 toppings from possible 8 toppings
So the probability that Rosa's mom will chooses sausage and onion is [tex]\frac{1}{^{8} C_{2} }[/tex]
Learn more about Probability on:https://brainly.com/question/13604758
#SPJ1
How would the fraction71-√√√5using difference of squares?OA. 7-7√56OB. 7+7√56O c. 7+7√5OD. -7+7√5← PREVIOUSbe rewritten if its denominator is rationalizedSUBMIT
1) Examining that ratio, we can perform the following:
[tex]\begin{gathered} \frac{7}{1-\sqrt{5}} \\ \\ \frac{7\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)} \\ \\ \frac{7+7\sqrt{5}}{1^2-(\sqrt{5})^2} \\ \\ \frac{7(1+\sqrt{5})}{-4} \\ \\ -\frac{7(1+\sqrt{5})}{4} \end{gathered}[/tex]2) Note that when we multiply that ratio by their conjugates, that yields a difference between two squares. Note that on the top, there is the expanded version of this expression.
Thus, the answer is D
Peri earned $55 for 5 dog walks. If Peri earned $22, how many times did she walk her neighbor's dog?
Answer:
2
Step-by-step explanation:
55÷5=11
22÷11=2
Part of a manufacturing plant packages tissues in boxes. Each box contains 250 tissues. Part A: Write an algebraic expression that can be used to find the total number of tissues packaged one day. Describe what the variable stands for in your expression. Part B: In one hour, 87,500 tissues are packaged into boxes. How many boxes of tissues are packaged? Show your work. Answer: boxes
Given
A manufacturing plant packages tissues in boxes and each box contains 250 tissues.
Required
We need to find an algebraic expression that illustrates the number of tissues packed per day.
Explanation
Let x be the number of boxes manufactured in one day
Then total number of tissues manufactured on that day is 250x
This answers our first part.
Now in one hour 87500 tissues are manufactured
Let the number of boxes packed in one hour be y
Then
[tex]y=\frac{number\text{ }of\text{ }tissues\text{ }in\text{ }one\text{ }hour}{number\text{ }of\text{ }tissues\text{ }in\text{ }each\text{ }box}=\frac{87500}{250}=350\text{ boxes}[/tex]So the answer to second part is 350 boxes.
Jerry takes out a 30-year mortgage for $170,000.00 to buy a condo. His monthly mortgage payment is $939.00. How much interest will he pay over the life of the loan? Round your answer to the nearest whole dollar.
Okay, here we have this:
Considering the provided information we obtain the following:
Mortgage capital=$170,000
Total payment = Monthly payment * 12 months of the year * number of years
Total payment = $939*12*30
Total payment = $338,040
Total payment = Mortgage capital + Interest
Replacing we obtain:
Total payment = Mortgage capital + Interest
$338,040=$170,000+interest
Interest= $338,040-$170,000
Total Interest=$168,040
Finally we obtain that the total interest is $168040.
Ms wash investdd $22000 in two accounts, one yielding 8% interest and the other yielding 11%. if she recieved a total of $1910 in interest at the end of the year, how much did she invest in each accouny
Take into account the following formula for the simple interest:
[tex]I=P\cdot r\cdot t[/tex]where:
P: principal investment
r: interest rate
t: time
In order to determine the investments for both accounts, proceed as follow:
-Consider that both investments are represented by P1 and P2 respectively, then, you have:
[tex]\begin{gathered} P_1+P_2=22000 \\ P_2=22000-P_1 \end{gathered}[/tex]- Next, use the given values for parameters r and t for each investment:
8% = 0.08
11% = 0.11
t = 1 year
[tex]\begin{gathered} I_1=P_1\cdot0.08\cdot1=0.08P_1 \\ I_2=P_2\cdot0.11\cdot1=0.11P_2 \end{gathered}[/tex]- Next, consider that the sum of the total earnings is $1910, then:
[tex]I_1+I_2=1910[/tex]- Replace I1 and I2 by the expressions in terms of P1 and P2 and write down the resultant expression in terms of P1, as follow:
[tex]\begin{gathered} 0.08P_1+0.11P_2=1910 \\ 0.08P_1+0.11(22000-P_1)=1910 \\ 0.08P_1+2420-0.11P_1=1910 \\ -0.03P_1=-510 \\ P_1=\frac{510}{0.03}=17000 \end{gathered}[/tex]And for P2:
[tex]\begin{gathered} P_2=22000-P_1 \\ P_2=22000-17000=5000 \end{gathered}[/tex]Hence, the amount of money invested in each account was $5000 and $17000
Here is another riddle:•The sum of two numbers is less than 2.•If you subtract the second number from the first, the difference is greater than 1.What are the two numbers? Explain or show how you know.
Let the two numbers be A and B
Their sum is less than 2
Thus,
[tex]A+B<2[/tex]When the second number is subtracted from the first number, the difference is greater than 1.
Thus,
[tex]A-B>1[/tex]the sum of the reciprocal of two consecutive positive integers is 17/72. Write an equation that can be used to find the two integers. What are the integers?
Answer:
[tex]\frac{1}{x}+\frac{1}{x+1}=\frac{17}{72}[/tex]The two consecutive positive integers are 8 and 9.
Explanation:
Let the 1st positive integer be x and the 2nd be x + 1, so their reciprocal will be 1/x and 1/x+1.
The equation can then be written as;
[tex]\frac{1}{x}+\frac{1}{x+1}=\frac{17}{72}[/tex]To solve for x, the 1st step is to find the LCM of the left-hand side of the equation;
[tex]\begin{gathered} \frac{(x+1)+x}{x(x+1)}=\frac{17}{72} \\ \frac{2x+1}{x(x+1)}=\frac{17}{72} \end{gathered}[/tex]We can equate the numerators and solve for x as shown below;
[tex]\begin{gathered} 2x+1=17 \\ 2x=17-1 \\ x=\frac{16}{2} \\ x=8 \end{gathered}[/tex]If the 1st positive integer, x, is 8, therefore the 2nd integer, x + 1, will be;
[tex]x+1=8+1=9[/tex]From 1999 to 2009, the number of dogs [tex]D[/tex] and the number of cats [tex]C[/tex] (in hundreds) adopted from animal shelters in the United States are modeled by the equations [tex]D = 2n+3[/tex] and [tex]C = n +4[/tex], where [tex]n[/tex] is the number of years since 1999.
a. Write a function that models the total number [tex]T[/tex] of adopted dogs and cats in hundreds for that time period.
b. If this trend continues, how many dogs and cats will be adopted in 2013?
The functions that models the number of adopted dogs and cat is T = 3n + 7.
If the trend continues, the number of cats and dog that will be adopted by 2013 is 4600.
How to find the function that models a problem?From 1999 to 2009, the number of dogs D and the number of cats C (in hundreds) adopted from animal shelters in the United States are modelled by the equations D = 2n + 3 and C = n + 4, where n is the number of years since 1999.
Therefore, the functions that models the total number T of the adopted dogs and cats in hundreds for that time period can be represented as follows:
T = D + C
where
D = 2n + 3
C = n + 4
where
n = number of yearsT = 2n + 3 + n + 4
T = 3n + 7
b. If the trends continues the number of cats and dogs that will be adopted in 2013 can be calculated as follows:
n = 2013 - 1999 = 13Hence,
T = 3(13) + 7
T = 39 + 7
T = 46
Recall it's represented in hundred's
Therefore, 4600 dogs and cat will be adopted by 2013
learn more on function here: https://brainly.com/question/12029420
#SPJ1