Answer: Wrote the answers below
Explanation:
The balanced equation for Number 1 is:
Fe2O3(s) + 3H2(g) --> Fe(s) + 3H2O(l)
Step 1:
moles ratio of iron (III) oxide and hydrogen is 1:3
step 2:
work out mr (molar mass) of fe2o3: 111.68+ 48 = 159.68
moles of iron (III) oxide: 33.5g divided by 159.68 = 0.21 mol
Step 3:
1:3 ratio so 0.21 times 3 = 0.63 mol of hydrogen
Step 4:
mass of hydrogen = mol times mr
0.63 times 2 = 1.26g
mass of hydrogen = 1.26g or 1.27g depending on whether you used 1.00 or 1.01 for the mr of hydrogen
The oxoacid of the nitrate ion is called ___ while that of the nitrite ion is called ___
The oxoacid of the nitrate ion is called nitric acid, while that of the nitrite ion is called nitrous acid. Oxoacids are a class of compounds that contain at least one oxygen atom, a hydrogen atom, and a central atom.
In the case of nitrate and nitrite ions, the central atom is nitrogen.
Nitrate ion is a polyatomic ion with a chemical formula of NO3-. It is commonly found in fertilizers, explosives, and as a contaminant in water. Nitrate ions can form a variety of compounds with other elements, including oxoacids. The oxoacid of nitrate ion is called nitric acid, which has the chemical formula HNO3. Nitric acid is a strong acid that is commonly used in the production of fertilizers, explosives, and other chemicals.
Nitrite ion, on the other hand, has the chemical formula NO2-. It is commonly used as a food preservative, as well as in the production of nitric acid and other chemicals. The oxoacid of nitrite ion is called nitrous acid, which has the chemical formula HNO2. Nitrous acid is a weak acid that is used in the production of nitrite salts and other compounds.
In summary, the oxoacid of the nitrate ion is called nitric acid, while that of the nitrite ion is called nitrous acid. Both nitric and nitrous acids are important compounds in the chemical industry, with a wide range of applications in the production of fertilizers, explosives, and other chemicals.
To learn more about nitrite ions, refer:-
https://brainly.com/question/12101971
#SPJ11
from left to right, period 3 chlorides exhibit a gradation in bond type from to to . multiple choice question. nonpolar covalent; polar covalent; ionic ionic; polar covalent; nonpolar covalent ionic; nonpolar covalent; polar covalent nonpolar covalent; ionic; polar covalent
In period 3 chlorides exhibit a gradation in bond type from ionic to nonpolar covalent to polar covalent from left to right.
In period 3, the elements increase in electronegativity from left to right. This means that the bonds between them will also change from left to right.
Starting from the left, the first element is sodium, which will form an ionic bond with chlorine due to their large difference in electronegativity. The second element is magnesium, which will form a polar covalent bond with chlorine due to their moderate difference in electronegativity.
Finally, the third element is aluminum, which will form a nonpolar covalent bond with chlorine due to their small difference in electronegativity. In summary, period 3 chlorides exhibit a gradation in bond type from ionic to nonpolar covalent to polar covalent from left to right.
Know more about nonpolar covalent here
https://brainly.com/question/28955235#
#SPJ11
In an experiment 4.5kg of a fuel was completely burnt. The heat produced was measured to be 180000 KJ. Calculate the calorific value of the fuel
help
In an experiment 4.5kg of a fuel was completely burnt. The heat produced was measured to be 180000 KJ. 40,000KJ/g is the calorific value of the fuel.
The quantity of heat that a substance generates upon complete combustion is defined by its calorific value, which indicates the energetic component of the elements. It can be expressed as the high heating value or the gross calorie value (GCV). Additionally, the particular amount of energy of burning for a unit mass is what is known as a substance's calorific value.
Weight of fuel burnt = 4.5 kg
Heat produced by 4.5 kg of fuel = 180,000 kJ.
calorific value=180,000 / 4.5
=40,000KJ/g
To know more about calorific value, here:
https://brainly.com/question/19580135
#SPJ1
consider the following initial rate data (at 309 k) for the decomposition of a substrate (substrate 1) which decomposes to product 1 and product 2: [substrate 1] (m) initial rate (m/s) 0.5 0.595 1 0.595 2 0.595
Determine the half-life for the decomposition of substrate 1 when the initial concentration of the substrate is 2.31 M.
The determine the half-life for the decomposition of substrate 1, we first need to plot the initial rate data. From the given data, we can see that the initial rate is constant for different initial concentrations of substrate 1. This means that the reaction follows first-order kinetics.
The rates law for a first order reaction rate = k [substrate 1] where k is the rate constant, we can calculate the rate constant for the reaction. From the data, we know that the initial rate is 0.595 m/s when [substrate 1] = 0.5 M. Substituting these values into the rate law, we get 0.595 m/s = k 0.5 M Solving for k, we get k = 1.19 s^-1. Now that we have the rate constant, we can use the half-life formula for a first-order reaction t1/2 = ln (2) / k where ln (2) is the natural logarithm of 2 approximately 0.693. Substituting the given initial concentration of substrate 1 2.31 M and the rate constant 1.19 s^-1 into the formula, we get t1/2 = ln (2) / 1.19 s^-1 / 2.31 M t1/2 = 0.49 s Therefore, the half-life for the decomposition of substrate 1 when the initial concentration of the substrate is 2.31 M is 0.49 seconds.
learn more about decomposition here.
https://brainly.com/question/8009068
#SPJ11
Predict the product that will be obtained if cis-2-methylcyclohexanol is oxidized with naocl
The product obtained from the oxidation of cis-2-methyl cyclohexanol with NaOCl is 2-methyl cyclohexanone, along with sodium chloride and water as byproducts.
Oxidation is a chemical process that involves the loss of electrons or the gain of oxygen atoms by a substance. It is a fundamental concept in chemistry and plays a critical role in many chemical reactions. In oxidation, the oxidizing agent (often oxygen) accepts electrons from the reducing agent, which loses electrons. As a result of this transfer of electrons, the reducing agent is oxidized, and the oxidizing agent is reduced.
One of the most well-known examples of oxidation is rusting, in which iron reacts with oxygen to form iron oxide. Combustion reactions, such as the burning of fuels, also involve oxidation. Oxidation can be used in many industrial applications, such as in the production of chemicals, as well as in biological systems, such as the breakdown of food for energy.
To learn more about Oxidation visit here:
brainly.com/question/16976470
#SPJ4
examples of fossil fuels (contain stored carbon)
Fossil fuels are formed over millions of years from the remains of dead plants and animals that have been buried under layers of rock and sediment.
These fuels contain stored carbon that was originally absorbed by the plants and animals during their lifetime. Examples of fossil fuels include coal, oil, and natural gas. When these fuels are burned for energy, the carbon is released into the atmosphere in the form of carbon dioxide, which contributes to climate change. Natural gas is a combustible mixture of hydrocarbons and other organic compounds that is found beneath the Earth's surface. Coal is a non-renewable fossil fuel that is used to generate electricity and heat, and is also used in the production of steel, cement, and other industrial products.
To learn more about carbon click here https://brainly.com/question/13719781
#SPJ11
Write the symbol of the most abundant isotope of potassium. How many neutrons does it contain?
The most abundant isotope of potassium is potassium-39, which has the symbol K-39 or simply ³⁹K,there are 20 neutrons.
To find the number of neutrons in this isotope, follow these steps:
1. Determine the atomic number of potassium: Potassium's atomic number is 19, which means it has 19 protons.
2. Refer to the isotope notation: Potassium-39 indicates it has a mass number of 39.
3. Calculate the number of neutrons: Subtract the atomic number (protons) from the mass number:
Number of neutrons = Mass number - Atomic number
Number of neutrons = 39 - 19
Number of neutrons = 20
So, the most abundant isotope of potassium, K-39, contains 20 neutrons.
learn more about Potassium refer: https://brainly.com/question/14513133
#SPJ11
What is the reaction type when (CH3)3CBr reacts with aqueous sodium hydroxide to form (CH3)3COH and NaBr?
A. Addition
B. Elimination
C. SN1
D. SN2
When (CH3)3CBr combines with aqueous sodium hydroxide to produce (CH3)3COH and NaBr, the reaction type is B. Elimination.
The large tert-butyl group is removed in favour of a more stable carbocation intermediate in this example of an E2 (bimolecular elimination) reaction. The hydroxide ion functions as a base in this one-step reaction, breaking the bond between the leaving group and the carbon next to it while also abstracting a proton from that carbon. As a result, the leaving group NaBr and the alkene (CH3)3COH are created. Since SN1 and SN2 reactions involve nucleophilic substitution at the electrophilic carbon, this reaction is not one of those types.
learn more about hydroxide here:
https://brainly.com/question/4251554
#SPJ11
Fivonine gas exerts a pressure of 900. Torr When the pressure is changed to 1.50 atr
Its volume is 250. mL. What was the orlginal volume?
The original volume that was occupied by the Fivonine gas is 318 mL.
What is the Boyle's law?According to the Boyle's law; as long as the temperature and volume of the gas remain constant, the law asserts that the pressure of a gas is inversely proportional to its volume, or that as volume falls, pressure increases, and vice versa.
We know that;
P1V1 = P2V2
Then;
P1 = 900 torr or 1.18 atm
P2 = 1.50 atm
V1 = ?
V2 = 250 mL
Then V1 = P2V2/P1
V1= 1.50 * 250/1.18
V1 = 318 mL
This is the original volume.
Learn more about Boyles's law:https://brainly.com/question/30367133
#SPJ1
The chemicals that are "severe peroxide hazards" should be discarded how many months after opening?
3
6
12
24
Severe peroxide hazard chemicals should be discarded 6 months after opening.
This is because these chemicals can form explosive peroxides when they are exposed to air and light, making them extremely dangerous to handle.
That peroxides can accumulate in the chemical over time and become unstable, which increases the risk of an explosion.
Therefore, it is important to dispose of these chemicals within 6 months of opening to minimize the risk of a hazardous situation.
Hence, severe peroxide hazard chemicals should be disposed of within 6 months of opening to ensure safety.
learn more about peroxide click here:
https://brainly.com/question/25566753
#SPJ11
How much dextrose is contained in 250 mL D10W?
Select one:
25 g
25 mg
250 g
250 mg
The amount of dextrose contained in 250 mL of D10W is 25 g .
To determine the amount of dextrose contained in 250 mL of D10W, you can follow these steps:
Step 1: Understand the meaning of D10W.
D10W stands for a 10% dextrose solution in water, meaning that there is 10 grams of dextrose per 100 mL of solution.
D10W is a common solution used in healthcare settings, and it is important for healthcare providers to understand the concentration of dextrose in this solution in order to provide appropriate care to their patients. It is worth noting that the amount of dextrose in D10W can vary depending on the specific formulation used.
Step 2: Calculate the amount of dextrose in 250 mL.
To find the amount of dextrose in 250 mL, use the proportion:
(\frac{10 g dextrose }{ 100 mL solution}) = (\frac{x g dextrose }{ 250 mL solution})
Step 3: Solve for x.
Cross-multiply and solve for x:
10 g * 250 mL = 100 mL * x g
2500 g = 100x
x = 25 g
learn more about dextrose refer: https://brainly.com/question/30673665
#SPJ11
The population of an organism will likely decrease if there is an increase in -
Question 2 options:
soil nutrients available to the organism.
food resources eaten by the organism.
predators that prey on the organism.
rainfall in the habitat of the organism.
The population of an organism will likely decrease if there is an increase in C, predators that prey on the organism.
What makes predators increase?Predator populations may expand due to a variety of factors, including increased food supply, decreased competition from other predators, favorable weather conditions, and efficient mating and reproduction as they need prey to survive and expand.
Human actions such as predator eradication or the introduction of non-native predator species can also result in an increase in predator populations. An ecosystem can experience drastic changes due to these foreign invasions.
Find out more on population growth here: https://brainly.com/question/1437549
#SPJ1
Polymers that can be reshaped when heated are called _____ polymers.
Thermoplastic polymers have the unique property of being able to be reshaped when heated, making them ideal for various applications such as 3D printing and molding.
This is due to their linear molecular structure, which allows for easy movement of polymer chains when heated.
Polymers that can be reshaped when heated are called thermoplastic polymers, and their linear molecular structure allows for easy movement of polymer chains.
Polymers that can be reshaped when heated are called thermoplastic polymers.
Thermoplastic polymers are a type of polymer that becomes pliable or moldable when heated, and solidifies upon cooling.
This property allows them to be reshaped and reformed multiple times without undergoing significant degradation in their mechanical properties or composition.
Hence, Thermoplastic polymers can be reshaped when heated, which makes them versatile and widely used in various industries.
learn more about Thermoplastic click here:
https://brainly.com/question/1339335
#SPJ11
How many moles of H atoms are in 2.0 grams of C2H6 (e.g., in a typical balloon)?
This balloon would contain 0.399 moles of H atoms. This amount of H atoms may seem small, but it is significant in terms of chemical reactions and reactions that produce gas.
To determine the number of moles of H atoms in 2.0 grams of C2H6, we need to first calculate the molar mass of C2H6. The molar mass of C2H6 is 30.07 g/mol, which means that 2.0 grams of C2H6 is equivalent to
\frac{2.0}{30.07} = 0.0665 moles of C2H6.
C2H6 has a molecular formula that consists of two carbon atoms and six hydrogen atoms. Therefore, to find the number of moles of H atoms, we need to multiply the number of moles of C2H6 by the number of H atoms per molecule. In this case, there are 6 H atoms in one molecule of C2H6.
Thus, the number of moles of H atoms in 2.0 grams of C2H6 is:
0.0665 moles of C2H6 * 6 H atoms per molecule = 0.399 moles of H atoms.
To put it in perspective, imagine a balloon filled with 2.0 grams of C2H6.
learn more about molar mass Refer: https://brainly.com/question/14356143
#SPJ11
derive the equation that shows how molarity is related to mass%, density of solution(gram/liter), and molar mass of solute.
The equation that relates molarity to mass%, density of solution, and molar mass of solute is as follows:
Molarity = (mass% * density of solution * 10) / (molar mass of solute)
Molarity = (mass% * density of solution * 10) / (molar mass of solute)
Where mass% is the mass of the solute divided by the total mass of the solution, expressed as a percentage, and density of solution is the mass of the solution per unit volume (usually expressed in grams per liter). The factor of 10 is included to convert mass% from a percentage to a decimal fraction.
This equation can be derived from the definition of molarity, which is the number of moles of solute per liter of solution. By rearranging this equation, we can solve for the number of moles of solute:
moles of solute = Molarity * volume of solution
Next, we can substitute the definition of density of solution:
volume of solution = mass of solution / density of solution
We can also substitute the definition of mass%:
mass of solute = (mass% / 100) * mass of solution
Substituting these expressions into the equation for moles of solute, we get:
moles of solute = Molarity * (mass of solution / density of solution)
moles of solute = Molarity * [(mass% / 100) * mass of solution / density of solution]
Finally, we can use the definition of molar mass to express the mass of solute in terms of moles:
mass of solute = molar mass of solute * moles of solute
Substituting this expression into the equation for moles of solute, we get:
mass of solute = Molarity * [(mass% / 100) * mass of solution / density of solution] * molar mass of solute
Solving for Molarity, we get the equation shown at the beginning:
Molarity = (mass% * density of solution * 10) / (molar mass of solute)
To know more about molarity, refer to the link below:
https://brainly.com/question/16727614#
#SPJ11
which environment has low humidity
Answer:
Low humidity can be found in different continents and climates but Nevada has the lowest humidity.
Explanation:
:)
5. for this experiment, you preformed a qualitative test to determine if soap was formed. give a method to test for purity/formation of the desired soap product. be specific about the features/signal you would be looking for to confirm your results.
You carried out a qualitative test for this experiment to see if soap was produced particular with the characteristics/signal. To test soap purity/formation: dissolve soap in water, add saturated salt solution to precipitate impurities, observe clarity, and check pH (9-10) to confirm soap formation.
To test for the purity/formation of the desired soap product, you can follow these steps:
1. Prepare a saturated salt solution: Dissolve a sufficient amount of common salt (sodium chloride) in water until no more salt can dissolve, creating a saturated solution.
2. Take a small sample of your soap product and dissolve it in a separate container with a small amount of distilled water. Stir the solution thoroughly to ensure the soap has fully dissolved.
3. Add the saturated salt solution to the dissolved soap sample. The presence of the saturated salt solution will cause impurities and excess reactants to precipitate out, while the soap will remain in solution.
4. Observe the mixture for any changes in its appearance. A clear and transparent solution indicates the formation of a pure soap product. Conversely, cloudiness or precipitates indicate the presence of impurities or unreacted starting materials.
5. To confirm your results, you can perform additional tests such as a pH test. Soap generally has a pH value between 9 and 10. Using a pH indicator or pH meter, you can check the pH of the soap solution. A pH within the expected range supports the conclusion that the desired soap product has been formed.
By following these steps and observing the specific features/signals mentioned, you can determine the purity and formation of your soap product in a qualitative manner.
To know more about the qualitative test refer here :
https://brainly.com/question/5949851#
#SPJ11
Explain what is age,heat and magnetic orientation
Age, heat, and magnetic orientation are distinct concepts in different domains:
Age: Age refers to the length of time that has passed since a particular event or the duration of existence of an object or organism. In the context of living organisms, age typically refers to the number of years that have elapsed since birth or a specific milestone. Age can be used to measure the maturity, development, or lifespan of individuals or entities.
Heat: Heat is a form of energy associated with the motion of particles within a substance. It is commonly understood as the transfer of thermal energy between objects or systems that have different temperatures. Heat can cause changes in temperature, state, or phase of a substance. It is typically measured in units such as joules or calories.
Magnetic orientation: Magnetic orientation refers to the alignment or positioning of an object or material with respect to a magnetic field. Certain materials, such as magnets or ferromagnetic substances, can be influenced by magnetic fields and exhibit specific orientations. Magnetic orientation is often studied in the context of magnetism, magnetic materials, and applications such as compasses, where objects align themselves with the Earth's magnetic field.
These concepts are distinct and unrelated to each other. Age pertains to time, heat pertains to energy transfer, and magnetic orientation pertains to the alignment of objects in a magnetic field.
Learn more about magnetic orientation,
https://brainly.com/question/14319360
#SPJ4
what is water? types of water example of water
Answer: ^^
Water is a chemical compound consisting of two hydrogen atoms and one oxygen atom. (H2O)
Examples of water:
Sprinkling water
Mineral water
Flavored Water
Purified Water
Tap water ...
Explanation:
:)
Answer:
Water is the union of 2 hydrogen atoms and 1 oxygen atom. It is transparent, tasteless, and odorless. The types of water include: Tap water, mineral water, freshwater, etc. Examples of water are snow, rain, hail, etc.
Explanation:
If you are given 36 moles of HCI (hydrochloric acid), how many moles of magnesium chloride
will be produced?
How many categories of waste generators are identified by RCRA?
One
Two
Three
Five
The Resource Conservation and Recovery Act (RCRA) identifies c. three categories of waste generators. These categories help ensure that hazardous waste is managed according to the risks it poses to human health and the environment.
These categories are:
1. Conditionally Exempt Small Quantity Generators (CESQGs): This category includes generators that produce less than 100 kilograms (approximately 220 pounds) of hazardous waste per month. These generators are subject to less stringent regulations compared to the other two categories.
2. Small Quantity Generators (SQGs): This category comprises generators that produce between 100 and 1,000 kilograms (approximately 220 to 2,200 pounds) of hazardous waste per month. SQGs must adhere to specific regulations for hazardous waste management, including proper storage, transportation, and disposal.
3. Large Quantity Generators (LQGs): This category includes generators that produce more than 1,000 kilograms (approximately 2,200 pounds) of hazardous waste per month. LQGs must follow more stringent regulations than the other two categories, including stricter storage, recordkeeping, reporting, and disposal requirements.
By categorizing waste generators, RCRA enables regulatory agencies to enforce appropriate safety measures and compliance requirements based on the amount of waste produced.
The complete question is:-How many categories of waste generators are identified by RCRA?
a. One
b. Two
c. Three
d. Five
To leran more about hazardous waste, refer:-
https://brainly.com/question/19946867
#SPJ11
for each of the following compounds, decide whether the compound's solubility in aqueous solution changes with ph. if the solubility does change, pick the ph at which you'd expect the highest solubility. you'll find data in the aleks data tab.
1. Sodium Carbonate: Yes, the solubility of sodium carbonate changes with pH. At a pH of 11.2, the solubility of sodium carbonate is at its highest, with a solubility of 111.1 g/L.
At a pH below 11.2, the solubility of sodium carbonate decreases; at a pH above 11.2, the solubility of sodium carbonate increases, but not as dramatically as at a pH of 11.2.
This is due to the fact that at a pH of 11.2, the concentration of carbonate ions is at its highest, and the solubility of sodium carbonate is largely dependent on the concentration of carbonate ions.
Know more about Sodium Carbonate here
https://brainly.com/question/13645481#
#SPJ11
Part A By using the data in Appendix E, determine whether each of the following substances is likely to serve as an oxidant or a reductant Drag the appropriate items to their respective bins
To classify the substances into their respective bins, C belongs to the reductant bin, [tex]CIO^{-}[/tex] belongs to the oxidant bin, NO belongs to both the oxidant and reductant bins, and Ca in its ionic form belongs to the reductant bin.
To decide if every substance is probably going to act as an oxidant or reductant, we really want to consider their oxidation states.
Beginning with C, which has an oxidation condition of 0, it can go about as a reductant by giving electrons to another substance. Interestingly, [tex]CIO^{-}[/tex] has an oxidation condition of +1 and is probably going to act as an oxidant by tolerating electrons and becoming decreased.
Then, we have NO, which has an oxidation condition of +2. Contingent upon the response conditions, NO can go about as both an oxidant and a reductant.
For instance, within the sight of diminishing specialists like [tex]Fe_{2} ^{+}[/tex] or [tex]Sn_{2} ^{+}[/tex], NO can be decreased to [tex]N_{2} O[/tex], going about as an oxidant. On the other hand, within the sight of oxidizing specialists like [tex]Br_{2}[/tex] or [tex]H_{2} O_{2}[/tex], NO can be oxidized to [tex]N_{2} O[/tex], going about as a reductant.
In conclusion, we have Ca in its strong state, which has an oxidation condition of 0. Nonetheless, when it loses electrons to frame [tex]Ca_{2} ^{+}[/tex], it can go about as a reductant.
Thusly, we can put C in the reductant receptacle, [tex]CIO^{-}[/tex]in the oxidant canister, NO in both oxidant and reductant receptacles, and Ca in the reductant container when it is in its ionic structure.
To learn more about reductant bin, refer:
https://brainly.com/question/29740395
#SPJ4
The complete question is:
Part A By using the data in Appendix E, determine whether each of the following substances is likely to serve as an oxidant or a reductant Drag the appropriate items to their respective bins. Reset Help C(0) CIOC) NO) Ca(s) Oxidant Reductant Subrnit Request Answer
What volume would be occupied by 0.50 moles of a gas at a temperature of 35°C and at a 1 atm of pressure?
O 11.2L
O 1.68 L
O 12.6 L
0 145L
The volume occupied by 0.50 mole of the gas at a temperature of 35 °C and at 1 atm is 12.6 L (3rd option)
How do i determine the volume occupied?Number of mole of gas (n) = 0.50 moleTemperature of gas (T) = 35 °C = 35 + 273 = 308 KPressure of gas (P) = 1 atmGas constant (R) = 0.0821 atm.L/molKVolume of gas (V) =?We can obtain the volume of the gas by using the ideal gas equation as shown below:
PV = nRT
1 × V = 0.50 × 0.0821 × 308
V = 12.6 L
Thus, from the above calculation, it is evident that the volume of gas is 12.6 L (3rd option)
Learn more about volume:
https://brainly.com/question/21838343
#SPJ1
Consider the interaction of a space-station-like object that has as its main structural elements anodized aluminum struts with a diameter of 25 cm. Assume that there are a total of 1 km worth of struts in the entire object. (a) Calculate the capacitance between the object and space by treating the structures as one plate of a parallel capacitor and space as the other plate. Assume the separation distance is the Debye length. (b) If the station floats 140 volts negative, calculate the energy that could be dissipated by an arc discharge to space which shifts the potential of the object back to zero potential. (c) How thick should the anodized aluminum coating be not to break down under an electric field strength of 105V/cm? Assume a factor of safety of 2
(a) Capacitance between anodized aluminum struts and space is 4.34x[tex]10^-13 F.[/tex]
(b) Energy that could be dissipated by an arc discharge is 1.07x[tex]10^-6 J[/tex]
(c) Anodized aluminum coating should be at least 1.49 microns thick to avoid breakdown under an electric field strength of 105V/cm.
(a) The capacitance between the object and space can be calculated using the formula:
C = εA/d
where C is the capacitance, ε is the permittivity of free space, A is the area of one strut, and d is the separation distance between the object and space (assumed to be the Debye length).
The area of one strut is given by:
A = [tex]πr^2 = π(0.125 m)^2 = 0.0491 m^2[/tex]
The Debye length for a typical plasma in space is on the order of 1 meter. So, we have:
d = 1 m
Plugging in these values, we get:
C = εA/d = (8.85x[tex]10^-12 F/m[/tex])(0.0491 [tex]m^2[/tex])/(1 m) = 4.34x[tex]10^-13 F[/tex]
(b) The energy that could be dissipated by an arc discharge to space can be calculated using the formula:
E = [tex]1/2CV^2[/tex]
where E is the energy, C is the capacitance (which we calculated in part (a)), and V is the voltage difference between the object and space (which is 140 volts).
Plugging in these values, we get:
E = 1/2(4.34x[tex]10^-13 F[/tex])(140 [tex]V)^2[/tex] = 1.07x[tex]10^-6 J[/tex]
(c) The breakdown voltage for anodized aluminum depends on the thickness of the coating. A commonly used empirical formula for the breakdown voltage of anodized aluminum coatings is:
V_bd = 1.7[tex]t^-0.5[/tex]
where V_bd is the breakdown voltage in volts, and t is the thickness of the coating in microns.
Assuming a factor of safety of 2, we want the breakdown voltage to be at least twice the voltage at which the station floats (140 volts negative), or 280 volts.
Solving the formula above for t, we get:
t = [tex](1.7 / V_bd)^2[/tex]
Plugging in 280 volts for V_bd, we get:
t = [tex](1.7 / 280)^2[/tex] = 1.49 microns
Therefore, the anodized aluminum coating should be at least 1.49 microns thick to avoid breakdown at an electric field strength of 105V/cm, assuming a factor of safety of 2.
Learn more about capacitance
https://brainly.com/question/28445252
#SPJ4
the naci molecule has a bond energy of 4.26 ev; that is, this energy must be supplied in order to dissociate the molecule into neutral na and ci atoms (see chapter 9).(a) what are the minimum frequency and maximum wavelength of the photon necessary to dissociate the molecule? (b) in what part of the electromagnetic spectrum is this photon?
(a) The minimum frequency and the maximum wavelength of the photon required to dissociate the NaCl molecule are 6.432 x 10^14 Hz and 4.66 x 10^-7 m.
(b) The photon is in UV-A region of the electromagnetic spectrum.
(a) The minimum frequency of the photon required to dissociate the NaCl molecule can be calculated using the formula E = hν, where E is the bond energy of NaCl, h is the Planck's constant (6.626 x 10^-34 J s), and ν is the frequency of the photon.
Thus, ν = E/h = 4.26 eV/6.626 x 10^-34 J s = 6.432 x 10^14 Hz.
Using the formula c = λν, where c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength of the photon, we can calculate the maximum wavelength of the photon required to dissociate the NaCl molecule:
λ = c/ν = 3.00 x 10^8 m/s / 6.432 x 10^14 Hz = 4.66 x 10^-7 m.
(b) The frequency calculated above corresponds to a photon in the ultraviolet (UV) region of the electromagnetic spectrum, which has frequencies ranging from 10^14 Hz to 10^16 Hz and wavelengths ranging from 10 nm to 400 nm.
The maximum wavelength calculated above (4.66 x 10^-7 m) falls within the UV-A region, which has longer wavelengths (315-400 nm) compared to UV-B (280-315 nm) and UV-C (100-280 nm).
for more such question on electromagnetic spectrum
https://brainly.com/question/28035263
#SPJ11
what is not a colligative property
Qualities of a solution known as coagulative qualities rely on the quantity of solute particles present but not on the kind of solute.
Boiling point elevation, osmotic pressure, and vapour pressure depression are a few examples of colligative qualities. Solubility is the response to the query of what is not a collative property.
The amount of a solute that can dissolve in a solvent is known as its solubility, and the solute's type does affect this quantity. Solubility is not a collative quality, then.
Learn more about colligative property at:
https://brainly.com/question/30799665
#SPJ1
a) A two solvent hexane-acetone gradient for an alumina HPLC column, which solvent is gradually increased? Why? b) For a C18 column water and methanol two solvents are used for gradient elution, which solvent is gradually increased in percentage? Why?
In a two solvent hexane-acetone gradient for an alumina HPLC column, acetone solvent is gradually increased.For a C18 column with water and methanol two solvents are used for gradient elution, methanol solvent is gradually increased in percentage.
a) In a two solvent hexane-acetone gradient for an alumina HPLC column, acetone is gradually increased. This is because hexane is a non-polar solvent, while acetone is more polar. Increasing the polarity of the mobile phase with acetone improves the separation of compounds on the alumina stationary phase, which is polar in nature.
b) For a C18 column with water and methanol as two solvents used for gradient elution, methanol percentage is gradually increased. The reason for this is that the C18 column consists of non-polar stationary phase, and water is polar while methanol is less polar. By increasing the percentage of methanol, the elution strength increases and compounds with varying polarities can be effectively separated on the non-polar C18 column.
Learn more about HPLC : https://brainly.com/question/30915499
#SPJ11
If two atoms are joined by a polar covalent bond, the atom with the lower electronegativity will have a partial ______ , Incorrect Unavailable charge.
If two atoms are joined by a polar covalent bond, the atom with the lower electronegativity will have a partial positive charge.
If two atoms are joined by a polar covalent bond, the atom with the lower electronegativity will have a partial positive charge. In a polar covalent bond, electrons are shared unequally between the two atoms, leading to a difference in charge across the bond.
The atom with the higher electronegativity attracts the shared electrons more strongly, resulting in a partial negative charge on that atom, while the atom with lower electronegativity has a partial positive charge.
To know more about covalent bonds, refer
https://brainly.com/question/3447218
#SPJ11
Burning coal to generate electricity creates all of the following types of pollution
EXCEPT___________ .
A) water pollution
B) particulates
C) thermal pollution
D) mercury
E) coal combustion produces all above pollutants
Burning coal to generate electricity creates all of the following types of pollution EXCEPT: A) water pollution. When coal is burned to generate electricity, it produces various types of pollution such as particulates (B), thermal pollution (C), and mercury (D). Coal combustion indeed produces all the mentioned pollutants (E). However, it does not directly create water pollution (A).
Here is a brief explanation of each type of pollution:
B) Particulates: Coal combustion releases fine particles into the air, which can cause respiratory issues and other health problems.
C) Thermal pollution: The process of generating electricity from coal involves producing heat, which can raise the temperature of nearby water bodies. This increase in temperature can harm aquatic life and disrupt ecosystems.
D) Mercury: Coal contains trace amounts of mercury, which is released when coal is burned. Mercury pollution can contaminate water and accumulate in fish, leading to health risks for humans who consume the affected fish.
E) Coal combustion produces all above pollutants: Coal combustion is responsible for releasing particulates, causing thermal pollution, and emitting mercury into the environment.
In summary, while coal combustion contributes to various types of pollution, it does not directly cause water pollution.
For more information on water pollution see:
https://brainly.com/question/19920929
#SPJ11