пеу Fabric Sale At a fabric store, fabrics are sold by the yard. A dressmaker spent $46 on 5 yards of silk and cotton fabrics for a dress. 1 x + y = 5 117x + 4y = 46) Silk is $17 per yard and cotton is $4 per yard. Here is a system of equations that represent the constraints in the situation. What does the solution to the system represent?

 Fabric Sale At A Fabric Store, Fabrics Are Sold By The Yard. A Dressmaker Spent $46 On 5 Yards Of Silk

Answers

Answer 1

It is said that the dressmaker bought 5 yards of cotton and silk. Let's see the first equation of the system:

[tex]x+y=5[/tex]

And that he spent $46 on those 5 yards. Also, it is said that silk costs $17 per yard and cotton $4 per yard. Let's see the second equation of the system:

[tex]17x+4y=46[/tex]

If 46 is how much the dressmaker spent, and 17 and 4 represent how much silk and cotton cost PER YARD then we know that x and y represent how much of each fabric did the dressmaker bought. Also, in the first equation you see that the total is 5 yards. So, if you solve this system you will find that 'x' is how many yards of silk the dressmaker bought and 'y' is how many yards of cotton he bought.

In summary, the solution of this system represents how may yards of silk (x) and cotton (y) the dressmaker bought.


Related Questions

How do I solve it and what would be the answer

Answers

The quotient is x² + 4x + 3

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

Explanation:[tex](x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2)}[/tex][tex]\begin{gathered} x\text{ - 2 = 0} \\ x\text{ = 2} \\ \\ \text{coefficient of }x^3+2x^2\text{ - 5x - 6:} \\ 1\text{ 2 -5 -6} \\ \\ We\text{ will divide the coefficients by 2} \end{gathered}[/tex]

Using synthetic division:

[tex]\begin{gathered} (x^3+2x^2\text{ - 5x - 6) }\div\text{ (x - 2) = }\frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}} \\ \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}\text{ = quotient + }\frac{remai\text{ nder}}{\text{divisor}} \\ \\ The\text{ coefficient of the quotient = 1 4 3} \\ \text{The last number is zero, so the remainder = 0} \end{gathered}[/tex][tex]\begin{gathered} \frac{(x^3+2x^2\text{ - 5x - 6)}}{\text{(x - 2)}}=1x^2\text{ + 4x + 3 + }\frac{0}{x\text{ - 2}} \\ \text{quotient }=\text{ }x^2\text{ + 4x + 3} \end{gathered}[/tex]

For a (x - 2) to be a factor of x³ + 2x² - 5x - 6, it will not have a remainder when it is divided.

Since remainder = 0

Yes, (x - 2) is a factor of x³ + 2x² - 5x - 6

Given two functions f(x) and g(x):f(x) = 8x - 5,8(x) = 2x2 + 8Step 1 of 2 Form the composition f(g(x)).Answer 2 PointsKeypadKeyboard Shortcutsf(g(x)) =>Next

Answers

we have the functions

[tex]\begin{gathered} f(x)=8x-5 \\ g(x)=2x^2+8 \end{gathered}[/tex]

Find out f(g(x))

Substitute the variable x in the function f(x) by the function g(x)

so

[tex]\begin{gathered} f\mleft(g\mleft(x\mright)\mright)=8(2x^2+8)-5 \\ f(g(x))=16x^2+64-5 \\ f(g(x))=16x^2+59 \end{gathered}[/tex]

Find decimal notation for 100%

Answers

The decimal notation of percentage is the quotient of the percentage divided by 100.

So it follows that :

[tex]\frac{100\%}{100}=1[/tex]

The answer is 1

Transformations that preserve shape and size are called rigid motions. Find a definition of just the word rigid using the internet and write it below.

Answers

Simply put,

Rigid means not moving.

In transformations, rigid motions are transformations that preserve distance.

Evaluate the expression shown: 30-3²-2+7

Answers

Answer:

=26

Step-by-step explanation:

30−32−2+7

=30−9−2+7

=21−2+7

=19+7

=26

Please help i need the answers for a test and how to work em out for the future

Answers

Given: The angles as shown in the image

[tex]\begin{gathered} m\angle DEY=105^0 \\ m\angle DEF=27x+3 \\ m\angle YEF=6x+3 \end{gathered}[/tex]

To Determine: The measure of angle DEF

Solution

It can be observed that

[tex]\begin{gathered} m\angle DEY+m\angle YEF=m\angle DEF \\ Therefore \end{gathered}[/tex][tex]\begin{gathered} 105^0+6x+3=27x+3 \\ 105=27x-6x+3-3 \\ 105=21x \\ x=\frac{105}{21} \\ x=5 \end{gathered}[/tex][tex]\begin{gathered} m\angle DEF=21x+3 \\ =21(5)+3 \\ =105+3 \\ =108 \end{gathered}[/tex]

Question 12

Given:

[tex]\begin{gathered} m\angle UIJ=x+43 \\ m\angle HIJ=66 \\ m\angle HIU=x+37 \end{gathered}[/tex]

To Determine: The measure of angle HIU

Solution:

It can be observed that

[tex]m\angle UIJ+m\angle HIU=m\angle HIJ[/tex][tex]\begin{gathered} x+43+x+37=66^0 \\ Collect-like-terms \\ x+x+43^0+37^0=66^0 \\ 2x+80^0=66^0 \\ 2x=66^0-80^0 \\ 2x=-14^0 \\ x=-\frac{14^0}{2} \\ x=-7^0 \end{gathered}[/tex]

Therefore, the measure of angle HIU would be

[tex]\begin{gathered} m\angle HIU=x+37^0 \\ m\angle HIU=-7+37^0 \\ m\angle HIU=30^0 \end{gathered}[/tex]

Hence, the measure of angle HIU is 30⁰

Find the 5th term of the arithmetic sequence -5x – 5, -123 – 8,- 19x – 11, ...Answer:Submit Answer

Answers

5x – 5, -123x – 8,

- 19x – 11, ...

Difference is =

Find x.special 10A. 3B. 23√3- this is in fractionC. 6√3D. 3√3

Answers

First, we need to remember the cosine formula which is: cosine(theta)= adjacent/hypotenuse, now let's apply the formula to the triangle we have:

By using the formula we find that x=3√3 .

The answer is D.

rounded 425.652 to the hundredths place

Answers

Since the given number is 425.652

The hundredth digit is the 2nd number right at the decimal point

It is 5

To round to the nearest hundredth, we will look at the digit right to it

1. If it is 0, 1, 2, 3, or 4 we will ignore it and write the number without change except by canceling that digit

2. If it is 5, 6, 7, 8, or 9 we will cancel it and add the digit left to it 1

Since the right digit to the digit 5 is 2, then we will remove it and do not change the digit 5 (case 1), then

The number after rounding should be 425.65

The answer is 425.65

Write equation for graph ?

Answers

The equation for parabolic graphed function is y = [tex]-3x^{2} -24x-45[/tex].

What is parabola graph?

Parabola graph depicts a U-shaped curve drawn for a quadratic function.  In Mathematics, a parabola is one of the conic sections, which is formed by the intersection of a right circular cone by a plane surface. It is a symmetrical plane U-shaped curve. A parabola graph whose equation is in the form of f(x) = ax2+bx+c is the standard form of a parabola.

The given graph has 2 intercept at x axis x = -3, x = -5

y = a (x+3) (x+5)

using the intercept (-4, 3)

3 = a (-4 +3)(-4+5)

3 = a (-1)(1)

a =-3

y = -3(x+3)(x+5)

y = -3 [x(x+5) +3(x+5)]

y = [tex]-3x^{2}-24x-45[/tex]

To know more about parabola graph, visit:

https://brainly.com/question/27145006

#SPJ13

HELP PLEASE!

Dave has a piggy bank which consists of dimes, nickels, and pennies. Dave has seven
more dimes than nickels and ten more pennies than nickels. If Dave has $3.52 in his piggy bank, how many of each coin does he have?

Answers

Dave has 17 nickels, 24 dimes and 27 pennies in his piggy bank.

According to the question,

We have the following information:

Dave has 7 more dimes than nickels and 10 more pennies than nickels.

Now, let's take the number of nickels to be x.

So,

Dimes = (x+7)

Pennies = (x+10)

Now, Dave has $3.52 in his piggy bank.

We will convert nickels, dimes and pennies into dollars.

We know that 1 nickel = 0.05 dollars, 1 dime = 0.1 dollars and 1 pennies = 0.01 dollars.

Now, we will convert the given numbers of nickel, dime and pennies into dollars.

x Nickels in dollars = $0.05x

(x+7) dimes in dollars = $0.1(x+7)

(x+10) pennies in dollars = $0.01(x+10)

Now, we will them.

0.05x + 0.1(x+7) + 0.01(x+10) = 3.52

0.05x + 0.1x + 0.7 + 0.01x + 0.1 = 3.52

0.16x + 0.8 = 3.52

0.16x = 3.52-0.8

0.16x = 2.72

x = 2.72/0.16

x = 17

Now, we have:

Number of nickels = 17

Number of dimes = (17+7)

Number of dimes = 24

Number of pennies = (17+10)

Number of pennies = 27

Hence, the number of nickels, dimes and pennies are 17, 24 and 27 respectively.

To know more about nickels here

https://brainly.com/question/3542561

#SPJ1

1. The equations y = x2 + 6x + 8 and y = (x + 2)(x+4) both define thesame quadratic function.Without graphing, identify the x-intercepts and y-intercept of the graph.Explain how you know

Answers

Given the quadratic equation

[tex]y=x^2\text{ +6x + 8}[/tex]

(1) x-intercepts are -2 and -4 is the points that pass through the x-axis

when y = 0

[tex]\begin{gathered} y\text{ = 0 } \\ x^2\text{ + 6x + 8 = 0} \\ x^2+2x\text{ +4x +8 = 0} \\ (x\text{ + 2)(x +4)=0} \\ x\text{ +2 = 0 or x +4 =0} \\ x\text{ = -2 or x = -4} \end{gathered}[/tex]

(11) y-intercepts = 8 is the points that pass through the y axis when x = 0

[tex]\begin{gathered} y=x^2\text{ +6x +8} \\ \text{when x = 0} \\ y=0^2\text{ +6(0) +8} \\ \text{y = 8} \end{gathered}[/tex]

What is the slope of a line parallel to the line whose equation is 12x – 15y = 315.Fully simplify your answer.

Answers

Answer:

4/5

Explanation:

Definition: Two lines are parallel if they have the same slope.

Given the line:

[tex]12x-15y=315[/tex]

Determine the slope of the given line by expressing it in the slope-intercept form (y=mx+b), where m is the slope:

[tex]\begin{gathered} 12x-15y=315 \\ \text{ Add 15y to both sides of the equation} \\ 12x-15y+15y=315+15y \\ 12x=315+15y \\ \text{ Subtract 315 from both sides:} \\ 12x-315=315-315+15y \\ 12x-315=15y \\ \text{ Divide all through by 15} \\ \frac{15y}{15}=\frac{12}{15}x-\frac{315}{15} \\ y=\frac{4}{5}x-21 \end{gathered}[/tex]

• The slope of the line, m = 4/5.

Since the lines are parallel, they have the same slope.

Hence, the slope of a line parallel to the line whose equation is 12x – 15y = 315 is 4/5.

0.27x4.42erterttwerutiyrteyruiti

Answers

Answer:

if need to solve

Step-by-step explanation:

1.1934

if it help let me know this

Can someone help out with a math prob?
pic of question below

Answers

The polar equation of the curve with the given Cartesian equation is r = √7

How to convert polar equation to cartesian equation

Given the Cartesian equation: x² + y² = 7

The relationships between polar and cartesian equation :

x = r cosθ

y = r sinθ

Where r is the radius and θ is the angle

Put the values of x and y into the given cartesian equation:

(r cosθ)² + (r sinθ)² = 7

r²cos²θ + r²sin²θ = 7

r²(cos²θ + sin²θ) = 7

Since the trigonometric identity cos²θ + sin²θ = 1

r²(1) = 7

r² = 7

r = √7

Therefore, the polar equation for the represented curve is r = √7

Learn more about polar equation on:

https://brainly.com/question/3572787

#SPJ1

Cost of a pen is two and half times the cost of a pencil. Express this situation as a
linear equation in two variables.

Answers

The equation to illustrate the cost of a pen is two and half times the cost of a pencil is C = 2.5p.

What is an equation?

A mathematical equation is the statement that illustrates that the variables given. In this case, two or more components are taken into consideration to describe the scenario.

In this case, the cost of a pen is two and half times the cost of a pencil.

Let the pencil be represented as p.

Let the cost be represented as c.

The cost will be:

C = 2.5 × p

C = 2.5p

This illustrates the equation.

Learn more about equations on:

brainly.com/question/2972832

#SPJ1

Find the area and the perimeter of the following rhombus. round to the nearest whole number if needed.

Answers

ANSWER

[tex]\begin{gathered} A=572 \\ P=96 \end{gathered}[/tex]

EXPLANATION

To find the area of the rhombus, we have to first find the length of the other diagonal.

We are given half one diagonal and the side length.

They form a right angle triangle with half the other diagonal. That is:

We can find x using Pythagoras theorem:

[tex]\begin{gathered} 24^2=x^2+16^2 \\ x^2=24^2-16^2=576-256 \\ x^2=320 \\ x=\sqrt[]{320} \\ x=17.89 \end{gathered}[/tex]

This means that the length of the two diagonals is:

[tex]\begin{gathered} \Rightarrow2\cdot16=32 \\ \Rightarrow2\cdot17.89=35.78 \end{gathered}[/tex]

The area of a rhombus is given as:

[tex]A=\frac{p\cdot q}{2}[/tex]

where p and q are the lengths of the diagonal.

Therefore, the area of the rhombus is:

[tex]\begin{gathered} A=\frac{32\cdot35.78}{2} \\ A=572.48\approx572 \end{gathered}[/tex]

The perimeter of a rhombus is given as:

[tex]P=4L[/tex]

where L = length of side of the rhombus

Therefore, the perimeter of the rhombus is:

[tex]\begin{gathered} P=4\cdot24 \\ P=96 \end{gathered}[/tex]

Drew has a video game with five differentchallenges. He sets the timer to play his gamefor 10.75 minutes. He spends the same amountof time playing each challenge. How long doesDrew nlay the fifth challenge?

Answers

For each game, Drew spends 10.75 minutes, this means in total Drew spends

[tex]5\cdot10.75\text{ minutes}[/tex]

this product gives

[tex]5\cdot10.75=53.75\text{ minutes}[/tex]

then, in the fifth challenge Drew spends 53.75 minutes

what is the slope for the following points?(-1,1) and(3,3)

Answers

To find the slope for a line that connects the given points, use the following formula:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

where (x1,y1) and (x2,y2) are the given points.

Use:

(x1,y1) = (-1,1)

(x2,y2) = (3,3)

replace the values of the previous parameters in the formula for m:

[tex]m\text{ = }\frac{3-1}{3-(-1)}=\frac{2}{3+1}=\frac{2}{4}=\frac{1}{2}[/tex]

Hence, the slope is 1/2

What is the measure of the base of the rectangle if the area of the triangle is 32 ft2 ?A) 8 ftB) 16 ft C) 32 ftD) 64 ft

Answers

Answer:

B) 16 ft

Explanation:

The area of a triangle is equal to

[tex]Area\text{ =}\frac{Base\times Height}{2}[/tex]

We know that the area is 32 ft² and the height is 4 ft, so replacing these values, we get

[tex]32=\frac{\text{Base}\times4}{2}[/tex]

Now, we can solve for the base. So multiply both sides by 2

[tex]\begin{gathered} 32\times2=\frac{\text{Base }\times4}{2}\times2 \\ 64=\text{Base }\times4 \end{gathered}[/tex]

Then divide both sides by 4

[tex]\begin{gathered} \frac{64}{4}=\frac{Base\times4}{4} \\ 16=\text{Base} \end{gathered}[/tex]

Therefore, the measure of the base is 16 ft

A projectile is fired vertically upwards and can be modeled by the function h(t)= -16t to the second power+600t +225 during what time interval will the project I’ll be more than 4000 feet above the ground round your answer to the nearest hundredth

Answers

Given:

[tex]h(t)=-16t^2+600t+225[/tex]

To find the time interval when the height is about more than 4000 feet:

Let us substitute,

[tex]\begin{gathered} h(t)\ge4000 \\ -16t^2+600t+225\ge4000 \\ -16t^2+600t+225-4000\ge0 \\ -16t^2+600t-3775\ge0 \end{gathered}[/tex]

Using the quadratic formula,

Here, a= -16, b=600, and c= -3775

[tex]\begin{gathered} t=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ =\frac{-600\pm\sqrt[]{600^2-4(-16)(-3775)}}{2(-16)} \\ =\frac{-600\pm\sqrt[]{360000^{}-241600}}{-32} \\ =\frac{-600\pm\sqrt[]{118400}}{-32} \\ =\frac{-600\pm40\sqrt[]{74}}{-32} \\ =\frac{-75\pm5\sqrt[]{74}}{-4} \\ t=\frac{-75+5\sqrt[]{74}}{-4},x=\frac{-75-5\sqrt[]{74}}{-4} \\ t=7.99709,t=29.5029 \end{gathered}[/tex]

So, the interval is,

[tex]8.00\le\: t\le\: 29.50[/tex]

I need help with a math problem. I linked it below

Answers

According to the distributive property of multiplication:

[tex]a\cdot(b+c)=a\cdot b+a\cdot c[/tex]

Then,

[tex]\begin{gathered} -6(x+5)=12 \\ -6x-6\cdot5=12 \\ -6x-30=12 \end{gathered}[/tex]

To find x, add 30 to both sides:

[tex]\begin{gathered} -6x-30+30=12+30 \\ -6x=42 \end{gathered}[/tex]

And divide both sides by -6:

[tex]\begin{gathered} \frac{-6}{-6}x=\frac{42}{-6} \\ x=-7 \end{gathered}[/tex]

Answer:

- 6x - 30 = 12

x = -7

A rocket is shot off from a launcher. The accompanying table represents the height of the rocket at given times, where x is time, in seconds, and y is height, in feet. Write a quadratic regression equation for this set of data, rounding all coefficients to the nearest tenth. Using this equation, find the height, to the nearest foot, at a time of 3.8 seconds.

Answers

Given

The data can be modeled using a quadratic regression equation.

Using the general form of a quadratic equation:

[tex]y=ax^2\text{ + bx + c}[/tex]

We should use a regression calculator to obtain the required coefficients. The graph of the equation is shown below:

The coefficients of the equation is:

[tex]\begin{gathered} a\text{ = -17.5 (nearest tenth)} \\ b\text{ = }249.0\text{ (nearest tenth)} \\ c\text{ = }-0.5 \end{gathered}[/tex]

Hence, the regression equation is:

[tex]y=-17.5x^2\text{ + 249.0x -0.5}[/tex]

We can find the height (y) at a time of 3.8 seconds by substitution:

[tex]\begin{gathered} y=-17.5(3.8)^2\text{ + 249}(3.8)\text{ - 0.5} \\ =\text{ }693 \end{gathered}[/tex]

Hence, the height at time 3.8 seconds is 693 ft

Match the number with the correct description.
PLEASE HELP

Answers

Answer:

Answers on attached image

Step-by-step explanation:

Are the graphs of the equations parallel, perpendicular, or neither?x -3y = 6 and x - 3y = 9

Answers

The equation of a line in Slope-Intercept form, is:

[tex]y=mx+b[/tex]

Where "m" is the slope of the line and "b" is the y-intercept.

By definition:

- The slopes of parallel lines are equal and the y-intercepts are different.

- The slopes of perpendicular lines are opposite reciprocals.

For this case you need to rewrite the equations given in the exercise in Slope-Intercept form by solving for "y".

- Line #1:

[tex]\begin{gathered} x-3y=6 \\ -3y=-x+6 \\ y=\frac{-x}{-3}+(\frac{6}{-3}) \\ \\ y=\frac{x}{3}-2 \end{gathered}[/tex]

You can identify that:

[tex]\begin{gathered} m_1=\frac{1}{3} \\ \\ b_1=-2 \end{gathered}[/tex]

- Line #2:

[tex]\begin{gathered} x-3y=9​ \\ -3y=-x+9 \\ y=\frac{-x}{-3}+(\frac{9}{-3}) \\ \\ y=\frac{x}{3}-3 \end{gathered}[/tex]

You can identify that:

[tex]\begin{gathered} m_2=\frac{1}{3} \\ \\ b_2=-3_{}_{} \end{gathered}[/tex]

Therefore, since:

[tex]\begin{gathered} m_1=m_2 \\ b_1\ne b_2 \end{gathered}[/tex]

You can conclude that: The graphs of the equation are parallel.

3 * 10 ^ - 6 = 4.86 * 10 ^ - 4 in scientific way

Answers

Answer:

3*10=30

10^-6=1^-6. (10 raised to the power of-6)

therefore 3*1^-6=3

is equal to

4.86*10=48.6

10^-4=1^-4

therefore 48.6*1^-4=48.6

$1750 is invested in an account earning 3.5% interest compounded annualy. How long will it need to be in an account to double?

Answers

Given :

[tex]\begin{gathered} P\text{ = \$ 1750} \\ R\text{ = 3.5 \%} \\ A\text{ = 2P} \\ A\text{ = 2}\times\text{ 1750 = \$ 3500} \end{gathered}[/tex]

Amount is given as,

[tex]\begin{gathered} A\text{ = P( 1 + }\frac{R}{100})^T \\ 3500\text{ = 1750( 1 + }\frac{3.5}{100})^T \\ \text{( 1 + }\frac{3.5}{100})^T\text{ = }\frac{3500}{1720} \end{gathered}[/tex]

Further,

[tex]\begin{gathered} \text{( 1 + }\frac{3.5}{100})^T\text{ = 2} \\ (\frac{103.5}{100})^T\text{ = }2 \\ (1.035)^T\text{ = 2} \end{gathered}[/tex]

Taking log on both the sides,

[tex]\begin{gathered} \log (1.035)^T\text{ = log 2} \\ T\log (1.035)\text{ = log 2} \\ T\text{ = }\frac{\log \text{ 2}}{\log \text{ 1.035}} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} T\text{ = }\frac{0.3010}{0.0149} \\ T\text{ = 20.20 years }\approx\text{ 20 years} \end{gathered}[/tex]

Thus the required time is 20 years.

Which values are solutions to the inequality below? Check all that applySqrt x>=9Choices are:-2, 82, 32, 180, 99, 63

Answers

We notice the following:

[tex]\begin{gathered} \sqrt[]{x}\ge9\ge0 \\ \Rightarrow \\ x\ge81 \end{gathered}[/tex]

Then, possible solutions of the inequality are all real numbers greater or equal than 81. From the given set of solution, those numbers that fullfill that requirement are:

[tex]82,\text{ 180 and 99}[/tex]

George filled up his car with gas before embarking on a road trip across the country. The capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven. Make a table of values and then write an equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.

Answers

Given that the capacity of George's gas tank is 12 gallons and her car uses 2 gallons of gas for every hour driven.

[tex]\begin{gathered} G_{\circ}=12 \\ m=-2 \end{gathered}[/tex]

slope m is negative since the gas is reducing every hour.

Writing the equation for G, in terms of t, representing the number of gallons of gas remaining in George's gas tank after t hours of driving.​

[tex]\begin{gathered} G=G_{\circ}+mt \\ G=12+(-2)t \\ G=12-2t \end{gathered}[/tex]

The equation for G is;

[tex]G=12-2t[/tex]

Calculating the number of gallons remaining in the tank after 0,1,2 and 3 hours, we have;

[tex]\begin{gathered} G=12-2t \\ at\text{ t=0}; \\ G_0=12-2(0)=12 \\ at\text{ t=1}; \\ G_1=12-2(1)=10 \\ at\text{ t=2}; \\ G_{2_{}}=12-2(2)=12-4=8 \\ at\text{ t=3;} \\ G_3=12-2(3)=12-6=6 \end{gathered}[/tex]

Completing the table, we have;

Find the future value using the future value formula and a calculator in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Answers

The present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The future value = $420000

The time period = 30 years

The interest percentage = 6%

The interest is compounded monthly

A = [tex]P(1+\frac{i}{f})^{fn}[/tex]

Where A is the final value

P is principal amount

i is the interest rate

f frequency where compound interest is added

n is the time period

Substitute the values in the equation

420000 = P × [tex](1+\frac{0.06}{12} )^{(12)(30)[/tex]

420000 = P × 6.02

P = 420000 / 6.02

P = $69737.60

Hence, the present value of in order to achieve $420000 in 30 years at 6% interest compounded monthly is $69737.60

The complete question is:

Find the present value using the future value formula  in order to achieve $420,000 in 30 years at 6% interest compounded monthly

Learn more about compound interest here

brainly.com/question/14295570

#SPJ1

Other Questions
There were five original songs by mick jagger and keith richards that the band did not record. Which was not among them?. the score on the right is a scaled copy of the square on the left identify the scale factor express your answer in the simplest form in a business environment, persuasion is critical to success. persuasion is necessary when you anticipate resistance or when you are making more than routine demands. which of the following are elements of effective persuasion? check all that apply. involves coercion or trickery proves the merits of your proposal deceives and fabricated evidence explains logically and concisely the purpose of the request establishes credibility In a respiration experiment we are measuring the rate alcoholic Fermentation in yeast by measuring the amount of CO2 produced Please assist with following questions Points that lie on the same line are called: a) opposite rays b) coplanar and non-collinear c) non-collinear and non-coplanar d) collin ear and coplanar Find the value of each variable with one input fixed, a firm will find that as it attempts to produce more, the total product curve will increase at a decreasing rate and its marginal product curve will be: A study shows that 28% of the population has high blood pressure. The study also shows that 86% of those who do not have high blood pressure exercise at least 90 minutes per week, while 32% of those with high blood pressure exercise at least 90 minutes per week. Which of the following relative frequency tables could the study provide? ove files a suit against po, claiming that the defendant failed to pay for goods shipped in response to an alleged e-mail order. po denies the charge. if the e-mail order exists, it is Which ordered pair is a solution tothe system of inequalities shown? in the context of bonds, accrued interest: group of answer choices a) is discounted along with other cash flows to arrive at the dirty, or full price. b) covers the part of the next coupon payment not earned by seller. c) equals interest earned from the previous coupon to the sale date. If you were a police officer and you were called to a home to assist a family with mental illness. When you arrive the family states their loved one has recently begun showing signs of mental illness. They a lost and are seeking advice what referrals would you make? Is there a plan they could put in place? What is the relationship between the two highlighted angles? flying against the wind, an airplane travels 7840 kilometers in 8 hours. flying with the wind, the same plane travels 5280 kilometers in 4 hours. what is the rate of the plane in still air and what is the rate of the wind? Scientists are studying the temperature on a distant planet. They find that the surface temperature at one location is 45 Celsius. They also find that the temperature decreases by 7 Celsius for each kilometer you go up from the surface. Let T represent the temperature (in Celsius), and let H be the height above the surface (in kilometers). Write an equation relating T to H , and then graph your equation using the axes below. Suppose that the functions f and g are defined as follows. f(x)= x-6/x+5 g(x)= x/x+5. find f/g. Then, give its domain using an interval or union of intervals. simplify your answers. The description in the first sentence of the second and third paragraph primarily suggest that the event at the worksite mentioned in the first sentence of the second paragraph is contributions to charity are limited to a certain percentage of adjusted gross income. how long is the carry0over period for individuals to use any excess current charitable dedcution? Two segments of Parallelogram ABCD are shown below. Which coordinate pair BEST represents the location of Point D, the fourth vertex of Parallelogram ABCD? A. (6, 1) B. (7, 0) C. (8,2) D. (7,1) Which European nation held the most African colonies within east and Southeast Asia