Answer:
length: 21 cm
width: 16 cm
Step-by-step explanation:
. A rectangle has two lengths and two widths, or two sides that are vertical (up and down) and two sides that are horizontal (left and right)
. In order to find the perimeter we must add up all four side lengths.
. You can find the perimeter of a rectangle by adding the length and the width then multiplying by 2, because there are two of each side length.
P = 2(l+w)
In the question the perimeter is given, which is 74.
We can divide 74 by 2 so that we can find the sum of the length and width.
74/2 = 37
l + w = 37
In the question is states that the length is 5 inches longer than the width.
l = (5 + w)
There are two widths and two lengths in a rectangle, the measurement of the two lengths is 5 inches longer than the two widths.
5 + w + w = 37
5 + 2w = 37
Now that we have our equation we can solve for w, or the width.
1. Move the term containing the variable to the left
5 + 2w = 37
2w + 5 = 37
2. Subtract 5 from both sides of the equation, the opposite of adding 5
2w + 5 = 37
2w + 5 - 5 = 37 - 5
2w = 32
3. Divide by 2 in both sides of the equation, the opposite of multiplying 2
2w = 32
2w/2 = 32/2
4. Cancel out the 2s on the left, but leave the x
2w/2 = 32/2
w = 16
So, now that w, or the width = 16, we can find the length:
l = 5 + w
l = 5 + 16
l = 21
You can check your answer by plugging in our values into the original perimeter formula:
P = 2(l+w)
P = 2(21 + 16)
P = 2(37)
P = 74, so my answer is correct, because 74 is the perimeter given in the question.
Find the exact value of sin A and cos A where a = 9 and b = 10 and
Given data:
a=9 , b = 10
use the phythagoras theorem,
[tex]c=\sqrt[]{a^2+b}^2[/tex][tex]\begin{gathered} c=\sqrt[]{9^2+10^2} \\ c=\sqrt[]{81+100} \\ =\sqrt[]{181} \end{gathered}[/tex]thus,
[tex]\sin A=\frac{opp}{\text{hypo}}[/tex][tex]\text{sinA}=\frac{9}{\sqrt[]{181}}[/tex]and,
[tex]undefined[/tex]When you convert 0.0045 to scientific notation, the exponent will be
positive.
Or
negative.
Fill in the blanks to find other expressions for 8%a. __ for every 100, b. __for every 50, c. 1 for every __, d. 0.5 for every __. 150
Using ratios, the sentences regarding a percentage of 8% are given as follows:
a. 8 for every 100.
b. 4 for every 50.
c. 1 for every 12.5.
d. 0.5 for every 6.25.
Ratio between two amountsThe ratio between two amounts a and b is given by the division of a by b, as follows:
r = a/b.
One example of ratio is a percentage, as a percentage of x% is equivalent to the ratio of x to 100, that is:
r = x/100.
Hence a percentage of 8% is equivalent to the following ratio:
r = 8/100.
That is, 8 for every 8.
Ratios are fractions, and they can be simplified, dividing both the numerator and the denominator by the same amount, as is the case in this problem:
r = 4/50 (simplifying by 2, four for every 50).r = 1/12.5 (simplifying by 4, one for every 12.5).r = 0.5/6.25 (simplifying by 2, 0.5 for every 6.25).More can be learned about ratios at https://brainly.com/question/2328454
#SPJ1
Zaria is making pipe cleaner flowers for
her friends. She has 215 pipe cleaners.
How many flowers can she make with 3
pipe cleaners in each?
[?] flowers and pipe cleaners leftover
I
Answer
Enter
We can get the answer by dividing 215 by 3
What is dividing?
One of the four fundamental arithmetic operations, or ways to combine numbers to create new ones, is division. The other operations are multiplication, addition, and subtraction. The process of counting the instances in which one integer is included into the others is the most fundamental definition of the division of two natural numbers. This amount need not be an integer. For instance, if twenty apples are divided equally among four people, everyone will get five of them.
We can get the answer by dividing 215 by 3
215/3 = 71.67
Hence, 71 flowers are made
To know more about dividing, click on the link
https://brainly.com/question/1622425
#SPJ9
10 pts What is x and y intercept for the following equation? 8x + y = 12 A. x intercept = 0 y intercept = 4 B. x intercept = 12 y intercept = 0 C. x intercept = 4 y intercept = 6 D. x intercept = 3/4 y intercept = 12 OB ОА Oc
To find the x intercept of the equation make y=0 and solve for x.
[tex]\begin{gathered} 8x+y=12 \\ 8x=12 \\ x=\frac{12}{8} \\ x=\frac{6}{4} \\ x=\frac{3}{2} \end{gathered}[/tex]The x intercept is 3/2
To find the y intercept, make x=0 and solve for y
[tex]\begin{gathered} 8x+y=12 \\ 8(0)+y=12 \\ y\text{=}12 \end{gathered}[/tex]The y intercept is 12.
Transforming the graph of a function by shrinking or stretching
So,
From the graph of the function f(x), we can notice it contains the points:
[tex]\begin{gathered} f(2)=-4\to(2,-4) \\ f(-2)=-2\to(-2,-2) \end{gathered}[/tex]If we use the transformation, we obtain the new points:
[tex]\begin{gathered} f(\frac{1}{2}x)\to f(\frac{1}{2}(2))=f(1)=-\frac{7}{2}\to(2,-\frac{7}{2}) \\ f(\frac{1}{2}x)\to f(\frac{1}{2}(-2))=f(-1)=-\frac{5}{2}\to(-2,-\frac{5}{2}) \end{gathered}[/tex]All we need to do to graph the new line is to plot the points:
[tex](2,-\frac{7}{2})\text{ and }(-2,-\frac{5}{2})[/tex]And form a line that passes through them.
Trini Cars break down on the highway.show me estimates that she is 20 to 30 miles from the nearest car repair shop she calls a towing company that charges a fee of $80 plus $3 per mile to tow a car.if training uses this towing company, which is the best estimate for the amount of money,m,she will pay for the company to tow her car.a .103 greater than sign and greater than sign 113 b.140 greater than sign M greater than sign 150 c.114 greater than 5 m greater than 170 d. 560 greater than 10 m > 70
We have that the cost is $80 plus $3 per mile, and also we now that the car is 20 to 30 miles from the car repair shop. So we have that Trini have to pay
[tex]\begin{gathered} 80\text{ + 3(20) }\leq\text{ M }\leq\text{ 80 + 3(30)} \\ 80\text{ + 60 }\leq\text{ M }\leq\text{ 80 + 90} \\ 140\text{ }\leq\text{ M }\leq170 \end{gathered}[/tex]So the answer is: b.140 greater than sign M greater than sign 150.
What are the coordinates of the point on the directed line segment from (3,-3) to (7,5) thar oartitions the segment into a ratio of 5 to 3?
Answer:
(x, y) = (5.5, 2)
Explanation:
The coordinates of a point that divide the segment from point (x1, y1) to (x2, y2) into a ratio of a:b can be found using the following equations:
[tex]\begin{gathered} x=x_1+\frac{a}{a+b}(x_2-x_1) \\ y=y_1+\frac{a}{a+b}(y_2-y_1) \end{gathered}[/tex]So, replacing (x1, y1) by (3, -3), (x2, y2) by (7, 5) and the ratio a:b by 5:3, we get that the coordinates of the point are:
[tex]\begin{gathered} x=3+\frac{5}{5+3}(7-3) \\ x=3+\frac{5}{8}(4) \\ x=3+2.5=5.5 \\ y=-3+\frac{5}{5+3}(5-(-3)) \\ y=-3+\frac{5}{8}(5+3) \\ y=-3+\frac{5}{8}(8) \\ y=-3+5=2 \end{gathered}[/tex]Therefore, the coordinates of the point are (x, y) = (5.5, 2)
i have to find is they similar or not. help im lost
First we have to find the missing angle on each case.
In the first triangle we have
180°-(28°+80°)=72°
In the second triangle we have
180°-(28°+71°)=81°
Since the values of the angles are not the same for both triangles they are not similar.
Belinda wants to invest $1,000. The table below shows the value of her investment under two different options for three different years:
Number of years 1 2 3
Option 1 (amount in dollars) 1100 1200 1300
Option 2 (amount in dollars) 1100 1210 1331
Part A: What type of function, linear or exponential, can be used to describe the value of the investment after a fixed number of years using option 1 and option 2? Explain your answer. (2 points)
Part B: Write one function for each option to describe the value of the investment f(n), in dollars, after n years. (4 points)
Part C: Belinda wants to invest in an option that would help to increase her investment value by the greatest amount in 20 years. Will there be any significant difference in the value of Belinda's investment after 20 years if she uses option 2 over option 1? Explain your answer, and show the investment value after 20 years for each option. (4 points)
The result from using Option 2 will be significantly less than the result from using Option 1 over a period of 20 years.
Given,
Belinda wants to invest $1,000.
The Table is:
Number of years 1 2 3
Option 1 (amount in dollars) 1100 1200 1300
Option 2 (amount in dollars) 1100 1210 1331
Now, According to the question:
When the x-values are sequential (1, 2, 3, ...), the y-values will have a common difference for a linear function, and a common ratio for an exponential function.
For the two investment options, we notice Belinda earns 1300 -1000 = 300 the first year for either option. The difference is the same the next year for Option 2 (1600 -1300 = 300), but is not the same for Option 1. For that option, the ratio is the same for the second year as it was for the first year:
1690/1300 = 1.3 = 1300/1000
Part A :
(Option 1) can be represented by exponential function.
(Option 2) can be represented by a linear function.
Part B:
For Option 1:
To find the value of the investment f(n), in dollars, after n years.
The generic form of an exponential function is ...
f(n) = a·b^n
Now, Amount after 1 year = 1100
Principle (P) is = 1000
Using the formula :
A = P[tex](1+r)^n[/tex]
1100 = 1000[tex]([/tex][tex]1 + r)^1[/tex]
1.10 = 1 + r
r = 0.10
Amount after t years can be given by :
A = 1000(1.10)^t
For Option 2,
The generic form of an exponential function is ...
f(n) = a·n + b
Rate of change (m) = (1100 - 1000) / 1 = 100
Amount after t years can be given by
A = 1000 + 100 x t .
Part C:
Investment in (1) : 1000 [tex](1.10)^2^0[/tex]= $6727
Investment in (2): $3000
Hence, The result from using Option 2 will be significantly less than the result from using Option 1 over a period of 20 years.
Learn more about Investment at:
https://brainly.com/question/15353704
#SPJ1
What point in the feasible reign maximizes the objective function? constraints: x => 0 y => 0 y<= x - 4 x + y <= 6
Objective Function: C = 2x + y
The point in the feasible region maximizes the objective function is (5, 1)
How to determine the feasible region?The given parameters are
Objective function: C = 2x + y
Subject to (i.e. the constraints)
x >= 0, y >= 0
y <= x - 4, x + y <= 6
Represent y <= x - 4, x + y <= 6 as equations
y = x - 4 and x + y = 6
Substitute y = x - 4 in x + y = 6
So, we have
x + x - 4 = 6
Evaluate the like terms
2x = 10
This gives
x = 5
Substitute x = 5 in y = 6 - x
y = 6 - 5
Evaluate
y = 1
So, we have
(x, y)= (5, 1)
Hence, the coordinates is (5, 1)
Read more about objective functions at
https://brainly.com/question/14309521
#SPJ1
A spinner has the sections A through F. The spinner is spun and a 6-sided die is rolled. What is the probability that the outcome will be D and 5?1/361/181/121/6
To find the probability of having a D and %, we would use the concept of mutually exclusive events here
But probability is given as
[tex]P=\frac{\text{ number of favourable outcomes}}{\text{total number of }possible\text{ outcomes}}[/tex]The probability of choosing a D is
A, B, C, D, E and F. This can be found as
[tex]P_a=\frac{1}{6}[/tex]The probabilty of choosing a 5 out of 6 possible outcomes is
[tex]P_n=\frac{1}{6}[/tex]The probability of having a D and 5 would be
[tex]\begin{gathered} P=P_a\times P_n \\ P=\frac{1}{6}\times\frac{1}{6} \\ P=\frac{1}{36} \end{gathered}[/tex]From the calculations above, the answer to this question is 1/36
y - 7.8= 5.5 I got 2.9 but I want to be sure I understand and took the right steps
Given the equation:
[tex]y-7.8=5.5[/tex]You need to solve for "y" in order to find its value. In this case, you need to apply the Addition Property of Equality, which states that, if:
[tex]a=b[/tex]Then:
[tex]a+c=b+c[/tex]Therefore, you need to add 7.8 to both sides of the equation in order to solve for "y":
[tex]\begin{gathered} y-7.8+(7.8)=5.5+(7.8) \\ y=13.3 \end{gathered}[/tex]Hence, the answer is:
[tex]y=13.3[/tex]1.5 part 1 question 36 determine whether the graph represent a function explain your answer
Recall that for a graph to correspond to a graph it must pass the vertical line test. The vertical line test consists of drawing vertical lines and if two points of the graph are on the same vertical line then the graph does not represent a function.
Notice the following:
From the above graph, we get that points A B, and C are on the same vertical line, and the same happens for e and f, and m and n. Therefore the graph fails the vertical line test.
Answer: The graph does not represent a function.
Can you help me figure this out
By using the fact that the interior angles of a triangle must add up to 180, we will see that the value of x is 15.
How to get the value of x?Here we have 3 expressions for the measures of the interior angles of a triangle.
Now, remember that the sum of the interior angles of a triangle is always equal to 180°, then we can write:
(8x - 7)° + (x + 7)° + (2x + 15)° = 180°
Ignoring the degrees and solving this for x, we get:
8x - 7 + x + 7 + 2x + 15 = 180
11x + 15 = 180
11x = 180 - 15 = 165
x = 165/11 =15
The value of x is 15.
Learn more about interior angles:
https://brainly.com/question/24966296
#SPJ1
In a right triangle, if the hypotenuse is equal to 16 feet and the side adjacent to ∠θ is equal to 5 feet, what is the approximate measurement of ∠θ?
We have the diagram:
We use the trigonometric identity cosine:
[tex]\cos\theta=\frac{adjacent}{hypotenuse}[/tex]Substitute the values:
[tex]\begin{gathered} \cos\theta=\frac{5}{16} \\ \theta=\cos^{-1}(\frac{5}{16})=71.79 \end{gathered}[/tex]Answer: 71.79°
The semi annual compound interest of a sum of money in 1 year and 2years are Rs400 and Rs441 respectively.Find the annual compound interest for 2years
Answer:
Step-by-step explanation
Correct option is A)
C.I. for the third year = Rs. 1,452.
C.I. for the second year = Rs. 1,320
∴ S.I on Rs. 1,320 for one year = Rs. 1,452− Rs. 1,320= Rs. 132.
Rate of interest =
1,320
132×100
=10%.
Let the original money be Rs. P.
Amount after 2 year − amount after one year =C.I. for second year.
P(1+
100
10
)
2
−P(1+
100
10
)=1,320
P[(
100
110
)
2
−
100
110
]=1,320
⇒P[(
10
11
)
2
−
10
11
]=1,320⇒P(
100
121
−
10
11
)= Rs. 1,320
⇒P×
100
11
=Rs.1,320⇒P=
11
1,320×100
= Rs. 12,000
∴ Rate of interest =10%
and Original sum of money = Rs. 12,000
For the equation, complete the given table.
Answer:
Step-by-step explanation:
first row: 4
second: 2
third: 6
fourth: 9
plug in x for x in the equation/plug in y for y in the equation for whichever is given.
Division Properties of Exponents HW.
Given the expressions:
[tex]\begin{gathered} \frac{4^5}{4^2} \\ \text{and} \\ \frac{4^2}{4^5} \end{gathered}[/tex]we can use the following property for exponents in quotients:
[tex]\frac{a^n}{a^m}=a^{n-m}[/tex]in this case, we have the following:
[tex]\begin{gathered} \frac{4^5}{4^2}=4^{5-2}=4^3 \\ \text{and} \\ \frac{4^2}{4^5^{}}=4^{2-5}=4^{-3} \end{gathered}[/tex]then, the difference between both expressions is that when they are simplified, they get opposite signs on their exponents.
you pull with 45nm on a torque wrench of 1m what's the tourqe at the end
The torque at the end is equal to 45 Nm.
What is torque?Torque can be defined as a measure of the amount of force which causes a physical object to rotate about an axis. This ultimately implies that, torque is a force which tends to cause the rotation of a physical object about an axis.
Mathematically, torque can be calculated by using this formula:
τ = Fd
Where:
τ represents the torque.F represents the force.d represents the perpendicular distance.In this scenario, we can reasonably infer and logically deduce that the torque at the end would be equal to 45 Newton meter (Nm) because the force was not applied over a perpendicular distance.
Read more on torque here: brainly.com/question/17512177
#SPJ1
(Solve the problem & round to four decimal places as needed.)
SOLUTION
Given:
[tex]ln0.0664=-2.7121[/tex]Final answer:
-2.7121
How do I find the selling price if a store pays 3$ for a magazine. The markup is 5%
We need to find the selling price of a magazine. We know that the store pays $3 for it, and the markup is 5%.
So, we need to add 5% of the initial price to that initial price.
First, let's find:
[tex]5\%\text{ of }\$3=5\%\cdot\$3=\frac{5}{100}\cdot\$3=\frac{\$15}{100}=\$0.15[/tex]Now, adding the previous result to the initial price, we obtain:
[tex]\$3+\$0.15=\$3.15[/tex]Therefore, the selling price is $3.15.
3/4 divided by 3/5 how do you work the problem
We copy the first number, change the division sign to multiplication, then flip the second fraction
Cancel the three's
If you want to simplify the improper fraction, divide the numerator by the denominator
5/4 = 1 1/4
(8x+6)=mL(blank)
8x+6) =
8x=
x=
the L is an angle
The value of the unknown angle is as follows;
∠ = 62 degreesHow to find the unknown angle?When parallel lines are cut by a transversal line, angle relationships are formed such as corresponding angles, alternate angles, linear angles, vertically opposite angles etc.
Therefore, the angle 4 can be found as follows:
∠4 = 8x + 6 (alternate angles)
Hence,
8x + 6 + 118 = 180(sum of angles on a straight line)
8x = 180 - 118 - 6
8x = 56
divide both sides by 8
x = 56 / 8
x = 7
Therefore,
∠4 = 8(7) + 6 = 56 + 6 = 62 degrees
learn more on angle here: https://brainly.com/question/7153708
#SPJ1
21.) Determine the distance between the points (-2, 3) and (4,9).A 142B 7146C 413D 6V222.) Infigure
The distance formula can be represented below
[tex]\begin{gathered} c^{}=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \\ \end{gathered}[/tex]Therefore,
[tex]\begin{gathered} c=\sqrt[]{(4+2)^2+(9-3)^2} \\ c=\sqrt[]{(6)^2+(6)^2} \\ c=\sqrt[]{36+36} \\ c=\sqrt[]{72} \\ c=\sqrt[]{36\times2} \\ c=6\sqrt[]{2} \end{gathered}[/tex]The answer is D.
Identify the x intercept(s) from the graphType your answer using set notation {x,x} listing x values in order from least to greatest
The x-intercept is where the graph passes the x-axis.
The graph extends from {-5 ≤ x ≤ 3}
The x-intercept is {x = -1}.
how do you calculate the volume of water in a lake? given is the area of the lake at 1.35 km2 and its depth is 4.0 m
Given
Area of lake = 1.35 square km
Depth = 4.0m
Find
Volume of water in a lake
Explanation
Volume of water in a lake is given by
[tex]area\times depth[/tex]first we have to make the units same
as we know 1 square km = 1000000
so , 1.35 square km = 1.35 * 1000000= 1350000 square meter
so , volume of water in a lake =
[tex]\begin{gathered} volume=1350000\times4 \\ volume=5400000\text{ }cubic\text{ meter} \end{gathered}[/tex]Final Answer
Therefore , the volume of water in a lake is 5400000 cubic meter
find the sum to infinity 16,4,1,1/4
Answer:
The sum to infinity of the given series is;
[tex]S_{\infty}=21\frac{1}{3}[/tex]Explanation:
From the given series, we can see that the series is a Geometric Progression (GP) because it has a common ratio;
[tex]\begin{gathered} r=\frac{4}{16}=\frac{1}{4} \\ r=0.25 \end{gathered}[/tex]The formula to calculate the sum to infinity of a GP is;
[tex]\begin{gathered} S_{\infty}=\frac{a}{1-r} \\ \text{For;} \\ 0Where;a = first term = 16
r = common ratio = 0.25.
substituting we have;
[tex]\begin{gathered} S_{\infty}=\frac{16}{1-0.25}=\frac{16}{0.75} \\ S_{\infty}=21\frac{1}{3} \\ S_{\infty}=21.33 \end{gathered}[/tex]Therefore, the sum to infinity of the given series is;
[tex]S_{\infty}=21\frac{1}{3}[/tex]you guess there are 80 marbles in a jar but there are actually 50. what is the percent of error
Calculate value = 80
Actual value = 50
[tex]\begin{gathered} \text{Percentage error = }\frac{Calculated\text{ value - Actual vale}}{\text{Actual value}}\text{ X 100\%} \\ =\text{ }\frac{80\text{ - 50}}{50}\text{ x 100} \\ =\text{ }\frac{30\text{ x 100}}{50} \\ =\text{ }\frac{3000}{50} \\ =\text{ 60\%} \end{gathered}[/tex]Check each answer to see whether the students evaluated the expression correctly. If the answer is incorrect cross out the answer and write the correct answer. 8(x+2)when x= 68(6+2) = 48 +2 = 50
The answer is not correct. There is a mistake applying the distributive property.
The distributive property says:
[tex]a(b+c)=ab+ac[/tex]But in this case, the 8 only multiplies the 6, and not the 2. The correct procedure is:
[tex]8(6+2)=8\cdot6+8\cdot2=48+16=64[/tex]The correct answer is 64