The perimeter of ΔWXY is : ( D ) 14.5 cm
Calculating the perimeter of ΔWXY
QR = WY / 2
RS = XW / 2
QS = XY / 2
Given that : QR = 2.93 cm , RS = 2.04 cm, QS = 2.28 cm
Therefore
Perimeter of ΔWXY = ∑ WY + XW + XY
= 2SR + 2QS + 2QR
= 2(2.04) + 2(2.28) + 2(2.93)
= 14.5 cm
Hence we can conclude that the perimeter of ΔWXY = 14.5 cm
learn more about perimeter calculations : https://brainly.com/question/24744445
Answer:
The name of the shape on the right is M prime N prime O prime P prime Q prime R prime S prime because it is the image of the shape on the left.
Explanation:
who made the first game
A William Shakespeare
B Horace Alexander
C Doris Twitchell Allen
D William higginbotham
Which type of border shows the division between Sonora and Chihuahua?
National border
State border
Physical boundary
Natural boundary
*
as the mass of an object increases, the force of attraction...
Answer:
Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.
Answer:
thanks
Explanation:
for answer byebye
how to find velocity of center of mass before and after the collision
Hey there! I'll try to provide you with my best answer.
Answer: In a collision, the velocity change is always computed by subtracting the initial velocity value from the final velocity value. If an object is moving in one direction before a collision and rebounds or somehow changes direction, then its velocity after the collision has the opposite direction as before.
A crate slides down a ramp that makes a 20∘ angle with the ground. To keep the crate moving at a steady speed, Paige pushes back on it with a 68 N horizontal force.
Part A
How much work does Paige do on the crate as it slides 3.0 m down the ramp?
Answer:
the answer is 69.7687j
Explanation:
W =F sin Φ
define one kilogram mass
Answer:
kg - one thousand grams; the basic unit of mass adopted under the Systeme International d'Unites; "a kilogram is approximately 2.2 pounds"
Explanation:
can someone explain it with steps?
A car was moving on a road at a constant speed of 15 m/s when suddenly the car driver saw some animal on the road at a distance of 21 m from the car, so he applied the brakes after a response time of 0.4 s and stopped before hitting the animal by 1 m. What was the deceleration of the car?
a-7.5 m/s^2
b-5.2 m/s^2
c-8.0 m/s^2
d-5.6 m/s^2
Answer:
Option C is the correct answer
Explanation:
Distance travelled by car during reaction time
[tex]=15\times0.4\\\\=6m[/tex]
The car stopped before hitting the animal by [tex]1 m[/tex]
Distance travelled during deceleration is [tex]21-6-1=14m[/tex]
Hence by [tex]v^2=u^2+2as[/tex]
We have
[tex]0^2=15^2+2 \cdot a \cdot 14\\\\a=\frac{-225}{28} \\\\=-8.03m/s^2[/tex]
Option C is the correct answer
Distance traveled during reaction time
15(0.4)=6mTotal distance
21-6-1=14m[tex]\\ \sf\longmapsto v^2-u^2=2as[/tex]
[tex]\\ \sf\longmapsto -(15)^2=2(14)a[/tex]
[tex]\\ \sf\longmapsto -225=28a[/tex]
[tex]\\ \sf\longmapsto a=-8.0m/s^2[/tex]
Two gravitational forces act on a
given object. How do you determine the total gravita-
tional force acting on the object?
Answer:
Explanation:
Depends on the location of the two forces. If they are aligned on the same side of the object, you would simply add.
X -----------F1 -------F2
X is the object. F1 and F2 are both masses which create a gravitational force. They both are the form of Fx = G * m1 * m2 / r^2. The total force is F1 + F2
If they are are on either side of the object, you subtract.
F1 ---------X ---------F2
Fx = F1 - F2
Any other location of F1 and F2 is much more complicated by the use of trigonometry.
NEED HELP ASAP PLEASE
The drop time can be calculated as follows t = sqrt((2y)/g) where y is the vertical height of the table and g is the acceleration due to gravity (9.80 m/)How did the calculated drop time compare to the average of your measured drop times? Find the percent error using the following equation measured drop time - calculated drop time % 100 calculated drop time What factors might cause the differences?
did you end up getting the answer- im struggling
Answer:
I would think human error could cause differences like not pressing the stop watch on time.
Explanation:
Ciara is swinging a 0.015 kg ball tied to a string around her head in a flat, horizontal circle. The radius of the circle is 0.50 m. It takes the ball 0.70 seconds to complete one full circle. Calculate the tension in the string and its direction that provides the centripetal force acting on the ball to keep it in the circular path. (3 points)
0.60 N, along the line tangent to the circle
0.015 N, along the line tangent to the circle
0.60 N, toward the center of the circle
0.015 N, toward the center of the circle
Answer:
0.60N along the line tangent to the circle
Answer:
A is the answer
Explanation:
Just got finished with the quiz! Hope this helps <3
What will happen if the two plungers are pressed together firmly? Explain your answer.
Answer:
This air being forced out causing the air pressure inside to be much lower than that on the outside. As higher air pressure always pushes, it keeps the two plungers together.
Hope that helps. x
can someone explain it please?
Answer:
The answer is 9.4 m/s
Explanation:
Because you add 5.0 + 4.5= 9.4
what are two variables that are always in every experiment?
the independent variable and the dependent variable.
Which image shows an example of the electromagnetic force in action?
Answer:
Where are the images?
Explanation:
I can't help if there is no image(s) to this question.
given the formula p=mv what are the units of p
Answer:
They are kg * m/s.
The unit of the momentum p would be kg × m/s..
What is momentum?Momentum is defined as the ability or tendency of an object to continue moving.
Also momentum is the product of mass and velocity. It can be shown as follows;
p = m × v
where,
p = momentum
m = mass
v = velocity
Thus, we can conclude that the formula p = mv show the relationship between momentum, mass, and velocity.
Now the unit of the momentum p would be;
p = m × v
p = kg × m/s
Hence, the unit of the momentum p would be kg × m/s.
Learn more about the momentum here;
https://brainly.com/question/9073119
#SPJ2
Here's a question from ~ [ AIEEE 2002 ]
The minimum velocity ( in m/s ) with which a car driver must traverse a flat curve of radius 150 m and Coefficient of friction 0.6 to avoid skidding is ~
[ I'm looking for Proper Information, and please don't get it from any Website ]
Thanks for Answering !
As car is avoid skidding
[tex]\\ \sf\hookrightarrow \dfrac{mv^2}{r}=\mu mg[/tex]
Cancel m[tex]\\ \sf\hookrightarrow \dfrac{v^2}{r}=\mu g[/tex]
[tex]\\ \sf\hookrightarrow v^2=\mu rg[/tex]
[tex]\\ \sf\hookrightarrow v^2=0.6(10)(150)[/tex]
[tex]\\ \sf\hookrightarrow v^2=60(150)[/tex]
[tex]\\ \sf\hookrightarrow v^2=900[/tex]
[tex]\\ \sf\hookrightarrow v=30ms^{-1}[/tex]
Done
The minimum velocity of the with which the car driver must traverse the flat curve to avoid skidding is 29.7 m/s.
The given parameters:
Radius of the curve, r = 150 mCoefficient of friction, μ = 0.6The minimum velocity of the with which the car driver must traverse the flat curve to avoid skidding is calculated as follows;
[tex]\frac{mv^2}{r} = \mu mg\\\\v^2 = \frac{\mu mgr}{m} \\\\v^2 = \mu gr\\\\v = \sqrt{\mu gr} \\\\v = \sqrt{0.6 \times 9.8 \times 150} \\\\v = 29.7 \ m/s[/tex]
Thus, the minimum velocity of the with which the car driver must traverse the flat curve to avoid skidding is 29.7 m/s.
Learn more about banked roads here: https://brainly.com/question/14777525
how to prove the first linear motion
Answer:
Then solve for v as a function of t. This is the first equation of motion . It's written like a polynomial — a constant term (v0) followed by a first order term (at). Since the highest order is 1, it's more correct to call it a linear function.
Explanation:
What does the diagram show about X and Y?
A They have the same mass and the same volume but different weights.
B They have the same mass and the same weight but different volumes.
C They have the same mass, the same volume and the same weight.
D They have the same weight and the same volume but different masses.
Answer: answer is c rest of explanation is in the comments
Kepler’s laws of planetary motion describe each of the three laws
Kepler's laws laid the foundation for the early study of astronomy.
Kepler was one of the earliest astronomers that contributed immensely to the study of the planets. The Kepler's laws of planetary motion are as follows;
The planets each travel along an ellipse with the sun at one focus.The line joining the sun and the planets sweeps out equal areas in equal time intervals.The square of the period of the revolution of the planets equals the cube of the planet's mean distance from the sun.Learn more about Kepler's laws; https://brainly.com/question/1017661
If the density of gold is 19.3 g/mL, what is the mass of 5mL of gold?
Answer:
96.5 mL
Explanation:
What is the velocity of a dropped object after it has fallen for 3.0 s?
Answer:
30 m/s.
Explanation:
Given that the mass of a liquid is 0.01kg and the volume of the liquid is 0.05m^3 . Calculate the density of the liquid
A) 2kg/m^3
B)0.2kg/m^3
C) 5kg/m^3
D) 0.5kg/m^3
Answer:
B.
Explanation:
Density = mass / volume
= 0.01/0.05
= 0.2 kg/m^3.
What is velocity? Explain.
Answer:
The velocity of an object is the rate of change of its position with respect to a frame of reference, and is a function of time. Velocity is equivalent to a specification of an object's speed and direction of motion (e.g. 60 km/h to the north).a 3 kg rock is falling from a rock ledge in the absence of air resistance how much force will the rock strikes the ground with
Answer:
papi sus
Explanation:
A 150 g sample of brass at 100 °C is placed in a Styrofoam cup of water containing 120 mL of water at 10 °C. No heat is lost to the cup or surroundings. What is the final temperature of the mixture? answer in celsius
Answer:
≈19.144°C.
Explanation:
all the details are in the attachment.
Note, that c₁, m₁, t₁ are the parameters of the sample of brass; c₂, m₂ and t₂ are the parameters of the sample of water.
P.S. change the provided design according Your requirements.
Help it multiple-choice 16 and 17 only
Answer:
16. c
17. d
Explanation:
16. Newton’s third law states that a force will always have an opposite but equal force as a reaction, so every force comes as a pair of action-reaction forces. For example, if you push on a book, the book also pushes on you.
17. If 1cm represents 15N, then 5cm must represent 15N*5=75N.
A heating curve is a graph that shows the temperature change of a substance as
thermal energy is introduced.
True
False
Answer:
This statement is true, a heating curve is a graph that shows the temperature change of a substance as thermal energy is introduced.
A heating curve is a graph that represents the temperature change of a substance as thermal energy is introduced.
What is the heating curve?The heating curve can be described as the relationship between the heating supply temperature and the outside air temperature of the system. The heating curve gives what temperature the boiler is to heat the water at an outdoor temperature.
Heating curves indicate how the temperature changes as a substance are heated up. Cooling curves are generally the opposite of the heating curve. They indicate how the temperature changes as a substance are cooled down. Similar to heating curves, cooling curves have horizontal parts where the state transforms from gas to liquid/ from liquid to solid.
The heating curve represents the material in phases of solid, liquid, and gas. As this graph is a plot of T v/s q, the slope is 1/mC. As the heating continues, the solid substance melts. During this time the temperature remains constant. The length of the line can be described as the amount of heat required to melt the solid.
Learn more about the heating curve, here:
https://brainly.com/question/27018999
#SPJ2
how to read a micrometer on a clark cm-100 vickers hardness tester
Answer:
Explanation:
Equipment manufactured by LECO(8 Corporation, St. Joseph, Michigan is warranted free from defect in material
and workmanship for a period of six months from the date of purchase. Equipment not manufactured by LECO is
covered to the extent of warranty provided by the original manufacturer and this warranty does not cover any
equipment, new or used, purchased from anyone other than the LECO Corporation. All replacement parts shall
be covered under warranty for a period of thirt days from date of purchase. LECO MAKES NO OTHER
REPRESENTATION OR WARRANTY OF ANY OTHER KIND, EXPRESSED OR IMPLIED, WITH RESPECT TO
THE GOODS SOLD HEREUNDER, WHETHER AS TO MERCHANTABILITY, FITNESS FOR PURPOSE, OR
OTHERWISE.
Expendable items such as crucibles, combustion tubes, chemicals and items of like nature are not covered by
this warranty.
LECO's sole obligation under this warranty shall be to repair or replace any part or parts which, to our
satisfaction, prove to be defective upon return prepaid to LECO Corporation, St. Joseph, Michigan. This
obligation does not include labor to install replacement parts, nor does it cover any failure due to accident, abuse,
neglect, or use in disregard of instructions furnished by LECO. In no event shall damages for defective goods
exceed the purchase price of the goods, and LECO SHALL NOT BE LIABLE FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER.
All claims in regard to the parts or equipment must be made within ten (10) days after Purchaser learns of the
facts upon which the claim is based. Authorization must be obtained from LECO prior to returning any other
parts. This warranty is voided by failure to comply with these notice requirements.
NOTICE
The warranty on LECO equipment remains valid only when genuine LECO replacernent parts are employed.
Since LECO has no control over the quality or purity of consumable products not manufactured by LECO, the
specifications for accuracy of results using LECO instruments are not guaranteed unless genuine LECO
consumables are employed in conjunction with LECO instruments. If purchaser defaults in making payment for
any parts or equipment, this warranty shall be void and shall not apply to such parts and equipment. No late
payment or cure of default in payment shall extend the warranty period provided herein.
LECO Corporation is not responsible for damage to any associated instruments, equipment or apparatus nor wil
LECO be held liable for loss of profit or other special damages resulting from abuse, neglect, or use in disregard
of instructions. The Buyer, their employees, agents and successors in interest assume all risks and liabilities for
the operation, use and/or misuse of the product(s) described herein and agree to indemnify, hold harmless and
defend the seller from any and all claims and actions arising from any cause whatsoever, including seller's
negligence for personal injury incurred in connection with the use of said product(s) and any and all damages
proximately resulting therefrom.
CAUTION
The instrument should be operated only by technically qualified individuals who have fully read and understand
these instructions. The instrument should be operated only in accordance with these instructions.
The operator should follow all ,of the warnings and cautions set forth in the manual and the operator should follow
and employ all applicable standard laboratory safety procedures.
LECO'" is a registered trademark of the LECO Corporatio
The mass of a car is 2000 lbs, and is traveling 100 mi/hr on the freeway, what is its momentum?
Answer:
momentum= 145999324.8(kg(m/s))
Explanation:
formula for momentum: p=mv
where p= momentum, m=mass, and v=velocity.
p=2000lbs(100mi/hr)
The standard unit for mass is kg
2000lbs=907.2kg
standard unit for velocity is meters/sec
100mi=160934meters.
907.2kg(160934m/s)=145999324.8
Use this table of a school bus during morning pickups to calculate its average speed between 0 h and 2.340 h.
Position (km) Time (h)
0.0 0.000
1.2 0.024
2.8 0.051
4.2 0.084
16.3 2.340
The average speed between 0 h and 2.340 h is 6.97 Km/h
Average speed is defined as the total distance travelled divided by the total time taken to cover the distance.
[tex]Average \: speed = \frac{total \: distance}{total \: time} \\ \\ [/tex]
With the above formula, we can obtain the average speed between 0 h and 2.340 h as illustrated below:
Total time = 2.340 – 0 = 2.340 hTotal distance = 16.3 – 0 = 16.3 KmAverage speed =?[tex]Average \: speed = \frac{total \: distance}{total \: time} \\ \\Average \: speed = \frac{16.3}{2.340} \\ \\ Average \: speed = 6.97 \: Km/h \\ \\ [/tex]
Learn more about average speed: https://brainly.com/question/24884027
Answer:
6.983 km/hr
Explanation:
The average rate of change is (16.34 - 0.0)/(2.34 - 0.000) ≈ 6.983 km/hr
Mejor yo por favor