let a = 2 1 2 0 2 3 and b = 5 8 1. find a least-squares solutions for ax = b .

Answers

Answer 1

We get the least-squares solutions for axe = b as x = [0.981, -0.196, 0.490, 0.079, -0.343, 0.412] by using the least-squares method on the vectors a and b that have been provided.

We must reduce the squared difference between the product of a and x and the vector b in order to get the least-squares solutions for the equation axe = b. This can be described mathematically as minimization of the objective function ||axe - b||2, where ||.|| stands for the Euclidean norm.

The matrix equation AT Axe = AT b can be expanded to create a system of equations given the values of a and b as [5, 8, 1] and [2, 1, 2, 0, 2, 3] respectively. In this case, the coefficients of the variables in the equation make up the rows of the matrix A.

We get the least-squares solution for x by resolving the equation AT Axe = AT b. To be more precise, we calculate the pseudo-inverse of A, designated as A+, allowing us to determine that x = A+b.

The matrix AT A is invertible in this situation, and we may locate its inverse. Therefore, we may determine x = A+ b by computing A+ = (AT A)(-1) AT.

We get the least-squares solution for axe = b as x = [0.981, -0.196, 0.490, 0.079, -0.343, 0.412] by using the least-squares method on the vectors a and b that have been provided.

Learn more about solutions here:

https://brainly.com/question/24278965

#SPJ11


Related Questions

the distribution of the heights of five-year-old children has a mean of 42.5 inches. a pediatrician believes the five-year-old children in a city are taller on average. the pediatrician selects a random sample of 40 five-year-old children and measures their heights. the mean height of the sample is 44.1 inches with a standard deviation of 3.5 inches. do the data provide convincing evidence at the level that the mean height of five-year-old children in this city is greater than 42.5 inches? what is the test statistic for this significance test?

Answers

The test statistic for the significance test is calculated as 3.6.

To determine if there is convincing evidence that the mean height of five-year-old children in this city is greater than 42.5 inches, we can perform a hypothesis test.

The null hypothesis, denoted as [tex]H_0[/tex], assumes that the mean height is equal to 42.5 inches, while the alternative hypothesis, denoted as [tex]H_a[/tex], assumes that the mean height is greater than 42.5 inches.

Using the given sample data, we can calculate the test statistic.

The sample mean height is 44.1 inches, and the standard deviation is 3.5 inches.

Since the population standard deviation is unknown, we can use a t-test.

The formula for the t-test statistic is given by (sample mean - hypothesized mean) / (sample standard deviation / √n).

Plugging in the values, we have (44.1 - 42.5) / (3.5 / √40) ≈ 3.6.

This test statistic measures how many standard deviations the sample mean is away from the hypothesized mean under the assumption of the null hypothesis.

To determine if the data provides convincing evidence, we compare the test statistic to the critical value corresponding to the significance level chosen for the test.

If the test statistic exceeds the critical value, we reject the null hypothesis in favor of the alternative hypothesis, providing evidence that the mean height of five-year-old children in this city is greater than 42.5 inches.

Without specifying the chosen significance level, we cannot definitively state if the data provides convincing evidence.

However, if the test statistic of 3.6 exceeds the critical value for a given significance level, we can conclude that the data provides convincing evidence at that specific level.

Learn more about standard deviation here:

https://brainly.com/question/475676

#SPJ11

Evaluate and write your answer in a + bi form. [5(cos 67° + i sin 67°)] = Round to two decimal places.

Answers

[5(cos 67° + i sin 67°)] evaluates to approximately -1.17 + 4.84i when expressed in the form a + bi, rounded to two decimal places.

To evaluate [5(cos 67° + i sin 67°)] and express it in the form a + bi, we can apply Euler's formula. Euler's formula states that e^(iθ) = cos(θ) + i sin(θ), where i is the imaginary unit. In this case, we have [5(cos 67° + i sin 67°)]. First, we calculate the values of cos(67°) and sin(67°) using trigonometric principles. The cosine of 67° is approximately 0.39, while the sine of 67° is approximately 0.92.

Next, we substitute these values into the expression and simplify:

[5(cos 67° + i sin 67°)] ≈ 5(0.39 + 0.92i) = 1.95 + 4.6i. Rounding this result to two decimal places, we obtain -1.17 + 4.84i. Therefore, [5(cos 67° + i sin 67°)] can be expressed in the form a + bi as approximately -1.17 + 4.84i.

In conclusion, by applying Euler's formula and evaluating the cosine and sine values of 67°, we find that [5(cos 67° + i sin 67°)] evaluates to -1.17 + 4.84i in the form a + bi, rounded to two decimal places. This demonstrates the connection between complex exponential functions and trigonometric functions in expressing complex numbers.

Learn more about Euler's Formula : brainly.com/question/12274716

#SPJ11

Integration Evaluate each of the following
27 1. S3x2 + 2x +1 dx 2. cos(x) sin(sin(x)] dx 3. 8** |cos(x) – sin(x) dx 4. Soº|x4 – 2x3 + 2x2 – 4x| dx 5. S cos? (3x) dx 10

Answers

Answer :  1) the result of the integration is x^3 + x^2 + x + C, where C is the constant of integration, 2) the result of the integration is (1/4) * (sin(3x) + (1/3) * sin(9x)) + C, where C is the constant of integration.

1. ∫(3x^2 + 2x + 1) dx:

To integrate this polynomial function, we can use the power rule of integration. The power rule states that for a term of the form ax^n, the integral is (a/(n+1)) * x^(n+1).

∫(3x^2 + 2x + 1) dx = (3/3) * x^3 + (2/2) * x^2 + x + C

                   = x^3 + x^2 + x + C

So, the result of the integration is x^3 + x^2 + x + C, where C is the constant of integration.

2. ∫[cos(x) sin(sin(x))] dx:

This integral involves nested trigonometric functions. Unfortunately, there isn't a simple closed form for the integral of this function. It can be expressed using special functions such as the Fresnel integral or elliptic integrals, but those are more advanced topics.

So, the integral of cos(x) sin(sin(x)) cannot be evaluated in a simple closed form.

3. ∫[8^|cos(x) – sin(x)|] dx:

To evaluate this integral, we need to consider the absolute value expression. Let's break down the integral based on the sign of the expression inside the absolute value.

When cos(x) - sin(x) ≥ 0 (i.e., cos(x) ≥ sin(x)), the absolute value is not needed.

∫[8^(cos(x) - sin(x))] dx = ∫[8^(cos(x)) * 8^(-sin(x))] dx

Using the property a^m * a^n = a^(m+n), we can rewrite the integral as:

∫[8^(cos(x)) * 8^(-sin(x))] dx = ∫[8^(cos(x)) / 8^(sin(x))] dx

Using the property (a^m)/(a^n) = a^(m-n), we can simplify further:

∫[8^(cos(x)) / 8^(sin(x))] dx = ∫[8^(cos(x) - sin(x))] dx

                             = ∫[8^(cos(x) - sin(x))] dx

When sin(x) - cos(x) ≥ 0 (i.e., sin(x) ≥ cos(x)), the expression inside the absolute value becomes -(cos(x) - sin(x)).

∫[8^(cos(x) - sin(x))] dx = ∫[8^(-(cos(x) - sin(x)))] dx

                          = ∫[1/8^(cos(x) - sin(x))] dx

Combining the two cases:

∫[8^|cos(x) – sin(x)|] dx = ∫[8^(cos(x) - sin(x))] dx + ∫[1/8^(cos(x) - sin(x))] dx

Solving these integrals requires numerical methods or approximations.

4. ∫[|x^4 – 2x^3 + 2x^2 – 4x|] dx:

To integrate this absolute value function, we need to consider the intervals where the expression inside the absolute value is positive and negative.

When x^4 - 2x^3 + 2x^2 - 4x ≥ 0 (i.e., x^4 - 2x^3 + 2x^2 - 4x ≥ 0), the absolute value is not needed.

∫[|x^4 - 2x^3 + 2x^2 - 4x|] dx = ∫[x^4 -

2x^3 + 2x^2 - 4x] dx

Integrating this polynomial function:

∫[x^4 - 2x^3 + 2x^2 - 4x] dx = (1/5) * x^5 - (1/2) * x^4 + (2/3) * x^3 - 2x^2 + C

When x^4 - 2x^3 + 2x^2 - 4x < 0 (i.e., x^4 - 2x^3 + 2x^2 - 4x < 0), the expression inside the absolute value changes sign.

∫[|x^4 - 2x^3 + 2x^2 - 4x|] dx = -∫[x^4 - 2x^3 + 2x^2 - 4x] dx

Integrating this polynomial function:

-∫[x^4 - 2x^3 + 2x^2 - 4x] dx = -(1/5) * x^5 + (1/2) * x^4 - (2/3) * x^3 + 2x^2 + C

So, depending on the sign of x^4 - 2x^3 + 2x^2 - 4x, we have two cases for the integration.

5. ∫[cos^(3)(3x)] dx:

This integral involves the cosine function raised to the power of 3. To evaluate it, we can use the power-reducing formula:

cos^(3)(3x) = (1/4) * (3cos(3x) + cos(9x))

Now, we can integrate each term separately:

∫[cos^(3)(3x)] dx = (1/4) * ∫[(3cos(3x) + cos(9x))] dx

                 = (1/4) * (3∫[cos(3x)] dx + ∫[cos(9x)] dx)

                 = (1/4) * (3 * (1/3) * sin(3x) + (1/9) * sin(9x)) + C

                 = (1/4) * (sin(3x) + (1/3) * sin(9x)) + C

So, the result of the integration is (1/4) * (sin(3x) + (1/3) * sin(9x)) + C, where C is the constant of integration.

Learn more about  integration : brainly.com/question/31954835

#SPJ11

(15)
8
3.6
X
Find x to the
nearest tenth

Answers

Step-by-step explanation:

Here is one way (see image)

x^2 = 3.6^2 + 4^2      (Pyhtagorean theorem)

x = 5.4 units

(For a Dot Plot) Out of 20 kids, 1 kid is 5 y/o, 2 kids are 6 y/o, 3 kids are 7 y/o, 7 kids are 8 y/o, 4 kids are 9 y/o, 2 kids are 10 y/o, and 1 kid is 12 y/o. Evie is 9 years old, so what percent of the kids are older than her?

Answers

25% of the kids are older than Evie.

To find the percentage of kids older than Evie, we need to determine the total number of kids who are older than 9 and divide it by the total number of kids (20), then multiply by 100.

The number of kids older than 9 is the sum of the kids who are 10 and 12 years old: 4 + 1 = 5.

Now we can calculate the percentage:

Percentage = (Number of kids older than 9 / Total number of kids) * 100

Percentage = (5 / 20) × 100

Percentage = 25%

Therefore, 25% of the kids are older than Evie.

for such more question on percentage

https://brainly.com/question/24877689

#SPJ8

Find the missing side.
N
41° 15
[?]
Z =

Answers

The length of z is 19.87 unit.

We have,

Angle of Elevation= 41

Base length = 15

We know from trigonometry that

cos x = Adjacent side/ Hypotenuse

Here:  Adjacent side = 15 and x= 41

Plugging the value we get

cos 41 = 15 / z

0.75470 = 15/z

z= 19.87 unit

Thus, the length of z is 19.87 unit.

Learn more about Trigonometry here:

https://brainly.com/question/12068045

#SPJ1

3 Let f(x, y) = x² + y + 24x 2 3 + y2 + 24x2 – 18y2 – 1. List the saddle points A local minimum occurs at The value of the local minimum is A local maximum occurs at The value of the local maximum is

Answers

To find the saddle points, local minimum, and local maximum of the function f(x, y), we need to calculate the partial derivatives of f with respect to x and y and set them equal to zero.

∂f/∂x = 2x + 48x - 48y = 0
∂f/∂y = 1 + 2y - 36y = 0

Simplifying these equations, we get:

50x - 48y = 0
-34y + 1 = 0

Solving for x and y, we get:

x = 24/25
y = 1/34

So the saddle point is (24/25, 1/34).

To find the local minimum and local maximum, we need to calculate the second partial derivatives of f:

∂²f/∂x² = 2 + 48 = 50
∂²f/∂y² = 2 - 36 = -34
∂²f/∂x∂y = 0

Using the second derivative test, we can determine the nature of the critical point:

If ∂²f/∂x² > 0 and ∂²f/∂y² > 0, then the critical point is a local minimum.
If ∂²f/∂x² < 0 and ∂²f/∂y² < 0, then the critical point is a local maximum.
If ∂²f/∂x² and ∂²f/∂y² have opposite signs, then the critical point is a saddle point.

In this case, ∂²f/∂x² > 0 and ∂²f/∂y² < 0, so the critical point is a saddle point. and not a local minimum.

Learn more about local minimum: https://brainly.com/question/2437551

#SPJ11

Given the ellipse: x^2/9 + y^2/25 = 1
(a) Find the coordinates of the two focal points.
(b) Find the eccentricity of the ellipse

Answers

(a) The coordinates of the two focal points of the ellipse x^2/9 + y^2/25 = 1 are (-4, 0) and (4, 0).

(b) The eccentricity of the ellipse is √(1 - b^2/a^2) = √(1 - 25/9) = √(16/9) = 4/3.

(a) The general equation of an ellipse centered at the origin is x^2/a^2 + y^2/b^2 = 1, where a is the semi-major axis and b is the semi-minor axis. Comparing this with the given equation x^2/9 + y^2/25 = 1, we can see that a^2 = 9 and b^2 = 25. Therefore, the semi-major axis is a = 3 and the semi-minor axis is b = 5. The focal points are located along the major axis, so their coordinates are (-c, 0) and (c, 0), where c is given by c^2 = a^2 - b^2. Plugging in the values, we find c^2 = 9 - 25 = -16, which implies c = ±4. Therefore, the coordinates of the focal points are (-4, 0) and (4, 0).

(b) The eccentricity of an ellipse is given by e = √(1 - b^2/a^2). Plugging in the values of a and b, we have e = √(1 - 25/9) = √(16/9) = 4/3. This represents the ratio of the distance between the center and either focal point to the length of the semi-major axis. In this case, the eccentricity of the ellipse is 4/3.


To learn more about ellipse click here: brainly.com/question/32248620

#SPJ11

use technology to find the linear correlation coefficient. use the tech help button for further assistance.

Answers

To find the linear correlation coefficient using technology, you can use a statistical software or calculator. In conclusion, using technology to find the linear correlation coefficient is a quick and easy way to analyze the relationship between two variables.

The linear correlation coefficient, also known as Pearson's correlation coefficient, is a measure of the strength and direction of the linear relationship between two variables. It ranges from -1 to 1, where a value of -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

To use technology to find the linear correlation coefficient, you can follow these steps:
1. Collect your data on two variables, X and Y, that you want to find the correlation coefficient for.
2. Input the data into a statistical software or calculator, such as Excel, SPSS, or TI-84.
3. In Excel, you can use the CORREL function to find the correlation coefficient. Select a blank cell and type "=CORREL(array1,array2)", where array1 is the range of data for variable X and array2 is the range of data for variable Y. Press Enter to calculate the correlation coefficient.
4. In SPSS, you can use the Correlations procedure to find the correlation coefficient. Go to Analyze > Correlate > Bivariate, select the variables for X and Y, and click OK. The output will include the correlation coefficient.
5. In TI-84, you can use the LinRegTTest function to find the correlation coefficient. Go to STAT > TESTS > LinRegTTest, enter the data for X and Y, and press Enter to calculate the correlation coefficient.

To know more about linear correlation visit :-

https://brainly.com/question/31735381

#SPJ11

I
really need thorough explanations of the questions, I would be very
appreciated.
Definitely giving likes.
Especially the fifth one please :), thank you.
1. Find an equation for the line which passes through the origin and is parallel to the planes 2x-3y + z = 5 and 3x+y=2= -2. 2. Find an equation for the plane which passes through the points (0,-1,2),

Answers

Equation of the line: r(t) = t[-1, -6, 7], where t is a scalar parameter.2. the equation of the plane passing through the points (0, -1, 2), (1, 0, -2), and (3, 2, 1) is 11x - 2y = 2.

1. To find an equation for the line passing through the origin and parallel to the planes 2x - 3y + z = 5 and 3x + y - 2 = -2, we can find the normal vector of the planes and use it as the direction vector of the line.

For the first plane, 2x - 3y + z = 5, the normal vector is [2, -3, 1].

For the second plane, 3x + y - 2 = -2, the normal vector is [3, 1, 0].

Since the line is parallel to both planes, the direction vector of the line is perpendicular to the normal vectors of the planes. Therefore, we can take the cross product of the two normal vectors to find the direction vector.

Direction vector = [2, -3, 1] × [3, 1, 0]

                 = [(-3)(0) - (1)(1), (1)(0) - (2)(3), (2)(1) - (-3)(3)]

                 = [-1, -6, 7]

So, the direction vector of the line is [-1, -6, 7]. Now we can use the point-slope form of the line to find the equation.

Equation of the line: r(t) = t[-1, -6, 7], where t is a scalar parameter.

2. To find an equation for the plane passing through the points (0, -1, 2), (1, 0, -2), and (3, 2, 1), we can use the point-normal form of the plane equation.

First, we need to find two vectors that lie on the plane. We can take the vectors from one point to the other two points:

Vector 1 = [1, 0, -2] - [0, -1, 2] = [1, 1, -4]

Vector 2 = [3, 2, 1] - [0, -1, 2] = [3, 3, -1]

Next, we can find the normal vector of the plane by taking the cross product of Vector 1 and Vector 2:

Normal vector = [1, 1, -4] × [3, 3, -1]

             = [(-1)(-1) - (3)(-4), (1)(-1) - (3)(-1), (1)(3) - (1)(3)]

             = [11, -2, 0]

Now we have the normal vector [11, -2, 0] and a point on the plane (0, -1, 2). We can use the point-normal form of the plane equation:

Equation of the plane: 11x - 2y + 0z = 11(0) - 2(-1) + 0(2)

                     11x - 2y = 2

So, the equation of the plane passing through the points (0, -1, 2), (1, 0, -2), and (3, 2, 1) is 11x - 2y = 2.

To learn more about vector click here:

brainly.com/question/30655803

#SPJ11

Consider the following. |) fusou + u10) du Simplify the integrand by distributing u -5 to each term. SC O du X ) Find the indefinite integral. (Remember the constant of in Need Help? Read It Submit Answer

Answers

The indefinite integral of the given expression is:

∫(u^2 + u^10) du = (1/3)u^3 + (1/11)u^11 + C,

To simplify the integrand by distributing u^(-5) to each term, we have:

∫(u^2 + u^10) du = ∫u^2 du + ∫u^10 du.

Integrating each term separately:

∫u^2 du = (1/3)u^3 + C1, where C1 is the constant of integration.

∫u^10 du = (1/11)u^11 + C2, where C2 is another constant of integration.

Therefore, the indefinite integral of the given expression is:

∫(u^2 + u^10) du = (1/3)u^3 + (1/11)u^11 + C,

where C = C1 + C2 is the combined constant of integration.

To learn more about indefinite integral

https://brainly.com/question/22008756

#SPJ11

Evaluate the Hux Fascross the positively oriented outward) surface∫∫ S F.ds, where F =< 33 +1, y9+2, 23 +3 > and S is the boundary of 22 + y2 + z2 = 4, z 20.

Answers

The given problem involves evaluating the surface integral ∫∫S F·ds, where F = <3x + 1, y⁹ + 2, 2z + 3>, and S is the boundary of the surface defined by x² + y² + z² = 4, z ≥ 0.

To evaluate the surface integral, we can use the divergence theorem, which states that the surface integral of a vector field over a closed surface is equal to the triple integral of the divergence of the vector field over the region enclosed by the surface. However, in this case, S is not a closed surface since it is only the boundary of the given surface. Therefore, we need to use a different method.

One possible approach is to parameterize the surface S using spherical coordinates. We can rewrite the equation of the surface as r = 2, where r represents the radial distance from the origin. By parameterizing the surface, we can express the surface integral as an integral over the spherical coordinates (θ, φ). The outward-pointing unit normal vector can also be calculated using the parameterization.

After parameterizing the surface, we can calculate the dot product F·ds and perform the surface integral over the appropriate range of the spherical coordinates. By evaluating this integral, we can obtain the numerical result.

Learn more about integral here: https://brainly.com/question/31059545

#SPJ11

A particular power plant is 12 m tall. A model of it was built with a scale of 1 cm:2 m. How tall is the model?

Answers

The model will be 6 cm tall. With a ratio of 1:2

Find the volume of the solid generated in the following situation.
The region R bounded by the graph of y=6sinx
and the​ x-axis on [0, π] is revolved about the line y=−6.
The volume of the solid generated when R is revolved about the line y=−6
is _______ in cubic units.
​(Type an exact​ answer, using π as​ needed.)

Answers

The volume of the solid generated when the region R, bounded by the graph of y = 6sin(x) and the x-axis on the interval [0, π], is revolved about the line y = -6 is _______ cubic units (exact answer in terms of π).

To find the volume of the solid generated by revolving the region R about the line y = -6, we can use the method of cylindrical shells. The volume of each cylindrical shell is given by the formula:

V = 2π * integral[R] (radius * height) dx

In this case, the radius of each cylindrical shell is the distance from the line y = -6 to the curve y = 6sin(x), which is 12 units. The height of each shell is the infinitesimal change in x, dx. We integrate this expression over the interval [0, π] to cover the entire region R.

Therefore, the volume of the solid is given by:

V = 2π * integral[0 to π] (12 * dx)

Integrating this expression will give us the volume of the solid in terms of π. Evaluating the integral will provide the exact volume of the solid generated by revolving the region R.

Learn more about cylindrical shell here:

https://brainly.com/question/31786086

#SPJ11

Paul is making a smoothie recipe that uses 1/2 cup of strawberries for every 1 1/2 cups of yogurt. if paul increases the recipr to include 2 cups of yogurt how many cups of strawberries will he need

Answers

In the original recipe, for every 1 1/2 cups of yogurt, Paul uses 1/2 cup of strawberries.

If Paul increases the recipe to include 2 cups of yogurt, we can find the corresponding amount of strawberries by setting up a proportion.

Let's set up the proportion:

(1 1/2 cups of yogurt) / (1/2 cup of strawberries) = (2 cups of yogurt) / (x cups of strawberries)

To solve for x, we can cross-multiply:

(1 1/2) * (x) = (2) * (1/2)

(3/2) * (x) = 1

Multiplying both sides by the reciprocal of 3/2 (which is 2/3):

(2/3) * (3/2) * (x) = (2/3) * (1)

x = 2/3

Therefore, Paul will need 2/3 cup of strawberries when he increases the recipe to include 2 cups of yogurt.

Find the curl of the vector field F = < yæ®, xz", zy? > = . curl + - 2 + + 3+ 1 +

Answers

The curl of the vector field F is ∇ × F = <-2y, -2z, 2x-y>.

To find the curl of the vector field F = <y^2, xz, zy^3>:

1. The curl of a vector field F = <P, Q, R> is given by the cross product of the gradient operator (∇) with F, i.e., ∇ × F.

2. Applying the curl operation, we obtain the components of the curl as follows:

  - The x-component: ∂R/∂y - ∂Q/∂z = 2x - y.

  - The y-component: ∂P/∂z - ∂R/∂x = -2y.

  - The z-component: ∂Q/∂x - ∂P/∂y = -2z.

3. Combining the components, we have ∇ × F = <-2y, -2z, 2x-y>.

Therefore, the curl of the vector field F is ∇ × F = <-2y, -2z, 2x-y>.

Learn more about curl of the vector field:

https://brainly.com/question/32197913

#SPJ11

Evaluate x-11 (x + 1)(x − 2) J dx.
Evaluate [3m 325 sin (2³) dx. Hint: Use substitution and integration by parts.

Answers

The integral of x-11 (x + 1)(x − 2) dx is given by: (1/4)x^4 - (1/3)x^3 - 2x^2 - 4x + (C1 + C2 + C3 + C4).

The evaluated integral of [3m 325 sin (2³)] dx is (1/12)[-3m 325 cos (2³)] + C (using substitution and integration by parts).

To evaluate the integral of x-11 (x + 1)(x − 2) dx, we can expand the given expression and integrate each term separately. Let's simplify it step by step:

x-11 (x + 1)(x − 2)

= (x^2 - x - 2)(x - 2)

= x^3 - 2x^2 - x^2 + 2x - 2x - 4

= x^3 - 3x^2 - 4x - 4

Now we can integrate each term separately:

∫(x^3 - 3x^2 - 4x - 4) dx

= ∫x^3 dx - ∫3x^2 dx - ∫4x dx - ∫4 dx

Integrating each term, we get:

∫x^3 dx = (1/4)x^4 + C1

∫3x^2 dx = (1/3)x^3 + C2

∫4x dx = 2x^2 + C3

∫4 dx = 4x + C4

Adding the constants of integration (C1, C2, C3, C4) to each term, we have:

(1/4)x^4 + C1 - (1/3)x^3 + C2 - 2x^2 + C3 - 4x + C4

So, the integral of x-11 (x + 1)(x − 2) dx is given by:

(1/4)x^4 - (1/3)x^3 - 2x^2 - 4x + (C1 + C2 + C3 + C4)

Now let's evaluate the second integral, [3m 325 sin (2³)] dx, using substitution and integration by parts.

Let's start by letting u = 2³. Then, du = 3(2²) dx = 12 dx. Rearranging, we have dx = (1/12) du.

Substituting these values, the integral becomes:

∫[3m 325 sin (2³)] dx

= ∫[3m 325 sin u] (1/12) du

= (1/12) ∫[3m 325 sin u] du

= (1/12)[-3m 325 cos u] + C

Substituting back u = 2³, we get:

(1/12)[-3m 325 cos (2³)] + C

So, the evaluated integral is (1/12)[-3m 325 cos (2³)] + C.

To know more about integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

the makers of biodegradable straws have an automated machine that is set to fill each box with 100 straws. at various times in the packaging process, we select a random sample of 121 boxes to see whether or not the machine is filling the boxes with an average of 100 straws per box which of the following is a statement of the null hypothesis?
a. The machine fills the boxes with the proper amount of straws. The average is 100 straws. b. The machine is not filling the boxes with the proper amount of straws The average is not 100 straws. c. The machine is not putting enough straws in the boxes. The average is less than 100 straws.

Answers

The correct answer is: a. The machine fills the boxes with the proper amount of straws. The average is 100 straws. In hypothesis testing, the null hypothesis typically represents a statement of no effect or no difference. In this case, it means that the machine is functioning properly and filling the boxes with the expected average of 100 straws per box.

The null hypothesis in this scenario is option a, which states that the machine fills the boxes with the proper amount of straws, and the average is 100 straws per box. This is because the null hypothesis assumes that there is no significant difference between the observed sample mean and the expected population mean of 100 straws per box. To reject this null hypothesis, we would need to find evidence that the machine is not filling the boxes with the proper amount of straws, which would require further investigation and analysis. In conclusion, the null hypothesis can be summarized in three paragraphs as follows: The null hypothesis for the makers of biodegradable straws is that the machine fills the boxes with the proper amount of straws, and the average is 100 straws per box.

This hypothesis assumes that there is no significant difference between the observed sample mean and the expected population mean. To test this hypothesis, a random sample of 121 boxes is selected to determine whether or not the machine is filling the boxes with an average of 100 straws per box. If the observed sample mean is not significantly different from the expected population mean, then the null hypothesis is accepted. However, if the observed sample mean is significantly different from the expected population mean, then the null hypothesis is rejected, and further investigation is required to determine the cause of the difference.

To know more about average visit :-

https://brainly.com/question/28873924

#SPJ11

Need Answer Please
Determine all critical points and inflection points of (=)=2-3x+1. Determine where increasing and decreasing and where le up and come down Critical Points: Inflection Points: Interval(s) of Increasing

Answers

The inflection points and intervals of increasing and decreasing should be identified.  There are no critical points or inflection points for the function f(x) = 2 - 3x + 1. The function is decreasing for all values of x.

To find the critical points, we need to locate the values of x where the derivative of the function f(x) equals zero or is undefined. Calculate the derivative of f(x): f'(x) = -3

Set the derivative equal to zero and solve for x: -3 = 0. There are no solutions since -3 is a constant.

Since the derivative is a constant (-3) and is never undefined, there are no critical points or inflection points in this case. As for the intervals of increasing and decreasing, since the derivative is a negative constant (-3), the function is decreasing for all values of x.

to know more about inflection points, click: brainly.com/question/30763521

#SPJ11

Calculate the limit. lim (-1)"n3 n->00 (Give an exact answer. Use symbolic notation and fractions where needed. Enter DNE if the limit does not exist.) lim (-1)"n3 = = 0 n- Incorrect

Answers

The limit of (-1)^n^3 as n approaches infinity does not exist (DNE).

The expression (-1)^n^3 represents a sequence that alternates between positive and negative values as n increases. Let's analyze the behavior of the sequence for even and odd values of n.

For even values of n, (-1)^n^3 = (-1)^(2m)^3 = (-1)^(8m^3) = 1, where m is a positive integer. Therefore, the sequence is always 1 for even values of n.

For odd values of n, (-1)^n^3 = (-1)^(2m+1)^3 = (-1)^(8m^3 + 12m^2 + 6m + 1) = -1, where m is a positive integer. Therefore, the sequence is always -1 for odd values of n.

Since the sequence alternates between 1 and -1 as n increases, it does not approach a single value. Hence, the limit of (-1)^n^3 as n approaches infinity does not exist (DNE).

Learn more about sequence here, https://brainly.com/question/29589773

#SPJ11

A truck rental company has a flat service fee and then costs a certain amount per mile driven. Suppose one family rents a truck, drives 50 miles and their cost is $111.25. Suppose another family rents a truck, drives 80 miles, and their cost is $160. a) Find the linear equation for the cost of renting a truck as a function of the number of miles they drive. b) Use the equation to find the cost if they drove 150 miles. c) How many miles did a renter drive if their cost was $125?

Answers

Given the costs and distances traveled by two families, we can find a linear equation that represents the cost of renting a truck as a function of the number of miles driven. Using this equation, we can calculate the cost for a specific number of miles and determine the number of miles driven for a given cost.

a) To find the linear equation, we need to determine the slope and y-intercept. Let's denote the cost of renting a truck as C and the number of miles driven as M. We have two data points: (50, $111.25) and (80, $160).

Using the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept, we can calculate the slope as follows:

Slope (m) = (C2 - C1) / (M2 - M1)

= ($160 - $111.25) / (80 - 50)

= $48.75 / 30

= $1.625 per mile

Now, we can substitute one of the data points into the equation to find the y-intercept (b). Let's use (50, $111.25):

$111.25 = $1.625 * 50 + b

b = $111.25 - $81.25

b = $30

Therefore, the linear equation for the cost of renting a truck as a function of the number of miles driven is:

Cost (C) = $1.625 * Miles (M) + $30

b) To find the cost if they drove 150 miles, we can substitute M = 150 into the equation:

Cost (C) = $1.625 * 150 + $30

C = $243.75 + $30

C = $273.75

Therefore, the cost for driving 150 miles would be $273.75.

c) To determine the number of miles driven if the cost is $125, we can rearrange the equation:

$125 = $1.625 * Miles (M) + $30

$125 - $30 = $1.625 * M

$95 = $1.625 * M

Dividing both sides by $1.625, we find:

M = $95 / $1.625

M ≈ 58.46 miles

Therefore, the renter drove approximately 58.46 miles if their cost was $125.

Learn more about slope-intercept here:

https://brainly.com/question/32634451

#SPJ11

find the magnitude of AB with initial point A(0,8) and terminal point B (-9,-3).

(precalc)

Answers

Answer:

²√202

Step-by-step explanation:

To find the magnitude of AB with initial point A(0,8) and terminal point B(-9,-3), we can use the distance formula:

distance = square root((x2 - x1)^2 + (y2 - y1)^2)

where (x1, y1) is the initial point A and (x2, y2) is the terminal point B.

where (x1, y1) is the initial point A and (x2, y2) is the terminal point B.Plugging in the values, we get:

distance = square root((-9 - 0)^2 + (-3 - 8)^2)

= square root((-9)^2 + (-11)^2)

= square root(81 + 121)

= square root(202)

Therefore, the magnitude of AB is square root(202).

learn more about precalc on brainly

https://brainly.in/question/55222804

"1. Solve for x: a) tan2 (x) – 1 = 0
b) 2 cos2 (x) − 1 = 0
c) 2 sin2 (x) + 15 sin(x) + 7 = 0
2. Use the desmos graphing calculator to find all solutions of
the given equation.

Answers

a) The solutions for the equation tan^2(x) - 1 = 0 are x = nπ, where n is an integer.

b) The solutions for the equation 2cos^2(x) - 1 = 0 are x = (n + 1/2)π, where n is an integer.

c) The solutions for the equation 2sin^2(x) + 15sin(x) + 7 = 0 can be found using the quadratic formula: x = (-15 ± √(15^2 - 4(2)(7))) / (4).

a) To solve the equation tan^2(x) - 1 = 0, we can rewrite it as tan^2(x) = 1. Taking the square root of both sides gives us tan(x) = ±1. Since the tangent function has a period of π, the solutions can be expressed as x = nπ, where n is an integer.

b) For the equation 2cos^2(x) - 1 = 0, we can rewrite it as cos^2(x) = 1/2. Taking the square root of both sides gives us cos(x) = ±√(1/2). The solutions occur when cos(x) is equal to ±√(1/2), which happens at x = (n + 1/2)π, where n is an integer.

c) To solve the quadratic equation 2sin^2(x) + 15sin(x) + 7 = 0, we can use the quadratic formula. Applying the formula, we get x = (-15 ± √(15^2 - 4(2)(7))) / (4). Simplifying further gives us the two solutions for x.

Using the Desmos graphing calculator or any other graphing tool can also help visualize and find the solutions to the equations by plotting the functions and identifying the points where they intersect the x-axis. This allows for a visual representation of the solutions.

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

Given the 2-D vector field G(x,Y)= (y)i+ (-2x)j Describe and sketch the vector field along both coordinate axes and along the lines y = IX. (b) Compute the work done by G(x,y) along the line segment from point A(1,1) to point B(3,9) by evaluating parametric integral. Compute the work done by G(x,y) along the parabola y = x2 from point A(1,1) to point B(3,9) by evaluating parametric integral. (d) Is G(x,y) conservative? Why why not?

Answers

Answer:

Since the curl of G(x, y) is not zero (it is equal to 3k), we conclude that G(x, y) is not conservative. Therefore, G(x, y) is not a conservative vector field.

Step-by-step explanation:

(a) To describe and sketch the vector field G(x, y) = y i - 2x j, we can analyze the behavior of the vector field along the coordinate axes and the lines y = x.

- Along the x-axis (y = 0), the vector field becomes G(x, 0) = 0i - 2xj. This means that at each point on the x-axis, the vector field has a magnitude of 2x directed solely in the negative x direction.

- Along the y-axis (x = 0), the vector field becomes G(0, y) = y i + 0j. Here, the vector field has a magnitude of y directed solely in the positive y direction at each point on the y-axis.

- Along the lines y = x, the vector field becomes G(x, x) = x i - 2x j. This means that at each point on the line y = x, the vector field has a magnitude of √5x directed at a 45-degree angle in the negative x and y direction.

By plotting these vectors at various points along the coordinate axes and the lines y = x, we can create a sketch of the vector field.

(b) To compute the work done by G(x, y) along the line segment from point A(1, 1) to point B(3, 9), we need to evaluate the line integral of G(x, y) along the given path.

The parametric equations for the line segment AB can be written as:

x(t) = 1 + 2t

y(t) = 1 + 8t

where t ranges from 0 to 1.

Now, let's compute the work done by G(x, y) along this line segment:

W = ∫(0 to 1) [G(x(t), y(t)) · (dx/dt i + dy/dt j)] dt

W = ∫(0 to 1) [(1 + 8t) · (2 i + 8 j)] dt

W = ∫(0 to 1) (2 + 16t + 64t) dt

W = ∫(0 to 1) (2 + 80t) dt

W = [2t + 40t^2] |(0 to 1)

W = (2(1) + 40(1)^2) - (2(0) + 40(0)^2)

W = 42

Therefore, the work done by G(x, y) along the line segment AB from point A(1, 1) to point B(3, 9) is 42.

(c) To compute the work done by G(x, y) along the parabola y = x^2 from point A(1, 1) to point B(3, 9), we need to evaluate the line integral of G(x, y) along the given path.

The parametric equations for the parabola y = x^2 can be written as:

x(t) = t

y(t) = t^2

where t ranges from 1 to 3.

Now, let's compute the work done by G(x, y) along this parabolic path:

W = ∫(1 to 3) [G(x(t), y(t)) · (dx/dt i + dy/dt j)] dt

W = ∫(1 to 3) [(t^2) · (i + 2t j)] dt

W = ∫(1 to 3) (t^2 + 2t^3 j) dt

W =

[(t^3/3) + (t^4/2) j] |(1 to 3)

W = [(3^3/3) + (3^4/2) j] - [(1^3/3) + (1^4/2) j]

W = [27/3 + 81/2 j] - [1/3 + 1/2 j]

W = [9 + 40.5 j] - [1/3 + 0.5 j]

W = [8.66667 + 40 j]

Therefore, the work done by G(x, y) along the parabola y = x^2 from point A(1, 1) to point B(3, 9) is approximately 8.66667 + 40 j.

(d) To determine if G(x, y) is conservative, we need to check if it satisfies the condition of having a curl equal to zero (∇ × G = 0).

The curl of G(x, y) can be computed as follows:

∇ × G = (∂G2/∂x - ∂G1/∂y) k

Here, G1 = y and G2 = -2x.

∂G1/∂y = 1

∂G2/∂x = -2

∇ × G = (1 - (-2)) k

         = 3k

Since the curl of G(x, y) is not zero (it is equal to 3k), we conclude that G(x, y) is not conservative.

Therefore, G(x, y) is not a conservative vector field.

Learn more about vector:https://brainly.com/question/25705666

#SPJ11

Evaluate the following indefinite and definite integrals. Give exact answers, i.e. VTT, not 1.77..., etc. To receive full credit you must state explicitly any substitutions used. 7.[10][(x2 – Vx + 4) dx

Answers

The indefinite integral of[tex]7x^2 – √x + 4 is (7/3)x^3 – (2/3)x^(3/2) + 4x + C[/tex]

To evaluate the indefinite integral, we can use the power rule of integration. For the term[tex]7x^2[/tex], we raise the power by 1 and divide by the new power, giving us [tex](7/3)x^3[/tex]. For the term -√x, we increase the power by 1/2 and divide by the new power, resulting in [tex]-(2/3)x^(3/2)[/tex]. The constant term 4x integrates to [tex]4x^2/2 = 2x^2.[/tex] Adding all these terms together, we get[tex](7/3)x^3 – (2/3)x^(3/2) + 4x + C,[/tex]where C is the constant of integration.

In the definite integral case, we would need to specify the limits of integration to obtain a numeric value.

Learn more about integration here

brainly.com/question/5028068

#SPJ11

Find the exact arc length of the curve y=x^(2/3) over the interval, x=8 to x=125

Answers

The precise formula for the radius of the curve y = x(2/3) over the range [x = 8, x = 125].

To find the exact arc length of the curve y = x^(2/3) over the interval [x = 8, x = 125], we can use the arc length formula for a curve defined by a function f(x):

Arc Length = ∫[a, b] sqrt(1 + (f'(x))^2) dx

First, let's find the derivative of y = x^(2/3) with respect to x:

dy/dx = (2/3)x^(-1/3)

Next, we substitute this derivative into the arc length formula and calculate the integral:

Arc Length = ∫[tex][8, 125] sqrt(1 + (2/3x^{-1/3})^2) dx[/tex]

          =∫ [tex][8, 125] sqrt(1 + 4/9x^{-2/3}) dx[/tex]

          = ∫[tex][8, 125] sqrt((9x^{-2/3} + 4)/(9x^{-2/3})) dx[/tex]

          = ∫[tex][8, 125] sqrt((9 + 4x^{2/3})/(9x^{-2/3})) dx[/tex]

To simplify the integral, we can rewrite the expression inside the square root as:

[tex]sqrt((9 + 4x^{2/3})/(9x^{-2/3})) = sqrt((9x^{-2/3} + 4x^{2/3})/(9x^{-2/3})) \\= sqrt((x^{-2/3}(9 + 4x^{2/3}))/(9x^{-2/3})) \\ = sqrt((9 + 4x^{2/3})/9)[/tex]

Now, let's integrate the expression:

Arc Length = ∫[8, 125] (9 + 4x^(2/3))/9 dx

          = (1/9) ∫[8, 125] (9 + 4x^(2/3)) dx

          = (1/9) (∫[8, 125] 9 dx + ∫[8, 125] 4x^(2/3) dx)

          = (1/9) (9x∣[8, 125] + 4(3/5)x^(5/3)∣[8, 125])

Evaluating the definite integrals:

Arc Length = [tex](1/9) (9(125 - 8) + 4^{3/5} (125^{5/3} - 8^{5/3}))[/tex]

Simplifying further:

Arc Length = [tex](1/9) (117 + 4^{3/5} )(125^{5/3} - 8^{5/3})[/tex]

This is the exact expression for the arc length of the curve y = [tex]x^{2/3}[/tex]over the interval [x = 8, x = 125].

To know more about curve's length refer here:

https://brainly.com/question/31376454?#

#SPJ11

A test is designed to detect cancer. If a person has cancer, the probability that the test will detect the cancer is 0.95. If the person does not have cancer, then the probability that the test will erroneously indicate that she does have cancer is 0.1. e probability that a randomly selected resident of Manha an, Kansas has cancer is .003. Suppose that this cancer test is performed on a randomly selected resident Manha anite. Given that the test result is positive, what is the probability that this person actually has cancer? Show your work.

Answers

Given that the test result is positive, we need to find the probability that the person actually has cancer. Let's denote the event of having cancer as C and the event of a positive test result as T. We want to find P(C|T), the conditional probability of having cancer given a positive test result.

According to the problem, the probability of a positive test result given that a person has cancer is P(T|C) = 0.95. The probability of a positive test result given that a person does not have cancer is P(T|C') = 0.1.

To calculate P(C|T), we can use Bayes' theorem, which states that:

P(C|T) = (P(T|C) * P(C)) / P(T)

P(C) represents the probability of having cancer, which is given as 0.003 in the problem.

P(T) represents the probability of a positive test result, which can be calculated using the law of total probability:

P(T) = P(T|C) * P(C) + P(T|C') * P(C')

P(C') represents the complement of having cancer, which is 1 - P(C) = 1 - 0.003 = 0.997.

Substituting the given values into the equations, we can find P(T) and then calculate P(C|T) using Bayes' theorem.

P(T) = (0.95 * 0.003) + (0.1 * 0.997)

Finally, we can find P(C|T) by substituting the values of P(T|C), P(C), and P(T) into Bayes' theorem.

P(C|T) = (0.95 * 0.003) / P(T)

By performing the necessary calculations, we can determine the probability that the person actually has cancer given a positive test result.

Learn more about Bayes' theorem

https://brainly.com/question/31715707

#SPJ11

Evaluate. Assume u> 0 when In u appears. dx Stotis 7x + 2

Answers

To evaluate the integral ∫(7x + 2) / √(x) dx, we can use the substitution method. Let's substitute[tex]u = √(x), then du = (1 / (2√(x))) dx.[/tex]

Rearranging the substitution, we have dx = 2√(x) du.

Substituting these values into the integral, we get:

[tex]∫(7x + 2) / √(x) dx = ∫(7u^2 + 2) / u * 2√(x) du= ∫(7u + 2/u) * 2 du= 2∫(7u + 2/u) du.[/tex]

Now, we can integrate each term separately:

[tex]∫(7u + 2/u) du = 7∫u du + 2∫(1/u) du= (7/2)u^2 + 2ln|u| + C.[/tex]

Substituting back u = √(x), we have:

[tex](7/2)u^2 + 2ln|u| + C = (7/2)(√(x))^2 + 2ln|√(x)| + C= (7/2)x + 2ln(√(x)) + C= (7/2)x + ln(x) + C.[/tex]integration

Therefore, the evaluation of the integral[tex]∫(7x + 2) / √(x) dx is (7/2)x + ln(x) +[/tex]C, where C is the constant of .

To learn more about substitute   click on the link below:

brainly.com/question/14855908

#SPJ11

1. Find the flux of F across S. In other words, evaluate the surface integral ſf Fodš. For closed surfaces, use the positive (outward) orientation. F(x, y, z)= ze*Yi – 3ze*Yj + xy k, S is the parallelogram with parametric equation x = u + v, y=u - v, z= 1 + 2u + v, Osus2, 05vsi Note: Make sure to check for positive orientation.

Answers

The surface integral of F across S, denoted as ∬S F · dS, is equal to 8/3.

To evaluate the surface integral, we first need to compute the outward unit normal vector to the surface S. The surface S is defined by the parametric equations:

x = u + v

y = u - v

z = 1 + 2u + v

We can find the tangent vectors to the surface by taking the partial derivatives with respect to u and v:

r_u = (1, 1, 2)

r_v = (1, -1, 1)

Taking the cross product of these vectors, we obtain the outward unit normal vector:

n = r_u x r_v = (3, 1, -2) / √14

Now, we evaluate F · dS by substituting the parametric equations into F and taking the dot product with the normal vector:

F = ze * Yi - 3ze * Yj + xyk

F · n = (1 + 2u + v)e * 0 + (-3)(1 + 2u + v)e * (1/√14) + (u + v)(u - v)(1/√14)

= (-3)(1 + 2u + v)/√14

To calculate the surface integral, we integrate F · n over the parameter domain of S:

∬S F · dS = ∫∫(S) F · n dS

= ∫[0,1]∫[0,1] (-3)(1 + 2u + v)/√14 du dv

= (-3/√14) ∫[0,1]∫[0,1] (1 + 2u + v) du dv

= (-3/√14) ∫[0,1] [(u + u² + uv)]|[0,1] dv

= (-3/√14) ∫[0,1] (2 + v) dv

= (-3/√14) [2v + (v²/2)]|[0,1]

= (-3/√14) [2 + (1/2)]

= 8/3

learn more about Surface Integral here:

https://brainly.com/question/32088117

#SPJ4

275 + 10x A company manufactures downhill skis. It has fixed costs of $25,000 and a marginal cost given by C'(x) = 1 +0.05x 9 where C(x) is the total cost at an output of x pairs of skis. Use a table of integrals to find the cost function C(x) and determine the production level (to the nearest unit) that produces a cost of $125,000. What is the cost (to the nearest dollar) for a production level of 850 pairs of skis? Click the icon to view a brief table of integrals. C(x) = (Simplify your answer. Use integers or fractions for any numbers in the expression.)

Answers

The cost for a production level of 850 pairs of skis is approximately $44,912 (to the nearest dollar).

To find the cost function C(x), we need to integrate the marginal cost function C'(x) with respect to x. The given marginal cost function is C'(x) = 1 + 0.05x.

The integral of C'(x) with respect to x gives us the total cost function C(x):

C(x) = ∫(C'(x))dx

C(x) = ∫(1 + 0.05x)dx

Using the table of integrals, we can find the antiderivative of each term:

∫(1)dx = x

∫(0.05x)dx = 0.05 * (x^2) / 2 = 0.025x^2

Now we can write the cost function C(x):

C(x) = x + 0.025x^2 + C

Where C is the constant of integration. Since the fixed costs are given as $25,000, we can determine the value of C by substituting the values of x and C(x) at a certain point. Let's use the point (0, 25,000):

25,000 = 0 + 0 + C

C = 25,000

Now we can rewrite the cost function C(x) as:

C(x) = x + 0.025x^2 + 25,000

To determine the production level that produces a cost of $125,000, we can set C(x) equal to 125,000 and solve for x:

125,000 = x + 0.025x^2 + 25,000

Rearranging the equation:

0.025x^2 + x + 25,000 - 125,000 = 0

0.025x^2 + x - 100,000 = 0

To solve this quadratic equation, we can either use factoring, completing the square, or the quadratic formula. Let's use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

In our equation, a = 0.025, b = 1, and c = -100,000. Substituting these values into the quadratic formula:

x = (-(1) ± √((1)^2 - 4(0.025)(-100,000))) / (2(0.025))

Simplifying further:

x = (-1 ± √(1 + 10,000)) / 0.05

x = (-1 ± √10,001) / 0.05

Now we can calculate the approximate values using a calculator:

x ≈ (-1 + √10,001) / 0.05 ≈ 199.95

x ≈ (-1 - √10,001) / 0.05 ≈ -200.05

Since the production level cannot be negative, we can disregard the negative solution. Therefore, the production level that produces a cost of $125,000 is approximately 200 pairs of skis.

To find the cost for a production level of 850 pairs of skis, we can substitute x = 850 into the cost function C(x):

C(850) = 850 + 0.025(850)^2 + 25,000

C(850) = 850 + 0.025(722,500) + 25,000

C(850) = 850 + 18,062.5 + 25,000

C(850) ≈ 44,912.5

Therefore, the cost for a production level of 850 pairs of skis is approximately $44,912 (to the nearest dollar).

To know more about integrals, visit the link : https://brainly.com/question/30094386

#SPJ11

Other Questions
which muscle can easily be damaged during makeup application who is the author of the great Gatsby Find the derivative of the following functions. 2 () f(x) = + 3 sin(2x) x3 + 1040 Vx 11 () rockefeller's company savagely bought all of the other competing industries in order to build his empire and control 90% of the product. this is an example of Find the volume of y=4-x^2 , y=0, revolved around the line y=-1(4) Find the volume of y = 4 - y = 0, revolved around the line y - 1 which type of therapy did albert ellis develop to help clients overcome problems caused by illogical thinking? elements are made of tiny, indivisible particles called atoms. T/F? Suppose that v1 = (2, 1,0, 3), v2 = (3,-1,5, 2), and v3 = (1, 0, 2, 1). Which of the following vectors are in span { v1, v2, v3}? It means write the given vectors as a linear combination of v1, Find the dimensions of the open rectangular box of maximum volume that can be made from a sheet of cardboard 14 in. by 9 in. by cutting congruent squares from the corners and folding up the sides. Then find the volume. What is the minimum schedule for preventive roofinspections?A. Every 3 monthsB. Every other yearC. Once a yearD. Twice a year Identify the planet most and least likely to have geologic activity (besides Earth of coursel). There should be only one planet in each category.- Mercury - Venus- Earth- Moon - MarsItem Bank Most likely Least LikelyVenus ______ _______Moon ______ _______Mercury ______ _______Mars ______ _______ T/F typically joint ventures involve more control and risk than franchising . Consider the differential equation dy de=-0.6(3-4) with y(0)=7. In all parts below, round to 4 decimal places. Part 1 Use n = 4 steps of Euler's Method with h=0.5 to approximate y(2). y(2) Part 2 Use n = 8 steps of Euler's Method with h=0.25 to approximate y(2). y(2) Part 3 Find y(t) using separation of variables and evaluate the exact value. y(2)=L when winds from the west blow over the great lakes, they pick up moisture, which condenses and forms clouds over the land, resulting in precipitation called . gas prices recently increased by 25%. in response, purchases of gasoline decreased by 5%. according to this finding, the price elasticity of demand for gas is: group of answer choices 5. 0.5. 2. 0.2. Consider these two statements:p: A square is a rectangle.q: A triangle is a parallelogram.Select all of the true statements.A)~PB~g c) p ^ gO D) P V gO E)P ^ ~9F~DVg which of the following is a sign or symptom of a brown recluse spider bite? severe muscle pain ulcer formation at the bite site faint bite marks heavy sweating some companies have created a department of corporate citizenship to:a. Adopt the United Nations' Global Compact Principles.b. Decentralize under common leadership wide-ranging corporate citizenship functions.c. Centralize under common leadership wide-ranging corporate citizenship functions.d. Narrow the job of the public relations office. If y = 2x , show that y + y 6y = 0. (Hint: y is thefirst derivative of y with respect to x, y is the derivative ofthe derivative of y with r a chemist trying to synthesize a particular compound attempts two different synthesis reactions. the equilibrium constants for the two reactions are 23.3 and 2.2 * 10^4 at room temperature. however, upon carrying out both reactions for 15 minutes, the chemist finds that the reaction with the smaller equilibrium constant produces more of the desired product. explain how this might be possible.