She used 1/4 of the blue cloth to make her mother a apron:
[tex]\frac{5}{2}\times\frac{1}{4}=\frac{5}{8}=0.625[/tex]She used 5/8 yd or 0.625yd of blue coth to make the apron
4. (09.01 MC) Let set A = {1, 3, 5, 7) and set B = {1, 2, 3, 4, 5, 6, 7, 8} Which notation shows the relationship between set A and set B? (2 points) O AUB O ASE O Ane OBCA
A set X is said to contain a set Y if every element in Y is an element in X.
[tex]X\supseteq Y\text{ or X}\subseteq Y[/tex]In this case
[tex]1\in B,\text{ 3 }\in B,5\in B,\text{ and 7}\in B[/tex][tex]\in\text{ means: is in}[/tex][tex]so\text{ m}\in N,\text{ means that m is in N}[/tex]Therefore,
[tex]B\supseteq A\text{ or A}\subseteq B[/tex]The transformation T-2,3 maps the point (7,2) onto the point whose coordinates are
we know that
the rule of the translation in this problem is 2 units at left and 3 units up
so
(x,y) ------> (x-2,y+3)
Apply the rule
(7,2) ------> (7-2,2+3)
(5,5)At the end of 2008, the number of text messages sent one month was
110.4 billion. If 270.3 million people used text messaging, about how
many did each person send that month? Round to the nearest whole
number.
The average number of text messages sent during the month by each person was 408.
What is the average?The average is the total number of a data set divided by the number of items on the data set.
The average is the same as the mean, which is a central value of a data set.
The total number of text messages sent in a month in 2008 = 110.4 billion
(110,400,000,000)
The total number of people using text messaging = 270.3 million (270,300,000)
Average text messages per person = 408. 44 (110,400,000,000/270,300,000)
Thus, we can conclude that, on average, each person in the population texted 408 messages per month in 2008.
Learn more about average at https://brainly.com/question/1136789
#SPJ1
Last year, the numbers of skateboards produced per day at a certain factory were normally distributed with a mean of 20,500 skateboards and a standard deviation of 55 skateboards.
a) 84.13%
b) 2.28%
c) 15.86%
Explanation:Given:
the numbers of skateboards produced per day at a certain factory were normally distributed
mean = 20, 500
standard deviation = 55
To find:
a) On what percent of the day did the factories produced 20,555 or fewer?
b) On what percent of the day did the factories produced 20,610 or fewer?
c) On what percent of the day did the factories produced 20445 or fewer?
To determine the answers, we will use the z-score formula and then use the standard normal table to get the equivalence of the z-score
The formula of score is given as:
[tex]\begin{gathered} z=\frac{X-μ}{σ} \\ \mu\text{ = mean} \\ σ\text{ = standard deviation} \\ =\text{ value we want to find} \end{gathered}[/tex][tex]\begin{gathered} a)\text{ X}=\text{ 20555} \\ z\text{ = }\frac{20555\text{ - 20500}}{55}\text{ } \\ z\text{ = }\frac{55}{55}\text{ = 1} \\ on\text{ the standard normal table, z = 1 gives 0.84134} \\ Percent\text{ that they produced 20555 or fewer = 84.13\%} \end{gathered}[/tex][tex]\begin{gathered} b)\text{ X}=\text{ 20610} \\ z\text{ = }\frac{20610\text{ - 20500}}{55} \\ z\text{ = 2} \\ On\text{ the standard normal table, z = 2 corresponds to 0.97725} \\ \\ In\text{ this case, we were asked for the percent that produce 20610 or more} \\ To\text{ get ths percent, we will subtract 0.97725 from 1} \\ =\text{ 1 - 0.97725 = 0.02275 } \\ percent\text{ that produced 20610 or more = 2.28\%} \end{gathered}[/tex][tex]\begin{gathered} c)\text{ X = 20445} \\ z\text{ = }\frac{20445\text{ - 20500}}{55} \\ z\text{ = -1} \\ This\text{ translate to 0.1586} \\ percent\text{ that produced 20445 or fewer = 15.86\%} \end{gathered}[/tex]Order the numbers from least (1) to greatest (10).ITEM BANK-Move to Battom3.564.034.212V12mor
To order these numbers, we begin with the whole part of each number. In the case of having two numbers with equal whole part, we look for the greatest tenth. So, the order would be
[tex]3.56;4.03;4.2;12[/tex]Notice that, 4.03 is less than 4.2, because its tenth is less.
In a right triangle, the hypotenuse is the longest side?
Okay, here we have this:
The hypotenuse of a right triangle is always the side opposite the right angle. It is the longest side in a right triangle. The other two sides are called the opposite and adjacent sides.
This mean that the statement is true.
Jonathan is playing a game or a regular board that measures 60 centimeters long and 450 mm wide. which measurement is closest to the perimeter of the Jonathan's game board in meters?
According to the problem, the length is 60 cm and the width is 450 mm.
Let's transform 450mm to cm. We know that 1 cm is equivalent to 10 mm. So,
[tex]450\operatorname{mm}\times\frac{1\operatorname{cm}}{10\operatorname{mm}}=45\operatorname{cm}[/tex]Then, we use the perimeter formula for rectangles.
[tex]P=2(w+l)[/tex]Where w = 45 cm and l = 60 cm.
[tex]\begin{gathered} P=2(45\operatorname{cm}+60\operatorname{cm})=2(105cm) \\ P=210\operatorname{cm} \end{gathered}[/tex]The perimeter is 210 centimeters long.However, we know that 1 meter is equivalent to 100 centimeters.
[tex]P=210\operatorname{cm}\cdot\frac{1m}{100\operatorname{cm}}=2.1m[/tex]Hence, the perimeter, in meters, is 2.1 meters long.
Option A is the answer.A quadratic function f(x)f is hidden from view. You must find all intervals where f(x) is positive. Choose the form of the quadratic function f(x) that you would like to see in order to answer the question most efficiently.
To find the positive intervals, we'll have:
[tex]-3x^2-18x-15>0[/tex]1. Divide both sides by -3:
(Remember that dividing or multiplying by a negative number turns the inequality around!)
[tex]\begin{gathered} -3x^2-18x-15>0 \\ \rightarrow x^2+6x+5<0 \end{gathered}[/tex]2. Factor the expression:
[tex]\begin{gathered} x^2+6x+3<0 \\ \rightarrow(x+5)(x+1)<0 \end{gathered}[/tex]3. Identify the interval we're looking for:
Therefore, the function is positive in the interval:
[tex]\begin{gathered} -5one month Mark measure the rainfall each day the data is shown below which statement is true about the two sets of data
Given
Data from graph
Procedure
It is more likely to rain on the first 15 days of the month
a local business Club has 11 exclusive board members and 22 General members how many committees of 7 members can be chosen so that only General members are excluded
we have:
general members are excluded then
[tex]11C7=330[/tex]answer: 330
13. The population of Maryland was 5.17 million in 1999, and it grew to 6.05 million in 2019.(a) Assuming that the population is growing exponentially, find the growth rate r for Maryland's population. Give your answer as a percentage, rounded to the nearest hundredth of a percent.r = %(b) Write an exponential model to describe the population of Maryland from 1999 onward (let t=0 in 1999).Pt = (c) What is Maryland's population expected to be in 2030? Round your answer to one decimal place. million people(d) When do you expect that Maryland's population will reach 7.5 million? Give your answer as a calendar year (ex: 1999).During the year
Answer:
a) r = 0.79%
b)
[tex]P_t=5.17(1.0079)^t[/tex]c) 6.6 million people
d) 2046
Explanation:
We'll use the below formula for exponential growth;
[tex]P_t=a(1+r)^t[/tex]where a = initial amount
r = growth rate
t = number of time intervals
a) From the question, we have that
a = 5.17 million
P(t)= 6.05 million
t = 20 years
Let's go ahead and substitute these values into our formula, and solve for r as shown below;
[tex]\begin{gathered} 6.05=5.17(1+r)^{20} \\ \frac{6.05}{5.17}=(1+r)^{20} \\ (1+r)=\sqrt[20]{\frac{6.05}{5.17}} \\ r=\sqrt[20]{\frac{6.05}{5.17}}-1 \\ r=0.00789 \\ r=0.79\text{\%} \end{gathered}[/tex]b) The exponential model can be written as shown below;
[tex]\begin{gathered} P_t=5.17(1+0.0079)^t \\ P_t=5.17(1.0079)^t \end{gathered}[/tex]c) When t = 31 years, let's go ahead and find P as shown below;
[tex]\begin{gathered} P_t=5.17(1.0079)^{31} \\ P_t=6.6\text{ million people} \end{gathered}[/tex]d) When P = 7.5 million, let's go ahead and solve for t as shown below;
[tex]\begin{gathered} 7.5=5.17(1.0079)^t \\ 1.45=(1.0079)^t \\ \log 1.45=\log (1.0079)^t \\ \log 1.45=t\times\log (1.0079) \\ t=\frac{\log 1.45}{\log (1.0079} \\ t=47.2\text{years} \\ \end{gathered}[/tex]So to get the particular year all we need to do is add 47 years to the initial year. That will us 1999 + 47 = 2046
How else can you write 6p in mathematic terms?
In mathematic terms, the expression 6p is written as 6 times p.
Mathematic terms
Mathematic terms means a single mathematical expression. The terms may be a single number, a single variable, several variables multiplied but never added or subtracted. Some of the terms contain variables with a number in front of them. Those number in front of a term is called a coefficient.
Given,
Here we have the expression 6p.
Now, we have to write it as a mathematic term.
While we looking into the expression 6p.
The only operation word in this expression is p which is multiplied with the constant that is the number 6.
So, in the verbal phrase it can be written as 6 times p.
Here p take any valid number in the real numbers.
To know more about Mathematic term here.
https://brainly.com/question/2700429?
#SPJ1
Use the given information to select the factors of f(x).
ƒ(4) = 0
f(-1) = 0
f(³/²) = 0
options are:
(2x-3)
(2x+3)
(x-4)
(3x-2)
(x-1)
(x+4)
(3x+2)
(x+1)
The factors of f(x) are (x-4), (x+1) and (2x-3) respectively.
How to select the factors of f(x)To select the factors of f(x), we are to pick the functions that satisfy the conditions of the given information.
For f(4) = 0:
The function that evaluates to 0 when x = 4 is (x - 4). That is:
f(x) = (x - 4)
f(4) = (4 - 4) = 0
For f(-1) = 0:
The function that evaluates to 0 when x = -1 is (x + 1). That is:
f(x) = (x + 1)
f(-1) = (-1 + 1) = 0
For f(3/2) = 0:
The function that evaluates to 0 when x = 3/2 is (2x-3). That is:
f(x) = (2x-3)
f(3/2) = (2 × 3/2 - 3) = 0
Therefore, (x-4), (x+1) and (2x-3) are the corresponding factors of f(x)
Learn more about function on:
https://brainly.com/question/24351910
#SPJ1
Which expressions represent a quadratic expression in factored form? Select all the correct answers.
x^2 − x − 72
(x + 3)(x − 7)
-8(x + 56)
(x + 1)(x − 2)
(x − 2) + (x + 3)
The expressions that represent a quadratic expression in factored form is (x + 1)(x − 2).
What is quadratic expression?Quadratic expression can be described as the mathematical expression that posses the variable which have highest power of 2.
It should be noted that the quadratic equation is usually expressed in the form ax^2 + bx + c where the abc are the known numbers in the equation that will be used in the calculation of the factors of the equation and in the quadratic equation the number a will not be equal to zero in the equation.
Therefore, option C is correct.
Read more about quadratic expression at:
https://brainly.com/question/1214333
#SPJ1
Cube A has a side length of 8 inches and cube B has a side length of 2 inches. What isthe ratio of the volumes of cube B to cube A?ABMath Bits.com8"2"O 16Submit AnswerOhO 30da
The ratio of the volume of cube B to the volume of cube A is 1/64
Explanation:The volume of cube A is 8^3 = 512 cubic inches
The volume if cube B is 2^3 = 8 cubic inches
The ratio of the volume of cube B to the volume of cube A is:
8/512 = 1/64
Decide whether the change is an increase or decrease and find the percent change. Original number = 45 New number = 18 Answer: 60% decrease 60% increase 150% increase 150% decrease
The percentage change can be found below
[tex]\begin{gathered} \text{percentage change = }\frac{\text{ new number}-\text{original number}}{\text{original number}}\times100 \\ \text{percentage change=}\frac{18-45}{45}\times100 \\ \text{percentage change}=-60 \\ \end{gathered}[/tex]Since the percentage is negative, this means there is a 60% decrease.
Boy earns 20.56 on Monday 32.90 on Tuesday and 20.78 on Wednesday he spends half what he earned during three days how much he have left
First, we need to calculate the total earned during the three days, so we need to sum 20.56, 32.90, and 20.78 as:
So, the total earned is 74.24, then half of 74.24 is calculated as:
[tex]\frac{74.24}{2}=37.12[/tex]If he spends the half, he has left the half. Therefore, he has left 37.12
Answer: 37.12
I have a bag, with some balls in it. All but four are blue, all but four are green, and all but four are red.
In total, how many balls are there in the bag?
===============================================
Explanation:
x = total number of balls
x-4 = number of blue
x-4 = number of green
x-4 = number of red
3(x-4) = 3x-12 = total number of blue, green, or red
x - (3x-12) = x-3x+12 = -2x+12 = number of other colors
If there are other colors, then we want this quantity to be larger than 0, so,
-2x+12 > 0
-2x > -12
x < -12/(-2)
x < 6
There are less than 6 balls in the bag.
At the same time, we want each x-4 to be greater than zero
x-4 > 0
x > 4
------------------
We found that x > 4 and x < 6
This combines to 4 < x < 6 which has us land on x = 5
This computes x-4 = 5-4 = 1, showing there's one of each blue, green and red. There are 5-1-1-1 = 2 balls of some other color not mentioned.
------------------
If x = 6, then,
x-4 = 2 each of blue, green and red
There wouldn't be any other color since 6-2-2-2 = 0
18 area = in. 114, 134, Jordan's game started at 6:05 pm. The game finished at 7:10 pm, and it took 20 minutor to got home what time did
Notice that the first term is 114 and the third term is 134, then, between the first and the third, there are 20 units of difference.
Then, the common difference between each term must be 10, thus, the complete sequence is:
[tex]114,124,134,144,154[/tex]Which equation shows the commutative property? CLEAR SUBMIT (10+5) (30 + 6) = 15 x 36 36 x 15 = 15 X 36 (10 + 30) x (5 + 6) = 15 x 36 36 + 15 = 15 X 36
Explanation
The commutative property states that the numbers on which we operate can be moved or swapped from their position without making any difference to the answer. The property holds for Addition and Multiplication,hence
Let's check every option
Step 1
a)
[tex]\begin{gathered} (10+5)\cdot(30+6)=15\cdot36 \\ \end{gathered}[/tex]this does not show the commutative property
b)
[tex]\begin{gathered} 36\cdot15=15\cdot36 \\ \end{gathered}[/tex]as we can see the factor were moved, and by the commutative property the result is not afected, so
[tex]\begin{gathered} \\ 36\cdot15=15\cdot36 \end{gathered}[/tex]is the answer.
I hope this helps you
Which expression is equivalent to -(-r - 16)?
Answer: Hi that would be (r+16) since they are generally the same thing, hope this is what you are asking for!
Step-by-step explanation:
URGENT!! ILL GIVE
BRAINLIEST!!!!! AND 100
POINTS!!!!!
Find the value of 5y-7 given that -2y+1=3.Simplify your answer as much as possible.
-2y + 1 = 3
Solving for y:
Add 2y to both sides:
-2y + 1 +
Hello, is it possible to show me the steps to simplify this problem? I don't understand the solution provided in my textbook.
Explanation
We are asked to simplify the given question
[tex](\frac{75d^{\frac{18}{5}}}{3d^{\frac{3}{5}}})^{\frac{5}{2}}[/tex]To simplify the terms, we will follow the steps below
Step 1: simplify the terms in the bracket using the exponential rule
Thus for the terms in the parentheses
[tex](\frac{75d^{\frac{18}{5}}}{3d^{\frac{3}{5}}})=\frac{75}{3}\times d^{\frac{18}{5}-\frac{3}{5}}[/tex]Hence
[tex]25\times d^{\frac{18-3}{5}}=25d^{\frac{15}{5}}=25d^3[/tex]Simplifying further
[tex]25d^3=25d^3[/tex]Step 2: substitute the value obtained above in step 1 into the parentheses, so that
[tex](\frac{75d^{18\/5}}{3d^{3\/5}})^{\frac{5}{2}}=(25d^3)^{\frac{5}{2}}[/tex]Step 3: Simplify further, we will apply the rule
so that
[tex](25d^3)^{\frac{5}{2}}=25^{\frac{5}{2}}d^{3\times\frac{5}{2}}[/tex]Simplifying further
[tex]\begin{gathered} we\text{ will have} \\ \sqrt{25^5}\times d^{\frac{15}{2}}=3125d^{\frac{15}{2}} \end{gathered}[/tex]Hence, our final answer is
[tex]3125d^{\frac{15}{2}}[/tex]Can the numbers 12, 6, 6 be used to form the sides of a triangle? Why or why not?
Enter your answer and also a 2-3 sentence explanation that describes how you determined your answer.
Using the numbers 12, 6, 6, the triangle can not be formed.
The given numbers are 12, 6 and 6.
What is the triangle inequality theorem?The triangle inequality theorem describes the relationship between the three sides of a triangle. According to this theorem, for any triangle, the sum of lengths of two sides is always greater than the third side.
Here, 6 + 6 = 12 but not greater than 12
Therefore, using the numbers 12, 6, 6, the triangle can not be formed.
To learn more about the triangle inequality theorem visit:
https://brainly.com/question/1163433.
#SPJ1
4 groups of 30 tens is 120 tens 6x20= 120
(1 3/4 - 1/8)+(5/6 ÷ 2/3)
ANSWER
23/8
EXPLANATION
To solve this, first, we have to do the operations in the parenthesis. The first one is a subtraction between a mixed number and a fraction, so before doing the subtraction, we have to convert the number to an improper fraction by adding the parts,
[tex]1\frac{3}{4}=1+\frac{3}{4}=\frac{7}{4}[/tex]So the subtraction is,
[tex]1\frac{3}{4}-\frac{1}{8}=\frac{7}{4}-\frac{1}{8}=\frac{2\cdot7-1}{8}=\frac{14-1}{8}=\frac{13}{8}[/tex]Then we divide the second term using the KCF rule:
• K,eep the first fraction
,• C,hange the division sign for a multiplication sign
,• F,lip the second fraction
[tex]\frac{5}{6}\div\frac{2}{3}=\frac{5}{6}\times\frac{3}{2}=\frac{15}{12}=\frac{5}{4}[/tex]Now, we add these two results,
[tex]\frac{13}{8}+\frac{5}{4}=\frac{13+5\cdot2}{8}=\frac{13+10}{8}=\frac{23}{8}[/tex]Hence, the answer is 23/8.
In a class of students, the following data table summarizes the gender of the studentsand whether they have an A in the class. What is the probability that a student whohas an A is a female?Female MaleHas an A24Does not have an A176
We are asked to find the probability that a student is female given that they have an A.
Since this is the case, we limit ourselves to observing the row "Has an A".
In said row, there is a total of 6 students who have an A. Out of those 6, 2 are female.
Thus, P(Female|A) = 2/6 = 1/3 = 33.33%.
Hello I need help with this . Thanks ok ok
Answer:
The given graph is not a graph of a function because a vertical line can be drawn that will intersect this graph more than once.
Explanation:
A vertical line test is generally used to determine if a relation is a function or not by drawing a vertical line across the graph of the relation.
If the vertical line intersects the graph of the relation more than once, it means that the relation is not a function because one x-value will have more than one y-value.
If the vertical line intersects the graph just once, then we can say that the relation is a function since one x-value will be associated with only one y-value.
Looking at the given graph, we can see that a vertical line can be drawn across the graph that will intersect the graph more than once, therefore the given graph is not a graph of a function because a vertical line can be drawn that will intersect the graph more than once.
help me pleaseeeeeeeee
Answer:
A. 200
B. 500
Step-by-step explanation:
1000x²
R(x) = --------------
x² + 4
x = years
A. the first year = 1
1000(1)²
R(1) = --------------
(1)² + 4
1000
R(1) = --------------
1 + 4
1000
R(1) = --------------
5
R(1) = 200
B. years = 2
1000(2)²
R(2) = --------------
(2)² + 4
1000(4)
R(2) = --------------
4 + 4
4000
R(2) = --------------
8
R(2) = 500
I hope this helps!