Answer:
Not true
Step-by-step explanation:
Absolute value describes the positive distance from 0. Since |3| = 3, then |3| is not greater than 4.
Consider the position function below. r(t) = (1-2,3-2) for t20 a. Find the velocity and the speed of the object. b. Find the acceleration of the object. a. v(t) = 0 |v(t) = 1 b. a(t) = OD
Consider the position function below: r(t) = (1 - 2t, 3 - 2t) for t ≤ 20.a. Find the velocity and the speed of the object.
The velocity of the object is given as:v(t) = r'(t)where r(t) is the position vector of the object at any given time, t.The velocity, v(t) is thus:v(t) = r'(t) = (-2, -2)The speed of the object is given as the magnitude of the velocity vector. Therefore,Speed, S = |v(t)| = √[(-2)² + (-2)²] = √[8] = 2√[2].Therefore, the velocity of the object is v(t) = (-2, -2) and the speed of the object is S = 2√[2].b. Find the acceleration of the object.The acceleration of the object is given as the derivative of the velocity of the object with respect to time. i.e. a(t) = v'(t).v(t) = (-2, -2), for t ≤ 20.v'(t) = a(t) = (0, 0)Therefore, the acceleration of the object is given as a(t) = v'(t) = (0, 0).
Learn more about position function here:
https://brainly.com/question/32584452
#SPJ11
What kind of geometric transformation is shown in the line of music?
reflection
glide reflection
translation
The geometric transformation shown in the line of music is given as follows:
Glide reflection.
What is a glide reflection?The glide reflection is a geometric transformation that is defined as a combination of a reflection with a translation.
On the line of music for this problem, we have that:
There is a reflection, as the orientation of the shape is changed.There is a translation, as the position of the shape keeps moving right.As there was both a reflection and a translation, the geometric transformation shown in the line of music is given as follows:
Glide reflection.
More can be learned about glide reflections at brainly.com/question/5612016
#SPJ1
I don't know why my teacher write f(x) = 0, x =3 while the
function graph show that f(x) is always equal to 2 regardless which
way it is approaching to. Please explain, thank you!
If your teacher wrote f(x) = 0, x = 3, but graph of the function f(x) shows that it is always equal to 2, regardless of the approach, there may be error. It is crucial to clarify this discrepancy with your teacher to ensure.
Based on your description, there seems to be a discrepancy between the given equation f(x) = 0, x = 3 and the observed behavior of the graph, which consistently shows f(x) as 2. It is possible that there was a mistake in the equation provided by your teacher or in your interpretation of it.
To resolve this discrepancy, it is essential to communicate with your teacher and clarify the intended equation or expression. They may provide further explanation or correct any misunderstandings. Open dialogue with your teacher will help ensure that you have accurate information and a clear understanding of the function and its behavior.
To learn more about function click here : brainly.com/question/21145944
#SPJ11
6. Locate and classify all the critical points of f(x, y) = 3x - x 3 - 3xy?.
The critical points of the function f(x, y) = 3x - x³ - 3xy is determined as (0, 1).
What are the critical points?
The critical points of the function f(x, y) = 3x - x³ - 3xy is calculated as follows;
The partial derivative with respect to x is determined as;
∂f/∂x = 3 - 3x² - 3y
The partial derivative with respect to y is determined as
∂f/∂y = -3x
The critical points is calculated as;
∂f/∂x = 3 - 3x² - 3y = 0 ----- (1)
∂f/∂y = -3x = 0 --------- (2)
From equation (2);
-3x = 0
x = 0
Substituting x = 0 into equation (1);
3 - 3(0)² - 3y = 0
3 - 0 - 3y = 0
3 - 3y = 0
-3y = -3
y = 1
The critical point is (x, y) = (0, 1).
Learn more about critical points here: https://brainly.com/question/30459381
#SPJ4
If q is positive and increasing, for what value of q is the rate of increase of q3 twelve times that of the rate of increase of q? a. 2
b. 3 c. 12 d. 36
If q is positive and increasing, for what value of q is the rate of increase of q3 twelve times that of the rate of increase of q is option a. 2.
Let's differentiate the equation q^3 with respect to q to find the rate of increase of q^3:
d/dq (q^3) = 3q^2
Now, we can set up the equation to find the value of q:
12 * d/dq (q) = d/dq (q^3)
12 * 1 = 3q^2
12 = 3q^2
4 = q^2
Taking the square root of both sides, we get:
2 = q
Therefore, the value of q for which the rate of increase of q^3 is twelve times that of the rate of increase of q is q = 2.
to know more about equation visit:
brainly.com/question/10724260
#SPJ11
The number of people (in hundreds) who have heard a rumor in a large company days after the rumor is started is approximated by
P(t) = (10ln(0.19t + 1)) / 0.19t+ 1
t greater than or equal to 0
When will the number of people hearing the rumor for the first time start to decline? Write your answer in a complete sentence.
The number of people hearing the rumor for the first time will start to decline when the derivative of the function P(t) changes from positive to negative.
To determine when the number of people hearing the rumor for the first time starts to decline, we need to find the critical points of the function P(t). The critical points occur where the derivative of P(t) changes sign.
First, we find the derivative of P(t) with respect to t:
P'(t) = [10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2.
To determine the critical points, we set P'(t) equal to zero and solve for t:
[10(0.19t + 1)ln(0.19t + 1) - 10ln(0.19t + 1)(0.19)] / (0.19t + 1)^2 = 0.
Simplifying, we have:
[0.19t + 1]ln(0.19t + 1) - ln(0.19t + 1)(0.19) = 0.
Factoring out ln(0.19t + 1), we get:
ln(0.19t + 1)[0.19t + 1 - 0.19] = 0.
The critical points occur when ln(0.19t + 1) = 0, which means 0.19t + 1 = 1. Taking t = 0 satisfies this equation.
To determine when the number of people hearing the rumor for the first time starts to decline, we need to examine the sign changes of P'(t) around the critical point t = 0. By evaluating the derivative at points near t = 0, we find that P'(t) is positive for t < 0 and negative for t > 0.
Learn more about derivative here:
https://brainly.com/question/29144258
#SPJ11
solve this pls 6+8n+2n=4n+30
Answer:
[tex]\huge\boxed{\sf n = 4}[/tex]
Step-by-step explanation:
Given equation:6 + 8n + 2n = 4n + 30
Combine like terms6 + 10n = 4n + 30
Subtract 4n from both sides6 + 10n - 4n = 30
6 + 6n = 30
Subtract 6 from both sides6n = 30 - 6
6n = 24
Divide both sides by 6n = 24 / 6
n = 4[tex]\rule[225]{225}{2}[/tex]
2x² +10x=
2²
10x
Problem 3: Identify the GCF
Identify the factor pairs of the terms 22+ 10x that
share the greatest common factor.
Enter the factor pairs in the table.
Expression
Common Factor
x
X
Check Answers
Other Factor
3
As per the given data, the greatest common factor of 22 + 10x is 2.
To find the greatest common factor (GCF) of the terms in the expression 22 + 10x, we need to factorize each term and identify the common factors.
Let's start with 22. The prime factorization of 22 is 2 * 11.
Now let's factorize 10x. The GCF of 10x is 10, which can be further factored as 2 * 5. Since there is an 'x' attached to 10, we include 'x' as a factor as well.
Now, let's identify the factor pairs that share the greatest common factor:
Factor pairs of 22:
1 * 22
2 * 11
Factor pairs of 10x:
1 * 10x
2 * 5x
From the factor pairs, we can see that the common factor between the two terms is 2.
Therefore, the GCF of 22 + 10x is 2.
For more details regarding GCF, visit:
https://brainly.com/question/26526506
#SPJ1
Test the series for convergence or divergence. 00 Σ (-1)– 113e1/h n n = 1 O converges O diverges
The series [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13e^{1/hn}}$[/tex] converges. The given series can be written as [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13}\cdot\frac{1}{e^{1/hn}}$[/tex].
Notice that the series involves alternating signs with a decreasing magnitude. When we consider the term [tex]$\frac{1}{e^{1/hn}}$[/tex], as n approaches infinity, the exponential term will tend to 1. Therefore, the series can be simplified to [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13}$[/tex]. This is an alternating series with a constant magnitude, which allows us to apply the Alternating Series Test. According to this test, if the magnitude of the terms approaches zero and the terms alternate in sign, then the series converges. In our case, the magnitude of the terms is [tex]$\frac{1}{13}$[/tex], which approaches zero, and the terms alternate in sign. Hence, the given series converges.
In conclusion, the series [tex]$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{1}{13e^{1/hn}}$[/tex] converges.
To learn more about converges refer:
https://brainly.com/question/31318310
#SPJ11
"The invoice amount is $885; terms 2/20 EOM; invoice date: Jan
5
a. What is the final discount date?
b. What is the net payment date?
c. What is the amount to be paid if the invoice is paid on Jan
a. The final discount date is 20 days after the end of the month. b. The net payment date is 30 days after the end of the month. c. If the invoice is paid on January 20th, the amount to be paid is $866.70.
a. The terms "2/20 EOM" mean that a 2% discount is offered if the invoice is paid within 20 days, and the EOM (End of Month) indicates that the 20-day period starts from the end of the month in which the invoice is issued. Therefore, the final discount date would be 20 days after the end of January.
b. The net payment date is the date by which the invoice must be paid in full without any discount. In this case, the terms state "EOM," which means that the net payment date is 30 days after the end of the month in which the invoice is issued.
c. If the invoice is paid on January 20th, it is within the 20-day discount period. The discount amount would be 2% of $885, which is $17.70. Therefore, the amount to be paid would be the invoice amount minus the discount, which is $885 - $17.70 = $866.70.
Learn more about minus here:
https://brainly.com/question/30727554
#SPJ11
5. (a) Let : =(-a + ai)(6 +bV3i) where a and b are positive real numbers. Without using a calculator, determine arg 2. (4 marks) (b) Determine the cube roots of 32V3+32i and sketch them together in the complex plane. (5 marks)
(a) The argument, arg(ζ) = arctan(imaginary part / real part)
= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]
(b) The cube roots, z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]
= 4[cos(π/18) + isin(π/18)]
(a) To find the argument of the complex number ζ = (-a + ai)(6 + b√3i), we can expand the expression and simplify:
ζ = (-a + ai)(6 + b√3i)
= -6a - ab√3i + 6ai - b√3a + 6a√3 + b√3i²
= (-6a + 6a√3) + (-ab√3 + b√3i) + (6ai - b√3a - b√3)
= 6a(√3 - 1) + b(√3i - a√3 - b)
Now, let's separate the real and imaginary parts:
Real part: 6a(√3 - 1) - b(a√3 + b)
Imaginary part: b(√3 - a)
To find the argument, we need to find the ratio of the imaginary part to the real part:
arg(ζ) = arctan(imaginary part / real part)
= arctan[b(√3 - a) / (6a(√3 - 1) - b(a√3 + b))]
(b) Let's find the cube roots of the complex number z = 32√3 + 32i. We'll use the polar form of a complex number to simplify the calculation.
First, let's find the modulus (magnitude) and argument (angle) of z:
Modulus: |z| = √[(32√3)² + 32²] = √[3072 + 1024] = √4096 = 64
Argument: arg(z) = arctan(imaginary part / real part) = arctan(32 / (32√3)) = arctan(1 / √3) = π/6
Now, let's express z in polar form: z = 64(cos(π/6) + isin(π/6))
To find the cube roots, we can use De Moivre's theorem, which states that raising a complex number in polar form to the power of n will result in its modulus raised to the power of n and its argument multiplied by n:
z^(1/3) = 64^(1/3)[cos((π/6)/3) + isin((π/6)/3)]
= 4[cos(π/18) + isin(π/18)]
Since we want to find all three cube roots, we need to consider all three cube roots of unity, which are 1, e^(2πi/3), and e^(4πi/3):
Root 1: z^(1/3) = 4[cos(π/18) + isin(π/18)]
Root 2: z^(1/3) = 4[cos((π/18) + (2π/3)) + isin((π/18) + (2π/3))]
= 4[cos(7π/18) + isin(7π/18)]
Root 3: z^(1/3) = 4[cos((π/18) + (4π/3)) + isin((π/18) + (4π/3))]
= 4[cos((13π/18) + isin(13π/18)]
Now, let's sketch these cube roots in the complex plane:
Root 1: Located at 4(cos(π/18), sin(π/18))
Root 2: Located at 4(cos(7π/18), sin(7π/18))
Root 3: Located at 4(cos(13π/18), sin(13π/18))
The sketch will show three points on the complex plane representing these cube roots.
To know more about complex numbers, visit the link : https://brainly.com/question/10662770
#SPJ11
Can someone help me with this?
Find the area between y = 5 and y = (x − 1)² + 1 with x ≥ 0. The area between the curves is square units.
Area between the curves is -43/3 square units, which is approximately -14.333 square units. To find the area between the curves y = 5 and y = (x - 1)² + 1 with x ≥ 0, we need to calculate the definite integral of the difference between the upper and lower curves with respect to x.
First, let's find the x-values at which the curves intersect:
For y = 5:
5 = (x - 1)² + 1
4 = (x - 1)²
±2 = x - 1
x = 1 ± 2
The lower curve is y = 5, and the upper curve is y = (x - 1)² + 1.
To find the area between the curves, we integrate the difference between the upper and lower curves: A = ∫[1-2 to 1+2] ((x - 1)² + 1 - 5) dx
Simplifying the integrand:
A = ∫[1-2 to 1+2] (x² - 2x + 1 - 4) dx
A = ∫[1-2 to 1+2] (x² - 2x - 3) dx
Integrating:
A = [x³/3 - x² - 3x] evaluated from 1-2 to 1+2
A = [(1+2)³/3 - (1+2)² - 3(1+2)] - [(1-2)³/3 - (1-2)² - 3(1-2)]
Simplifying further:
A = [(27/3) - 9 - 9] - [(-1/3) - 1 + 3]
A = [9 - 9 - 9] - [-1/3 - 1 + 3]
A = -9 - 7/3
A = -36/3 - 7/3
A = -43/3
The area between the curves is -43/3 square units, which is approximately -14.333 square units. Note that the negative sign indicates that the area is below the x-axis
Learn more about area between curves: https://brainly.com/question/31202331
#SPJ11
can
someone answer this immediately with the work
Let f (x) be equal to -x + 1 for x < 0, equal to 1 for 0≤x≤ 1, equal to -*+2 for 1
The function f(x) is defined differently for different values of x.
For x less than 0, f(x) is equal to -x + 1.
For values of x between 0 and 1 (inclusive), f(x) is equal to 1.
For values of x greater than 1, f(x) is equal to -*+2
So overall, the function f(x) is a piecewise function with different definitions for different intervals of x.
Let f(x) be a piecewise function defined as follows:
1. f(x) = -x + 1 for x < 0
2. f(x) = 1 for 0 ≤ x ≤ 1
3. f(x) = -x + 2 for x > 1
This function behaves differently depending on the input value (x). For x values less than 0, the function follows the equation -x + 1. For x values between 0 and 1 inclusive, the function equals 1. And for x values greater than 1, the function follows the equation -x + 2.
To learn more about function, visit:
https://brainly.com/question/31349499
#SPJ11
use the chain rule to find ∂z ∂s and ∂z ∂t . z = ln(5x 3y), x = s sin(t), y = t cos(s)
∂z/∂s = 3cos(t)/y, ∂z/∂t = 3s*cos(t)/y - sin(s)/x (using the chain rule to differentiate each term and substituting the given expressions for x and y)
To find ∂z/∂s and ∂z/∂t using the chain rule, we start by finding the partial derivatives of z with respect to x and y, and then apply the chain rule.
First, let's find ∂z/∂x and ∂z/∂y.
∂z/∂x = ∂/∂x [ln(5x^3y)]
= (1/5x^3y) ∂/∂x [5x^3y]
= (1/5x^3y) 15x^2y
= 3/y
∂z/∂y = ∂/∂y [ln(5x^3y)]
= (1/5x^3y) ∂/∂y [5x^3y]
= (1/5x^3y) 5x^3
= 1/x
Now, using the chain rule, we can find ∂z/∂s and ∂z/∂t.
∂z/∂s = (∂z/∂x) (∂x/∂s) + (∂z/∂y) (∂y/∂s)
= (3/y) (cos(t)) + (1/x) (0)
= 3cos(t)/y
∂z/∂t = (∂z/∂x) (∂x/∂t) + (∂z/∂y) (∂y/∂t)
= (3/y) * (scos(t)) + (1/x) (-sin(s))
= 3scos(t)/y - sin(s)/x
Therefore, ∂z/∂s = 3cos(t)/y and ∂z/∂t = 3s*cos(t)/y - sin(s)/x.
Learn more about chain rule here:
https://brainly.com/question/31585086
#SPJ11
Lin's sister has a checking account. If the account balance ever falls below zero, the bank chargers her a fee of $5.95 per day. Today, the balance in Lin's sisters account is -$.2.67.
Question: If she does not make any deposits or withdrawals, what will be the balance in her account after 2 days.
After 2 days without any deposits or withdrawals, the balance in Lin's sister's account would be -$14.57.
To solve this problemThe bank will impose a $5.95 daily fee on Lin's sister if she doesn't make any deposits or withdrawals for each day that her account balance is less than zero.
Let's calculate the balance after two days starting with an account balance of -$2.67:
Account balance on Day 1: $2.67
Charged at: $5.95
New account balance: (-$2.67) - $5.95 = -$8.62
Second day: Account balance: -$8.62
Charged at: $5.95
New account balance: (-$8.62) - $5.95 = -$14.57
Therefore, after 2 days without any deposits or withdrawals, the balance in Lin's sister's account would be -$14.57.
Learn more about subtract here : brainly.com/question/30661244
#SPJ1
Select the values that make the inequality-2 true. Then write an equivalent
inequality, in terms of s.
(Numbers written in order from least to greatest going across.)
00
07
011
04
08
12
Equivalent Inequality: 828
05
D9
16
The solution to the given Inequality expression is: s ≥ -8
How to solve the Inequality problem?Inequalities could be in the form of greater than, less than, greater than or equal to and less than or equal to.
We are given the inequality expression as:
s/-2 ≤ 4
Divide both sides by -1/2 and this changes the inequality sign to give us:
s ≥ 4 * -2
s ≥ -8
Thus, all values greater than or equal to -8 are possible values of s in the inequality.
Read more about Inequalities at: https://brainly.com/question/25275758
#SPJ1
Complete question is:
Select the values that make the inequality s/-2 ≤ 4 true. Then write an equivalent inequality, in terms of s.
BRAINLIEST!!!
Solve by system of equation: Angel has 20 nickels and dimes. If the value of his coins are $1.85, how many of each coin does he have?
Let x represent the number of nickels and y represent the number of dimes that Angel possesses.
Equation 1: There are exactly 20 nickels and dimes in circulation Equation 2: The total value of the coins is $1.85; 0.05x + 0.1y = 1.85
Eq. 1 for x must be solved:
x = 20 - y
Add x to equation 2, then figure out y:
0.05(20 - y) + 0.1y = 1.85 1 - 0.05y + 0.1y = 1.85 0.05y = 0.85 y = 17
To find x, substitute y into equation 1:
x + 17 = 20 x = 3
Learn more about equations here:
https://brainly.com/question/10724260
#SPJ1
consider a data set corresponding to readings from a distance sensor: 9, 68, 25, 72, 46, 29, 24, 93, 84, 17 if normalization by decimal scaling is applied to the set, what would be the normalized value of the first reading, 9?
If decimal scaling normalization is applied to the given data set, the normalized value of the first reading, 9, would be 0.09.
To normalize the first reading, 9, we divide it by 100. Therefore, the normalized value of 9 would be 0.09.By applying the same normalization process to each value in the data set, we would obtain the normalized values for all readings. The purpose of normalization is to scale the data so that they fall within a specific range, often between 0 and 1, making it easier to compare and analyze different variables or data sets.
Learn more about normalization here:
https://brainly.com/question/15603885
#SPJ11
Consider the following curve. f(x) FUX) =* Determine the domain of the curve. (Enter your answer using interval notation) (0.00) (-0,0) Find the intercepts. (Enter your answers as comma-separated list
The given curve is represented by the equation f(x) = √[tex](x^2 - 4)[/tex]. The domain of the curve is (-∞, -2] ∪ [2, +∞), and it has two intercepts: (-2, 0) and (2, 0).
To determine the domain of the curve, we need to consider the values of x for which the function f(x) is defined. In this case, the square root function (√) is defined only for non-negative real numbers. Therefore, we need to find the values of x that make the expression inside the square root non-negative.
The expression inside the square root, x^2 - 4, must be greater than or equal to zero. Solving this inequality, we get[tex]x^2[/tex]≥ 4, which implies x ≤ -2 or x ≥ 2. Combining these two intervals, we find that the domain of the curve is (-∞, -2] ∪ [2, +∞).
To find the intercepts of the curve, we set f(x) = 0 and solve for x. Setting √[tex](x^2 - 4)[/tex] = 0, we square both sides to get x^2 - 4 = 0. Adding 4 to both sides and taking the square root, we find x = ±2. Therefore, the curve intersects the x-axis at x = -2 and x = 2, giving us the intercepts (-2, 0) and (2, 0) respectively.
Learn more about domain here:
https://brainly.com/question/30133157
#SPJ11
Consider the parametric equations x = t + 2,y = t2 + 3, 1 t 2 (15 points) a) Eliminate the parameter to get a Cartesian equation. Identify the basic shape of the curve. If it is linear, state the slope and y-intercept.If it is a parabola, state the vertex. b) Sketch the curve described by the parametric equations and show the direction of traversal.
a) To eliminate the parameter t, we can solve for t in the equation x = t + 2 to get t = x - 2. Substituting this expression for t into the equation y = t^2 + 3 yields y = (x - 2)^2 + 3.
Simplifying this equation gives y = x^2 - 4x + 7, which is a parabola. The vertex of this parabola can be found by completing the square: y = (x - 2)^2 + 3 = (x - 2)^2 + (sqrt(3))^2 - (sqrt(3))^2 = (x - 2)^2 + 3.
Therefore, the vertex of the parabola is at (2, 3).
b) To sketch the curve described by the parametric equations, we can plot points by choosing values of t between 1 and 2. When t = 1, we have x = 3 and y = 4.
When t = 1.5, we have x = 3.5 and y = 5.25. When t = 1.75, we have x = 3.75 and y = 6.0625. When t = 1.9, we have x ≈ 3.9 and y ≈ 7.21.
The curve starts at the point (3,4) and moves towards the right as t increases, reaching its minimum point at the vertex (2,3), before moving upwards as t continues to increase towards infinity.
Therefore, the curve described by the parametric equations is a parabolic curve with vertex at (2,3), opening upwards.
To know more about parabola refer here:
https://brainly.com/question/11911877#
#SPJ11
Verify that the points are vertices of a parallelogram and find
its area A(2,-3,1) B(6,5,-1) C(7,2,2) D(3,-6,4)
Answer:
The area of the parallelogram formed by the points is approximately 37.73 square units.
Step-by-step explanation:
To verify if the points A(2, -3, 1), B(6, 5, -1), C(7, 2, 2), and D(3, -6, 4) form a parallelogram, we can check if the opposite sides of the quadrilateral are parallel.
Let's consider the vectors formed by the points:
Vector AB = B - A = (6, 5, -1) - (2, -3, 1) = (4, 8, -2)
Vector CD = D - C = (3, -6, 4) - (7, 2, 2) = (-4, -8, 2)
Vector BC = C - B = (7, 2, 2) - (6, 5, -1) = (1, -3, 3)
Vector AD = D - A = (3, -6, 4) - (2, -3, 1) = (1, -3, 3)
If the opposite sides are parallel, the vectors AB and CD should be parallel, and the vectors BC and AD should also be parallel.
Let's calculate the cross product of AB and CD:
AB x CD = (4, 8, -2) x (-4, -8, 2)
= (-16, -8, -64) - (-4, 8, -32)
= (-12, -16, -32)
The cross product of BC and AD:
BC x AD = (1, -3, 3) x (1, -3, 3)
= (0, 0, 0)
Since the cross product BC x AD is zero, it means that BC and AD are parallel.
Therefore, the points A(2, -3, 1), B(6, 5, -1), C(7, 2, 2), and D(3, -6, 4) form a parallelogram.
To find the area of the parallelogram, we can calculate the magnitude of the cross product of AB and CD:
Area = |AB x CD| = |(-12, -16, -32)| = √((-12)^2 + (-16)^2 + (-32)^2) = √(144 + 256 + 1024) = √1424 ≈ 37.73
Therefore, the area of the parallelogram formed by the points is approximately 37.73 square units.
Learn more about parallelogram:https://brainly.com/question/970600
#SPJ11
a trapezoid has bases of lengths 8 and 21. Find the trapezoids height if its area is 261
Step-by-step explanation:
Area of trapezoid formula
Area = height + ( base1 + base2 ) / 2
sooo:
Area / (( base1 + base2)/ 2 ) = height
261 / (( 8+21)/2) = height
height = 18 units
14. [-70.5 Points] DETAILS SCALCET9 3.6.018. MY NOTES ASK YOUR TEACHER Differentiate the function. t(t2 + 1) 8 g(t) = Inl V 2t - 1 g'(t) =
The derivative of [tex]g(t) = ln|√(2t - 1)| + t(t^2 + 1)/8 is g'(t) = (t^2 + 1)/8 + 1/(2t - 1).[/tex]
Start with the function [tex]g(t) = ln|√(2t - 1)| + t(t^2 + 1)/8.[/tex]
Apply the chain rule to differentiate the natural logarithm term: [tex]d/dt [ln|√(2t - 1)|] = 1/(√(2t - 1)) * (1/(2t - 1)) * (2).[/tex]
Simplify the expression: [tex]d/dt [ln|√(2t - 1)|] = 1/(2t - 1).[/tex]
Differentiate the second term using the power rule:[tex]d/dt [t(t^2 + 1)/8] = (t^2 + 1)/8.[/tex]
Add the derivatives of both terms to get the derivative of [tex]g(t): g'(t) = (t^2 + 1)/8 + 1/(2t - 1).[/tex]
learn more about:- derivatives here
https://brainly.com/question/29144258
#SPJ11
Identify a reduced fraction that has the decimal expansion 0.202222222222 ... (Give an exact answer. Use symbolic notation and fractions as needed.) 0.202222222222 ... = 0.20222 Incorrect
The reduced fraction for 0.202222... is 1/5.
To express the repeating decimal 0.20222222... as a reduced fraction, follow these steps:
1. Let x = 0.202222...
2. Multiply both sides by 100: 100x = 20.2222...
3. Multiply both sides by 10: 10x = 2.02222...
4. Subtract the second equation from the first: 90x = 18
5. Solve for x: x = 18/90
Now, let's reduce the fraction:
18/90 can be simplified by dividing both the numerator and denominator by their greatest common divisor (GCD), which is 18. So, 18 ÷ 18 = 1 and 90 ÷ 18 = 5.
Therefore, the reduced fraction for 0.202222... is 1/5.
To learn more about repeating decimals visit : https://brainly.com/question/22063097
#SPJ11
Write the equation of the sphere in standard form. x2 + y2 + z2 + 8x – 8y + 6z + 37 = 0 + Find its center and radius. center (x, y, z) = radius
After considering the given data we conclude that the center (x, y, z) is (-4, 4, -3), and the radius is 4, under the condition that sphere is in standard form.
To present the condition of the circle in standard shape(sphere ), we have to apply summation of the square in terms of including x, y, and z.
The given condition of the sphere is:
[tex]x^2 + y^2 + z^2 + 8x - 8y + 6z + 37 = 0[/tex]
To sum of the square for x, we include the square of half the coefficient of x:
[tex]x^2 + y^2 + z^2 + 8x -8y + 6z + 37 = 0( x^2 = 8x + 16 ) + y^2 +z^2- 8y + 6z+ 37 = 16(x + 4)^2 + y^2 +z ^2 + z^2 - 8y + 6z + 37 - 16 = 16(x + 4)^2 + ( y^2 -8y) + (z^2 + 6z) + 21 = 16 ( x+ 4)^2 + (y^2 - 8y +16) + ( z^2 + 6z +9) = 16( x+ 4)^2+(y -4)^2 +(z=3)^2 =16[/tex]
Hence, the condition is in standard shape:
[tex](x - h)^2 + ( y - k)^2 + ( z - l)^2 = r^2[/tex]
Here,
(h, k, l) = center of the circle,
r = the span.
Comparing the standard frame with the given condition, we are able to see that the center of the sphere is (-4, 4, -3), and the sweep is the square root of 16, which is 4.
Therefore, the center (x, y, z) is (-4, 4, -3), and the sweep is 4.
To know more about radius
https://brainly.com/question/29614115
#SPJ4
Please write your own linear equation of any form.
Answer:
The standard form for linear equations in two variables is Ax+By=C. For example, 2x+3y=5 is a linear equation in standard form. When an equation is given in this form, it's pretty easy to find both intercepts (x and y).
values
A=3
B=9
C=2
D=1
E=6
F=8
please do this question hand written neatly
please and thank you :)
3. Draw a graph showing the first derivative of a function with the following information. [T, 6) i. Curve should be concave up ii. X-intercepts should be -E and +F iii. y-intercept should be -D Choos
Apologies for the limitations of a text-based interface. I'll describe the steps to answer your question instead.
To draw the graph of the first derivative of a function with the given information, follow these steps:
1. Mark a point at T on the x-axis, which represents the x-coordinate of the curve's vertex.
2. Draw a curve that starts at T and is concave up (opening upward).
3. Place x-intercepts at -E and +F on the x-axis, representing the points where the curve crosses the x-axis.
4. Locate the y-intercept at -D on the y-axis, which is the point where the curve intersects the y-axis.
To draw the graph of the first derivative, start with a vertex at T and sketch a curve that is concave up (cup-shaped). The curve should intersect the x-axis at -E and +F, representing the x-intercepts. Finally, locate the y-intercept at -D, indicating where the curve crosses the y-axis. These points provide the essential characteristics of the graph. Keep in mind that without a specific function, this description serves as a general guideline for drawing the graph based on the given information.
Learn more about x-coordinate here:
https://brainly.com/question/28913580
#SPJ11
Express 800 - 600i in trigonometric form, rounding to 2 decimal places if necessary. Remember that we should always use r>0 and 0°
The expression 800 - 600i in trigonometric form is approximately 1000 ∠ -36.87°.
To express a complex number in trigonometric form, we need to convert it into polar form with the magnitude (r) and argument (θ). The magnitude (r) is calculated using the formula r = √[tex](a^2 + b^2)[/tex], where 'a' is the real part and 'b' is the imaginary part. In this case, a = 800 and b = -600.
r = √[tex](800^2 + (-600)^2)[/tex] ≈ √(640000 + 360000) ≈ √(1000000) ≈ 1000
The argument (θ) can be found using the formula θ = arctan(b/a). Since a = 800 and b = -600, we have:
θ = arctan((-600)/800) ≈ arctan(-0.75) ≈ -36.87°
Therefore, the expression 800 - 600i in trigonometric form is approximately 1000 ∠ -36.87°, where 1000 is the magnitude (r) and -36.87° is the argument (θ).
Learn more about trigonometric here:
https://brainly.com/question/29156330
#SPJ11
Consider the points P(1.2,5) and Q(9.4. 11) a. Find Po and state your answer in two forms (a, b, c) and ai + bj+ck. b. Find the magnitude of Po c. Find two unit vectors parallel to Po a. Find PO PO-OO
The position vector of point P, denoted as [tex]\(\overrightarrow{OP}\)[/tex], can be found by subtracting the position vector of the origin O from the coordinates of point P.
Given that the coordinates of point P are (1.2, 5), and the origin O is (0, 0, 0), we can calculate [tex]\(\overrightarrow{OP}\)[/tex] as follows:
[tex]\[\overrightarrow{OP} = \begin{bmatrix} 1.2 - 0 \\ 5 - 0 \\ 0 - 0 \end{bmatrix} = \begin{bmatrix} 1.2 \\ 5 \\ 0 \end{bmatrix} = 1.2\mathbf{i} + 5\mathbf{j} + 0\mathbf{k} = 1.2\mathbf{i} + 5\mathbf{j}\][/tex]
The position vector of point Q, denoted as [tex]\(\overrightarrow{OQ}\)[/tex], can be found similarly by subtracting the position vector of the origin O from the coordinates of point Q. Given that the coordinates of point Q are (9.4, 11), we can calculate [tex]\(\overrightarrow{OQ}\)[/tex] as follows:
[tex]\[\overrightarrow{OQ} = \begin{bmatrix} 9.4 - 0 \\ 11 - 0 \\ 0 - 0 \end{bmatrix} = \begin{bmatrix} 9.4 \\ 11 \\ 0 \end{bmatrix} = 9.4\mathbf{i} + 11\mathbf{j} + 0\mathbf{k} = 9.4\mathbf{i} + 11\mathbf{j}\][/tex]
a) Therefore, the position vector of point P in the form (a, b, c) is (1.2, 5, 0), and in the form [tex]\(ai + bj + ck\)[/tex] is [tex]\(1.2\mathbf{i} + 5\mathbf{j}\)[/tex].
b) The magnitude of [tex]\(\overrightarrow{OP}\)[/tex], denoted as [tex]\(|\overrightarrow{OP}|\)[/tex], can be calculated using the formula [tex](|\overrightarrow{OP}| = \sqrt{a^2 + b^2 + c^2}\)[/tex], where a, b, and c are the components of the position vector [tex]\(\overrightarrow{OP}\)[/tex]. In this case, we have:
[tex]\[|\overrightarrow{OP}| = \sqrt{1.2^2 + 5^2 + 0^2} = \sqrt{1.44 + 25} = \sqrt{26.44} \approx 5.14\][/tex]
Therefore, the magnitude of [tex]\(\overrightarrow{OP}\)[/tex] is approximately 5.14.
c) To find two unit vectors parallel to [tex]\(\overrightarrow{OP}\)[/tex], we can divide [tex]\(\overrightarrow{OP}\)[/tex] by its magnitude. Using the values from part a), we have:
[tex]\[\frac{\overrightarrow{OP}}{|\overrightarrow{OP}|} = \frac{1.2\mathbf{i} + 5\mathbf{j}}{5.14} \approx 0.23\mathbf{i} + 0.97\mathbf{j}\][/tex]
Thus, two unit vectors parallel to [tex]\(\overrightarrow{OP}\)[/tex] are approximately [tex]0.23\(\mathbf{i} + 0.97\mathbf{j}\)[/tex] and its negative, [tex]-0.23\(\mathbf{i} - 0.97\math.[/tex]
To learn more about coordinates refer:
https://brainly.com/question/31217877
#SPJ11