We have to identify the translation.
We can see that the green triangle represents the transformation of triangle ABC after a dilation with a scale factor of 1/2 and a reflection across the x-axis.
We can then find the translation in each axis from the image as:
Triangle is DEF is translated 3 units to the left (and none in the vertical axis).
We can express this translation as this rule:
[tex](x+3,y+0)[/tex]Answer: (x+3, y+0)
A jar of marbles contains the following: two red marbles, three white marbles, five blue marbles, and seven green marbles.What is the probability of selecting a red marble from a jar of marbles?
ANSWER
[tex]\frac{2}{17}[/tex]EXPLANATION
Given;
[tex]\begin{gathered} n(Red)=2 \\ n(white)=3 \\ n(blue)=5 \\ n(green)=7 \end{gathered}[/tex]The total number of marble is;
[tex]n(Total)=2+3+5+7=17[/tex]Recall, the probability of an event can be calculated by simply dividing the favorable number of outcomes by the total number of the possible outcome
Hence, the probability of selecting a red marble is;
[tex]\begin{gathered} Prob(Red)=\frac{n(Red)}{n(Total)} \\ =\frac{2}{17} \end{gathered}[/tex]It’s supposed to answer in simplest formIf I die is rolled one time find the probability of
A die can have 6 possible outcomes.
The probability of an event is calculated using the formula:
[tex]P=\frac{number\text{ }of\text{ }required\text{ }outcomes}{number\text{ }of\text{ }total\text{ }outcomes}[/tex]Therefore, the probability of rolling a 1 is gotten to be:
[tex]P=\frac{1}{6}[/tex]The probability is 1/6.
The ratio of the lengths of corresponding sides of two similar triangles is 5:8. The smaller triangle has an area of 87.5cm^2. What is the area of the larger triangle
Question:
Solution:
Remember the following theorem: the ratio of the areas of two
similar triangles is equal to the ratio of the squares of their corresponding sides. Then, here A1 and A2 are areas of two similar triangles, and S1 and S2 are their corresponding sides respectively :
S1 : S2 = 5 : 8
then
[tex]\frac{S1}{S2}=\frac{5}{8}[/tex]now, A1 = 87.5. Thus, according to the theorem, we get the following equation:
[tex](\frac{5}{8})^2=\frac{87.5}{A2}[/tex]this is equivalent to:
[tex]\frac{25}{64}=\text{ }\frac{87.5}{A2}[/tex]by cross-multiplication, this is equivalent to:
[tex](A2)(25)\text{ = (64)(87.5)}[/tex]solving for A2, we get:
[tex]A2\text{ =}\frac{(64)(87.5)}{25}=224[/tex]so that, we can conclude that the correct answer is:
The area of the larger triangle is
[tex]224cm^2[/tex]
13. A co-ed soccer team has a boy to girl ratio of 3:2. There are 15 boys on the team. What is the total number of players on the team?
The ratio of boy to girl is 3:2. There are 15 boys on the team. The total number of players on the team can be calculated as follows.
[tex]\begin{gathered} \frac{3}{5}\times x=15 \\ \text{where} \\ x=\text{total number of players in the teams} \\ \frac{3x}{5}=15 \\ \text{cross multiply} \\ 3x=15\times5 \\ 3x=75 \\ x=\frac{75}{3} \\ x=25 \end{gathered}[/tex]Total players = 25
give the coordinates of the image of each point under a reflection across to given line.(0,8); y=x
Answer:
(8, 0)
Explanation:
Whenever a point (x,y) is reflected across the line y=x, the transformation rule is given below:
[tex](x,y)\to(y,x)[/tex]That is, the x-coordinate and y-coordinate change places.
Therefore, the image of the point (0,8) when reflected across the line y=x is:
[tex](8,0)[/tex]The correct answer is (8,0).
The length of a new rectangular playing field is 7 yards longer than quadruple the width. If the perimeter of the rectangular playing field is 454 yards, what are its dimensions?
The dimensions of new rectangular playing field are 183 yards and 44 yards, by the concept of perimeter of rectangle.
What is perimeter of rectangle?The whole distance that the sides or limits of a rectangle cover is known as its perimeter. Since a rectangle has four sides, its perimeter will be equal to the sum of those four sides. Given that the perimeter is a linear measurement, the rectangle's perimeter will be expressed in meters, centimeters, inches, feet, etc.
Formula, perimeter of rectangle =2× (length +width)
Given, perimeter of rectangular playing field = 454 yards (equation 1)
Let us assume, width =x
According to question length = 4x+7 (quadruple=4times)
By the above equations,
Perimeter=2×(4x+7+x)
2×(5x+7) =454 (by equation 1)
Dividing the above equation by 2 both the sides
(5x+7) =227
Subtracting the above equation by 7 both the sides
5x=220
Dividing the above equation by 5 both the sides
x=44
Therefore, the required width of new rectangular playing field is 44 yards and length of new rectangular playing field is 183 yards
To know more about perimeter of rectangle, visit:
https://brainly.com/question/15287805
#SPJ13
For what values of b will F(x) = logb x be a decreasing function?A.0 < b < 1B.0 > b > -1C.b > 0D.b < 0
Given:
There is a function given as below
[tex]F(x)=\log_bx[/tex]Required:
For what value of b the given function in decreasing
Explanation:
The given function is logarithm function
also written as
[tex]F(x)=\frac{log\text{ x}}{log\text{ b}}[/tex]The base b is determines that if the function is increasing or decreasing
here
for
[tex]0the given function is decreasingfor
[tex]b>1[/tex]the given function is increasing
Final answer:
[tex]0
Find the coordinates of the vertex of the graph of y=4-x^2 indentify the vertex as a maximum or minimum point A.(2,9);maximumB.(0,4);minimumC.(0,4);maximum D.(2,0);minimum
Let's begin by identifying key information given to us:
[tex]\begin{gathered} y=4-x^2 \\ y=-x^2+4 \\ a=-1,b=0,c=4 \\ x_v=-\frac{b}{2a}=-\frac{0}{2(-1)}=0 \\ y_v=-\frac{b^2-4ac}{4a}=-\frac{0^2-4(-1)(4)}{4(-1)} \\ y_v=-\frac{0+16}{-4}=\frac{-16}{-4}=4 \\ y_v=4 \\ \\ \therefore The\text{ vertex of the equation is }(0,4) \end{gathered}[/tex]To know if the vertex is the maximum or minimum point, we will follow this below:
[tex]\begin{gathered} y_v=4 \\ \Rightarrow This\text{ is a minimum point} \end{gathered}[/tex]Hence, the answer is B.(0,4); minimum
hello can you help me with this trigonometry question and this a homework assignment
You have:
sin 2A = -√7/4
In order to determine the value of sin A, first calculate the value of angle A by using sin⁻¹ over the previous equation, just as follow:
sin⁻¹(sin 2A) = sin⁻¹(-√7/4) In this way you cancel out the sin
2A = -41.41° divide by 2 both sides
A = -41.41°/2
A = -20.705°
however, take into account that angle A is in the third quadrant. Then, it is necessary to consider the result A=-20.705° is respect to the negative x-axis.
To obtain the angle respect the positive x-axis (the normal way), you simply sum 180° to 20.705°:
20.705 + 180° = 200.705°
Next, use calculator to calculate sinA:
sin(200.705°) = -0.3535
using first principles to find derivatives grade 12 calculus help image attached much appreciated
Given: The function below
[tex]y=\frac{x^2}{x-1}[/tex]To Determine: If the function as a aximum or a minimum using the first principle
Solution
Let us determine the first derivative of the given function using the first principle
[tex]\begin{gathered} let \\ y=f(x) \end{gathered}[/tex]So,
[tex]f(x)=\frac{x^2}{x-1}[/tex][tex]\lim_{h\to0}f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}[/tex][tex]\begin{gathered} f(x+h)=\frac{(x+h)^2}{x+h-1} \\ f(x+h)=\frac{x^2+2xh+h^2}{x+h-1} \end{gathered}[/tex][tex]\begin{gathered} f(x+h)-f(x)=\frac{x^2+2xh+h^2}{x+h-1}-\frac{x^2}{x-1} \\ Lcm=(x+h-1)(x-1) \\ f(x+h)-f(x)=\frac{(x-1)(x^2+2xh+h^2)-x^2(x+h-1)}{(x+h-1)(x-1)} \end{gathered}[/tex][tex]\begin{gathered} f(x+h)-f(x)=\frac{x^3+2x^2h+xh^2-x^2-2xh-h^2-x^3-x^2h+x^2}{(x+h-1)(x-1)} \\ f(x+h)-f(x)=\frac{x^3-x^3+2x^2h-x^2h-x^2+x^2+xh^2-2xh-h^2}{(x+h-1)(x-1)} \\ f(x+h)-f(x)=\frac{x^2h+xh^2-2xh+h^2}{(x+h-1)(x-1)} \end{gathered}[/tex][tex]\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{x^{2}h+xh^{2}-2xh+h^{2}}{(x+h-1)(x-1)}\div h \\ \frac{f(x+h)-f(x)}{h}=\frac{x^2h+xh^2-2xh+h^2}{(x+h-1)(x-1)}\times\frac{1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{h(x^2+xh^-2x+h^)}{(x+h-1)(x-1)}\times\frac{1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{x^2+xh-2x+h}{(x+h-1)(x-1)} \end{gathered}[/tex]So
[tex]\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\frac{x^2-2x}{(x-1)(x-1)}=\frac{x(x-2)}{(x-1)^2}[/tex]Therefore,
[tex]f^{\prime}(x)=\frac{x(x-2)}{(x-1)^2}[/tex]Please note that at critical point the first derivative is equal to zero
Therefore
[tex]\begin{gathered} f^{\prime}(x)=0 \\ \frac{x(x-2)}{(x-1)^2}=0 \\ x(x-2)=0 \\ x=0 \\ OR \\ x-2=0 \\ x=2 \end{gathered}[/tex]At critical point the range of value of x is 0 and 2
Let us test the points around critical points
[tex]\begin{gathered} f^{\prime}(x)=\frac{x(x-2)}{(x-1)^2} \\ f^{\prime}(0)=\frac{0(0-2)}{(0-1)^2} \\ f^{\prime}(0)=\frac{0(-2)}{(-1)^2}=\frac{0}{1}=0 \\ f^{\prime}(2)=\frac{2(2-2)}{(2-1)^2}=\frac{2(0)}{1^2}=\frac{0}{1}=0 \end{gathered}[/tex][tex]\begin{gathered} f(0)=\frac{x^2}{x-1}=\frac{0^2}{0-1}=\frac{0}{-1}=0 \\ f(2)=\frac{2^2}{2-1}=\frac{4}{1}=4 \end{gathered}[/tex]The function given has both maximum and minimum point
Hence, the maximum point is (0,0)
And the minimum point is (2, 4)
Question 39.Find the inverse of the given function. Graph both functions on the some set of axes and show the line y=x as a dotted line in the graph.
First, to find the inverse of a function, call the original function "x" and call call "x" in the original function as the inverse function:
[tex]\begin{gathered} f(x)=5x+1 \\ x=5f^{-1}(x)+1 \end{gathered}[/tex]Now, we solve for the inverse function:
[tex]\begin{gathered} x=5f^{-1}(x)+1 \\ 5f^{-1}(x)+1=x \\ 5f^{-1}(x)=x-1 \\ f^{-1}(x)=\frac{x}{5}-\frac{1}{5} \end{gathered}[/tex]To graph lines, we can find two points in it and draw a line that passes through both.
Let's pick x = 0 and x = 1 for the first equation:
[tex]\begin{gathered} f(0)=5\cdot0+1=1 \\ f(1)=5\cdot1+1=6 \end{gathered}[/tex]So, we plot the points (0, 1) and (1, 6).
For the inverse, we can simply invet the coordinates, which is the same as picking x = 1 and x = 6:
[tex]\begin{gathered} f^{-1}(1)=\frac{1}{5}-\frac{1}{5}=0 \\ f^{-1}(6)=\frac{6}{5}-\frac{1}{5}=\frac{5}{5}=1 \end{gathered}[/tex]Thus, we have the points (1, 0) and (6, 1).
The line y = x is jus the diagonal that passes though point (0, 0) and (1, 1), for example.
Putting these points and drawing the lines, we get:
A Snack company can pack 15 granola bars in a box how many boxes are needed for 600 granola bars ?
Answer:40
Step-by-step explanation: 15 bars to a box.
600 bars in total.
600/15= 40
40 boxes of granola bars
An inspector found 18 defective radios during an inspection. If this is 0.024% of the total number of radios inspected, how many radios were inspected?
Total number of defected radios is 18
Let the total number of defective radios be taken as y
If 0.024% of the total number of radios inspected are defective, i.e 0.024% of y
[tex]\frac{0.024}{100}y=18[/tex]Solve for y, by cross multiplying
[tex]\begin{gathered} \frac{0.024}{100}y=18 \\ 0.024y=18\times100 \\ \text{Divide both sides by 0.024} \\ \frac{0.024y}{0.024}=\frac{1800}{0.024} \\ y=75000 \end{gathered}[/tex]Hence, the number of radios inspected, y, is 75000
Consumption and savings if real domestic output is $370 billion and planned investment is $15 billion
The consumption is 355 billion .
Given,
In the question:
Consumption and savings if real domestic output is $370 billion and planned investment is $15 billion.
Now, According to the question:
Based on the given condition,
Formulate;
Aggregate expenditure (consumption)= Output - Savings= Investment
370 - 15
Calculate the sum or difference
= 355billion
Hence, The consumption is 355 billion .
Learn more about Investment at:
https://brainly.com/question/15736335
#SPJ1
Solve for the remaining angle and sides of the triangle described below. Round to the nearest hundredtheA = 50°. B = 45,a=3
Given:
The angels and sides of the triangle are
A = 50°. B = 45°, and a=3
Aim:
We need to find the angle C and sides c and b.
Explanation:
Use sine law.
[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex][tex]\text{ Consider }\frac{\sin A}{a}=\frac{\sin B}{b}\text{ to find side b.}[/tex]Substitute A = 50°. B = 45°, and a=3 in the equation.
[tex]\frac{\sin 50^o}{3}=\frac{\sin 45^o}{b}[/tex][tex]b=\frac{\sin 45^o}{\sin 50^o}\times3[/tex][tex]b=2.77[/tex]Use the triangle sum property to find the angle C.
[tex]A+B+C=180^o[/tex]Substitute A = 50°. and B = 45° in the equation.
[tex]50^o+45^o+C=180^o[/tex][tex]95^o+C=180^o[/tex][tex]C=180^o-95^o[/tex][tex]C=85^o[/tex][tex]\text{ Consider }\frac{\sin A}{a}=\frac{\sin C}{c}\text{ to find side c.}[/tex]Substitute A = 50°. C= 85°, and a=3 in the equation.
[tex]\frac{\sin50^o}{3}=\frac{\sin 85^o}{c}[/tex][tex]c=\frac{\sin 85^o}{\sin 50^o}\times3[/tex][tex]c=3.90[/tex]Final answer:
[tex]C=85^o[/tex][tex]b=2.77[/tex][tex]c=3.90[/tex]Several friends go to a casino and do some gambling. The following are the profits each of these friends make: $120, -$230, $670, -$1020, $250, -$430, and -$60. What is the average profit of this group? A. $100 B. -$100 C. -$1020 D. $397
The average profit of this group is B. -$100.
The average represents the total profits and losses generated by the group of friends, divided by the number in the group.
The average is the data set's mean after performing the mathematical operations of addition and division on the data values.
Friends Profits
A $120
B -$230
C $670
D -$1020
E $250
F -$430
G -$60
Total -$700
Average profit = -$100 (-$700/7)
Thus, we can conclude that the friends generated an average profit of B. -$100 from gambling or a total loss of $700.
Learn more about the average at https://brainly.com/question/130657
#SPJ1
What is the value of the expression shown? 5 – a(3² + (ab + 2)² – 7) when a = 2 and b = –3
The expression has a value of -31 when a = 2 and b = –3
How to evaluate the expression?From the question, the expression is given as
5 – a(3² + (ab + 2)² – 7)
Also, we have the values of the variables to be
a = 2 and b = –3
Substitute a = 2 and b = –3 in the expression 5 – a(3² + (ab + 2)² – 7)
So, we have the following equation
5 – a(3² + (ab + 2)² – 7) = 5 – 2 * (3² + (2 * -3 + 2)² – 7)
Evaluate the expressions in the bracket
5 – a(3² + (ab + 2)² – 7) = 5 – 2 * (3² + (-4)² – 7)
Evaluate the exponents
5 – a(3² + (ab + 2)² – 7) = 5 – 2 * (9 + 16 – 7)
So, we have
5 – a(3² + (ab + 2)² – 7) = 5 – 2 * 18
This gives
5 – a(3² + (ab + 2)² – 7) = 5 – 36
Evaluate the difference
5 – a(3² + (ab + 2)² – 7) = -31
Hence, the value of the expression is -31
Read more abour expressions at
https://brainly.com/question/15775046
#SPJ1
Li’s family is saving money for their summer vacation. Their vacation savings account currently has a balance of $2,764. The family would like to have at least $5,000.Which inequality can be used to determine the amount of money the family still needs to save?
EXPLANATION
Savings account balance = $2,764
Desired amount = $5,000
Let's call x to the amount of money the family needs.
The inequality that could be used to determine the amount of money the family needs is the following:
2,764 + x ≥ 5,000
Roberts Company has the following sales budget for the first four months and the year:
January February March April
Budgeted units to sell
200
400
800
950
Total - 2,350
Sales price per unit
$25
$25
$25
$25
Total-$25
Total sales
$5,000
$10,000
$20,000
$23,750
Total - $58,750
What is the new amount of budgeted total sales for March if the budgeted number of units is expected to be 1,100 units instead of 800 units?
A. $27,500
B. $10,000
C. $47,500
D. $66,250
Using some simple mathematical operations we can conclude that the new amount of budgeted total sales is (D) $66,250.
What are mathematical operations?Calculating a value using operands and a math operator is referred to as performing a mathematical "operation." The math operator's symbol has predetermined rules that must be applied to the supplied operands or numbers. A mathematical action is called an operation. Mathematical operations include addition, subtraction, multiplication, division, and finding the root.So, new amount of budgeted total sales for March:
So, we know that:
2350 × 25 = $58,750And 2350 is further:
2350 = 200 + 400 + 800 + 950.Let's replace 800 with 1100.
Now, solve as follows:
200 + 400 + 1100 + 950 = 2,6502,650 × 25 = $66,250Therefore, using some simple mathematical operations we can conclude that the new amount of budgeted total sales is (D) $66,250.
Know more about mathematical operations here:
https://brainly.com/question/28937023
#SPJ13
Hello! I think this works but I'm not 100% sure
Given:
1 counsellor for every 9 campers.
Lets' determine the type of variation and write the equation.
Here, we can see that for every 9 campers, there is one extra counsellor. This means that as the number of campers increase, the number of counsellors will also increase.
Since one variable as the other increases, this is a direct variation.
Hence, we have the equation which represents the direct variation below:
y = 9x
Where x represents the number of counsellors and y represents the number of campers.
ANSWER:
Direct variation.
y = 9x
Given the base band height of a triangle, calculate the area A using the formula for the area of a triangle: A ) bh
Solution
For this case the area is given by:
[tex]A=\frac{1}{2}bh[/tex]Then we can replace b = 5ft and h = 20 ft and we got:
[tex]A=\frac{1}{2}(5ft)(20ft)=50ft^2[/tex]Sarkis OganesyanCombine Like Terms (Basic, Decimals)May 20, 11:02:29 AMA triangle has side lengths of (1.1p + 9.59) centimeters, (4.5p - 5.2r)centimeters, and (5.3r + 5.4q) centimeters. Which expression represents theperimeter, in centimeters, of the triangle?14.89 + 5.6p + 0.2rO 0.1r + 5.6p + 14.99Submit Answer-0.7pr + 10.7qr + 10.6pq9.7qr + 10.9pr
The sides of the triagle have lengths:
1.1 p + 9.5 q
4.5 p - 5.2 r
5.3 r + 5.4 q
Or:
1.1 p + 0 r + 9.5 q
4.5 p - 5.2 r + 0 q
0 p + 5.3 r + 5.4 q
If we want to calculate the perimeter of the triangle, we just need to sum the three lenghts:
(1.1 + 4.5) p + (-5.2 + 5.3) r + (9.5 + 5.4) q
= 5.6 p + 0.1 r + 14.9 q
Could you solve the table
The relation is decreasing by a factor of 2 each time, so:
[tex]\begin{gathered} y-9=-2(x-0) \\ y=-2x+9 \end{gathered}[/tex]Therefore:
[tex]\begin{gathered} y(100)=-2(100)+9 \\ y(100)=-200+9 \\ y(100)=-191 \end{gathered}[/tex]Answer:
-191
i need help, i already did the first part but i don’t understand the second part.
a) To convert to radical form, we follow this:
[tex]m^{\frac{a}{b}}=\sqrt[b]{m^{a}}[/tex]So:
[tex]R=73.3m^{\frac{3}{4}}=73.3\sqrt[4]{m^{3}}[/tex]b) The formula we have is for mass in Kilograms, so the first step is to convert the mass stated from lbs to kg.
1 lb -- 0.454 kg
160 lb -- m
[tex]m=0.454\cdot160=72.64\operatorname{kg}[/tex]Now, we can use this value in the formula:
[tex]R=73.3m^{\frac{3}{4}}=73.3\cdot(72.64)^{\frac{3}{4}}=1823.84[/tex]a) To convert to radical form, we follow this:
[tex]m^{\frac{a}{b}}=\sqrt[b]{m^{a}}[/tex]So:
[tex]R=73.3m^{\frac{3}{4}}=73.3\sqrt[4]{m^{3}}[/tex]b) The formula we have is for mass in Kilograms, so the first step is to convert the mass stated from lbs to kg.
1 lb -- 0.454 kg
160 lb -- m
[tex]m=0.454\cdot160=72.64\operatorname{kg}[/tex]Now, we can use this value in the formula:
[tex]R=73.3m^{\frac{3}{4}}=73.3\cdot(72.64)^{\frac{3}{4}}=1823.84[/tex]convert 7 ounces to grams. Round to the nearest whole number
Answer:
[tex]198\text{ g}[/tex]Explanation:
Here, we want to convert from ounces to grams
Mathematically,we have it that:
[tex]1\text{ ounce = 28.3}495\text{ g}[/tex]7 ounces will be the product of 7 and this
Mathematically,we have this as;
[tex]7\text{ }\times\text{ 28.3495 = }198.4465[/tex]To the nearest whole number, this is 198 g
at a sale a desk is being sold for 24% of the regular price. the sale price is $182.40 what is the regular price
at a sale a desk is being sold for 24% of the regular price. the sale price is $182.40 what is the regular price
we have that
24% ------> represent $182.40
so
Applying proportion
Find out the 100%
Let
x ----> the regular price
182.40/24=x/100
solve for x
x=(182.40)*(100)/24
x=$760
therefore
The regular price is $760Madeline is a salesperson who sells computers at an electronics store. She makes a base pay of $80 each day and then is paid a $20 commission for every computer sale she makes. Make a table of values and then write an equation for P,P, in terms of x,x, representing Madeline's total pay on a day on which she sells xx computers.
I need equation
The equation for 'P', representing Madeline's total pay on a day on which she sells 'x' computers is → P = 80 + 20x.
Given, At an electronics store, Madeline sells computers as a salesperson. She receives a $80-per-day base salary in addition to a $20 commission for each computer she sells.
What is Equation Modelling?
Equation modelling is the process of writing a mathematical verbal expression in the form of a mathematical expression for correct analysis, observations and results of the given problem.
We can model the equation for Madeline's total pay as follows -
P = base pay + (number of sold computer) × (cost of 1 computer)
P = 80 + 20x
Therefore, the equation for 'P', representing Madeline's total pay on a day on which she sells 'x' computers is → P = 80 + 20x
Learn more about Equation Modelling here:
brainly.com/question/28825586
#SPJ1
find the measure of each of the other six angles
The measure of angle 1 is 71º, we can find this, because angle 1 and angle x form a straight line of 180º, so 180º - 109º = 71º
The measure of angle 2 is also 71º, we can use the vertical angles propierty, then m∠1 = m∠2
The measure of angle 3 is 109º, we can use again the vertical angles theorem to find that m∠x = m∠3
Themeasure of angle 7 is 109º. We need to use the alternating exterior angles theorem. Since angle x and angle 7 are not between the parallel lines they're exterior angles; and since they're on opposite sides of the transversal line, they're alternates. Then the theorem says that m∠x = m∠7
The measure of angle 6 is 71º, again we're using the fact that angle 7 and angle 6 forms a straight line, then m∠6 = 180º - 109º = 71º
Now we can find the lasts two measures using the vertical angles theorem.
The measure of angle 5 is 71º, because m∠6 = m∠5
The measure of angle 4 is 109º, because m∠7 = m∠4
3. x-intercept 4, y-intercept 2, passes through 5. Center on x = 3, radius 13, passes through Center on the y-axis, radius 5, x-intercept 3 cle having the given center and radius. (b) C (-2,-5), r = 4 (d) C(2, -3), r= 6 ving the given properties. (0,0) (6, 5)
Samantha, this is the solution to problem 5:
With the information given in the statement you can solve for k, where k is the center in y:
(x-h)^2 + (y-k)^2 = r^2
(6-3)^2 + (5-k)^2 = (√(13))^2
(3)^2 + (5-k)^2 = 13
9+(5-k)^2 = 13
(5-k)^2 = 4
√((5-k)^2) = √4
5-k = 2
-k = -3
k = 3
Then the equation of the circle will be
(x-3)^2 + (y-3)^2 = 13
Solve for the missing side of the triangle. Round to the hundredths place if needed.
The Pythagoras theorem gives the relation for the right-angle triangle between the perpendicular, base, and hypotenuse thus the perpendicular x will be 14.70.
What is a triangle?A triangle is a closed, 2-dimensional shape with 3 sides, 3 angles, and 3 vertices.
Triangle is a very common figure to deal with in our daily life.
In a triangle, the sum of all three angles is 180°
As per the given right-angle triangle,
Pythagoras' theorem states that in a right-angle triangle →
Hyp² = Perp² + Base²
In the given triangle Hyp = 21 , Base = 15 and Perp = x
So,
21² = x² + 15²
x² = 21² - 15²
x = √216 = 14.6993 ≈ 14.70
Hence "The value of x for the given right-angle triangle is 14.70 units".
For more information about triangles,
https://brainly.com/question/2773823
#SPJ1