If the diameter of a circle is 8.4 in., find the area and the circumference of the circle. Use 3.14 for pi. Round your answers to the nearest hundredth.

Answers

Answer 1

Answer:

Area of the circle = 55.39 in²

Circumference of the circle = 26.38 in

Step-by-step explanation:

Given, the diameter of the circle = 8.4

so the radius is given by the formula

∴ d = 2r

→ 8.4 = 2×r

→r=4.2 in      [i]

Area of the circle = π×r²     [ii]

substituting the value of r in equation [ii]

we get,

area of circle = 3.14×(4.2)²

                      =55.39 in²

                     

circumference of the circle =2πr     [iii]

substituting the value of r in equation [iii]

we get,

circumference of the circle = 2×3.14×4.2

                                             = 26.38 in

learn more about area of circle

brainly.com/question/10666510

learn more about circumference of circle

brainly.com/question/16125353


Related Questions

A sample of 33 blue-collar employees at a production plant was taken. Each employee was asked to assess his or her own job satisfaction (x) on a scale of 1 to 10. In addition, the numbers of days absent (y) from work during the last year were found for these employees. The sample regression line Y; = = 10.7 – – 0.2 x; was estimated by least squares for these data. Also found were T=Σ x = 7.0 Σ(x, -x = 50.0 SSE= 70.0 a. Test, at the 5% significance level against the appropriate one-sided alternative, the null hypothesis that job satisfaction has no linear effect on absenteeism. b. A particular employee has job satisfaction level 8. Find a 99% prediction interval for the number of days this employee would be absent from work in a year. 33 2 -X)=

Answers

Answer:

Step-by-step explanation :

I suggest you ask an expert

Use a reference angle to write cos(260∘) in terms of the cosine of a positive acute angle

Answers

The required function is - cos (80°)

Reference Angles:

In mathematics, reference angles are also known as acute angles. It falls in an interval of fewer than 90 degrees. The reference angles are used to evaluate the larger angles. Even to find the larger angles, we use reference angles that are less than 90 degrees.

The data is :

The trigonometric function is cos(260°)

Here, the angle will lie in the third quadrant, so use the reference angle to evaluate the function as follows,

Cos(270° - 10°) = - sin(10°)   [Here, use the identity [tex]sin(\frac{3\pi}{2}-\theta )=-cos(\theta)[/tex]]

                        = -sin(90° - 80°)  [Use the identity [tex]cos(\frac{\pi}{2} -\theta)=sin(\theta)[/tex]]

                       = - cos (80°)

Thus, the required function is - cos (80°).

Learn more about Reference Angle at:

https://brainly.com/question/30912223

#SPJ1

Which of the following is the distance between the two points shown?

A graph with the x-axis starting at negative 4, with tick marks every one-half unit up to 4. The y-axis starts at negative 4, with tick marks every one-half unit up to 4. A point is plotted at negative 2.5, 0 and at 1.5, 0.

−4 units
−1.5 units
1.5 units
4 units

Answers

The distance between the two points (-2.5, 0) and (1.5, 0) is the absolute value of the difference between their x-coordinates, which is:

|1.5 - (-2.5)| = 4

Therefore, the distance between the two points is 4 units.

Sum of Left Leaves in a Binary Tree Given a non-empty binary tree, return the sum of all left leaves. Example: Input: 3 9 20 15 7 Output: 24 Explanations summing up every Left leaf in the tree gives us: 9 + 15 = 24 -1 -2 -3 -4 class TreeNode: def __init__(self, x): self. Val = x self. Left = self. Right = None 5 def sum_of_left_leaves (root): -6 7 18 19 50 51 2 13 Write your code here :type root: TreeNode :rtype: int 11 001 84 15 > root = input_binary_tree() -

Answers

To find the sum of all left leaves in a binary tree, Python programming language is used and code is written in Phyton.

Here's the Python code to find the sum of all left leaves in a binary tree:

Class TreeNode:

def __init__(self, x):

self.val = x

self. left = none

self.right = None

def sum_of_left_leaves(root):

If not root:

return 0

# If the left child of the root node is a leaf node, add its value to the total

If root. left is root.left.left and not root. left.right :

returns root. left.val + sum_of_left_leaves(root.right)

# Recursively go left and right subtrees and add their left leaves to the sum

returns sum_of_left_leaves(root. left) + sum_of_left_leaves(root. right)

This code first checks to see if the root node is None. If so, return 0 as there are no leaves left to add.

Then check if the left child of the root node is a leaf node. If so, add that value to the total and recursively traverse only the correct subtree.

If the left child of the root node is not a leaf node, recursively traverse the left and right subtrees and add the left leaves of both subtrees to the total.

Finally, it returns the sum of the leaves on the left side of the entire binary tree.

To utilize this work, make a double tree utilizing the TreeNode lesson and call the sum_of_left_leaves to work, passing the root of the twofold tree as a contention. 

Here is an example of using the function:

# build a binary tree

root = tree node (3)

root. left = tree node (9)

root. right = tree node (20)

root. right.left = TreeNode(15)

root. right.right = TreeNode(7)

# compute the sum of the leaves on the left

sum = sum_of_left_leaves(root)

# print result

print(sum) # output:

twenty-four 

learn more about Phyton

brainly.com/question/19070317

#SPJ4

Compute the coefficient of a^10b^2 in (a − 2b)^12.How many functions are there from A = {1, 2, 3} to B = {a, b, c,d}? Briefly explain your answer.

Answers

The coefficient of a¹⁰ b² in  the given binomial expression is 264

and number of functions from A to B will be  64.

What is binomial expansion?

A binomial is nothing but an algebraic expression with two terms. For example, c + g, u - v, etc. are binomials. We have a set of algebraic identities to find the expansion when the indices is 2 and 3. For example, (a - b)² = a² + 2ab + b². But  if the exponents are bigger numbers then It is hard to find the expansion manually. Then here the binomial expansion formula eases this process.

1st part:

By binomial theorem, the (r+1 )th term [tex]T_{r+1}[/tex]  in an binomial expression

(a+ b)ⁿ  can be expressed as,

[tex]T_{r+1}[/tex] = [tex]nC_{r} a^{n-r} b^{r}[/tex]

Let us assume that a¹⁰ b² occurs in the (r+1 )th term of the expression

(a-2b)¹²

Then we have,

[tex]T_{r+1}[/tex] = [tex]12C_{r} a^{12-r} (-2b)^{r}[/tex]

Now comparing the indices of a¹⁰ b² we get, r= 2

Thus the coefficient of a¹⁰ b² is

[tex]12C_{2} (-2)^{2} a^{10} b^{2}[/tex]

The value of [tex]12C_{2}[/tex] = (12!)/(10!×2!)

                             = 66

Now 66×4= 264

The coefficient of a¹⁰ b² is 264

2nd part:

A = {1, 2, 3} to B = {a, b, c, d}

n(A)= 3 and n(B)= 4

So number of functions from A to B will be 4³= 64.

Hence, the coefficient of a¹⁰ b² is 264

and number of functions from A to B will be 4³= 64.

To know more about binomial expansion

https://brainly.com/question/13602562

#SPJ4

Please help, Thank youGCD 5. Find Multiplicative inverse of 47x = 1 mod 64 6. Using Inverse GCD to find 50x = 63 mod 71.

Answers

The Multiplicative inverse of 47x = 1 mod 64 is 47 x 15 = 1 (mod 64) . Using Inverse GCD 50x = 63 mod 71 is 50 x 27 = 63 (mod 71).

The reciprocal of a particular integer is referred to as the multiplicative inverse. It is employed to make mathematical expressions simpler. The word "inverse" denotes an opposing or opposed action, arrangement, position, or direction. A number becomes 1 when it is multiplied by its multiplicative inverse.

When a number is multiplied by the original number, the result is 1, that number is said to be the multiplicative inverse of that number. A-1 or 1/a is used to represent the multiplicative inverse of the constant 'a'. In other terms, two integers are said to be multiplicative inverses of one another when their product is 1. The division of 1 by a number yields the multiplicative inverse of that number.

a) The Multiplicative inverse of 47x = 1 mod 64 is

x = 47⁻¹ mod 64

Mow,

Let (47)⁻¹ = y(mod64)

Then, 47y + 64k = 1

Now,

64 = 47 x 1 + 17

47 = 17 x 2 +13

17 = 13 x 1 + 4

13 = 4 x 3 + 1

Comparing with equation we get,

y = 15 and k = -11

Hence, 47 x 15 = 1 (mod 64)

b) The Multiplicative inverse of 50x = 63 mod 71 is

x = 50⁻¹ 63(mod 71)

Mow,

Let (50)⁻¹ = y(mod71)

Then, 50y + 71k = 1

Now,

71 = 50 x 1 + 21

50 = 21 x 2 + 8

21 = 8 x 2 + 5

8 = 5 x 1 + 3

5 = 3 x 1 + 2

3 = 2 x 1 + 1

Comparing with equation we get,

y = 27 and k = -19

Hence, 50 x 27 = 63 (mod 71)

Learn more about  Multiplicative inverse:

https://brainly.com/question/30340483

#SPJ4

5. The multiplicative inverse of 47x = 1 mod 64 is 47 x 15 = 1 (mod 64)

6.  The value of 50x = 63 mod 71 using inverse GCD is 50 x 27 = 63 (mod 71).

5. How to calculate the multiplicative inverse

Given that

47x = 1 mod 64

Divide both sides of the equation by 47

So, we have

47/47x = 1/47 mod 64

Evaluate the quotient

x = 47⁻¹ mod 64

Let (47)⁻¹ = y(mod64)

So, we have

47y + 64k = 1

Expand 64

64 = 47 x 1 + 17

Expand 47

47 = 17 x 2 +13

Expand 17

17 = 13 x 1 + 4

Expand 13

13 = 4 x 3 + 1

When the equations are compared, we have

y = 15 and k = -11

This means that, the multiplicative inverse is 47 x 15 = 1 (mod 64)

6. Using Inverse GCD

Here, we have

50x = 63 mod 71

Divide

50x/50 = 63/50 mod 71

So, we have

x = 50⁻¹ 63(mod 71)

Let (50)⁻¹ = y(mod71)

So, we have

50y + 71k = 1

Expand 71

71 = 50 x 1 + 21

Expand 50

50 = 21 x 2 + 8

Expand 21

21 = 8 x 2 + 5

Expand 8

8 = 5 x 1 + 3

Expand 5

5 = 3 x 1 + 2

Expand 3

3 = 2 x 1 + 1

When the equations are compared, we have

y = 27 and k = -19

This means that 50 x 27 = 63 (mod 71)

Read more about multiplicative inverse at:

https://brainly.com/question/21973802

#SPJ4

Monthly sales of a particular personal computer are expected to
decline at the following rate of S'(t) computers per month, where t is
time in months and S(t) is the number of computers sold each month.
2
3
S'(t)= - 10t
The company plans to stop manufacturing this computer when monthly
sales reach 1,000 computers. If monthly sales now (t = 0) are 1,480
computers, find S(t). How long will the company continue to
manufacture this computer?

Answers

The amount of time this company would continue to manufacture this computer is equal to 14 months.

How to determine the amount of time this company would continue to manufacture this computer?

In order to calculate the amount of time this company continue to manufacture this computer, we would have to determine an equation for S(t) by integrating the function S'(t) with respect to t as follows;

[tex]S'(t)= -10t^{\frac{2}{3} } \\\\S(t)= \int S'(t) \, dt\\\\S(t)= \frac{-10}{\frac{2}{3} +1}t^{\frac{2}{3}+1} +C\\\\S(t)= -6t^{\frac{5}{3}} +C\\\\S(t)= -6t^{\frac{5}{3}} +1480[/tex]

Note: The y-intercept or initial value is 1,480 (t = 0).

At 1,000 computers, we have:

[tex]1000= -6t^{\frac{5}{3}} +1480\\\\6t^{\frac{5}{3}}= 1480-1000\\6t^{\frac{5}{3}}=480\\\\t^{\frac{5}{3}}=80\\\\t=\sqrt[\frac{5}{3} ]{80}[/tex]

Time, t = 13.86 ≈ 14 months.

Read more on integrating and function here: https://brainly.com/question/14051832

#SPJ1

What is the volume of a triangular prism 4m 7m 9m

Answers

Answer:

Volume formal= L × W × H

Volume formal = 4 × 7 × 9

Answer = 4 × 7 × 9 =252

1(c) [3 pts] for the smokestack with the filter installed, find the probability that the amount of pollutant in a given sample will exceed 1/2.

Answers

To find the probability that the amount of pollutant in a given sample will exceed 1/2 for the smokestack with the filter installed, you need to determine the distribution of the pollutant levels and then calculate the probability based on that distribution.

To find the probability that the amount of pollutant in a given sample will exceed 1/2 when a filter is installed in the smokestack, we need to use the information provided in the question. However, we do not have any specific information on the distribution of the pollutant levels, so we cannot calculate the exact probability.
Instead, we can make some assumptions based on the purpose of the filter. Filters are typically installed to reduce the amount of pollutants emitted into the air, so it is reasonable to assume that the filter will decrease the amount of pollutant in each sample. Therefore, we can expect the probability of the pollutant level exceeding 1/2 to decrease when a filter is installed.
Without more information, we cannot give an exact probability, but we can say that it is likely lower than the probability without a filter. We would need to know more about the specific characteristics of the filter and the pollutant to make a more accurate estimate.

To learn more about probability, click here:

brainly.com/question/30034780

#SPJ11

Determine the value of the arbitrary constant of the antriderivative of F(x) = x2ln(x) given the initial value x = 7.15 and y = 2.21 . (Use 2 decimal places) = Add your answer

Answers

The value of the arbitrary constant is approximately -1.08.

To determine the value of the arbitrary constant of the antiderivative of F(x) = x^2 * ln(x) given the initial value x = 7.15 and y = 2.21, follow these steps:

Step 1: Find the antiderivative of F(x) = x^2 * ln(x).
The antiderivative can be found using integration by parts. Let u = ln(x) and dv = x^2 * dx.
Then, du = (1/x) * dx and v = (x^3)/3.

Using integration by parts formula: ∫u dv = u * v - ∫v du

∫(x^2 * ln(x)) dx = (x^3 * ln(x))/3 - ∫(x^3 * (1/x)) dx/3

Now integrate the second term:
= (x^3 * ln(x))/3 - (1/3) * ∫x^2 dx
= (x^3 * ln(x))/3 - (1/3) * (x^3/3)

Step 2: Add the arbitrary constant 'C' to the antiderivative.
y(x) = (x^3 * ln(x))/3 - (x^3/9) + C

Step 3: Use the initial values x = 7.15 and y = 2.21 to find the value of 'C'.
2.21 = (7.15^3 * ln(7.15))/3 - (7.15^3/9) + C

Step 4: Solve for 'C'.
C ≈ -1.08 (rounded to 2 decimal places)

The value of the arbitrary constant is approximately -1.08.

Learn more about integration: https://brainly.com/question/18125359

#SPJ11

Determine the distance between the points (−3, −2) and (0, 2).

2 units
4 units
5 units
10 units

Answers

Answer:

5 units

Step-by-step explanation:

To determine the distance between the points (-3, -2) and (0, 2), we can use the distance formula.

[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Distance Formula}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\\\where:\\ \phantom{ww}$\bullet$ $d$ is the distance between two points. \\\phantom{ww}$\bullet$ $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}[/tex]

Let (x₁, y₁) = (-3, -2)

Let (x₂, y₂) = (0, 2)

Substitute the values into the formula and solve for d:

[tex]\begin{aligned}\implies d&=\sqrt{(0-(-3))^2+(2-(-2))^2}\\&=\sqrt{(0+3)^2+(2+2)^2}\\&=\sqrt{(3)^2+(4)^2}\\&=\sqrt{9+16}\\&=\sqrt{25}\\&=5\; \rm units \end{aligned}[/tex]

Therefore, the distance between the given points (-3, -2) and (0, 2) is 5 units.

Answer:is 5

Step-by-step explanation: cuz I read other answer

I need help its literally due today. And i dont know how to do my brothers homework. Please help.

Answers

The answer to the first 5 questions is in the photo

6th question’s answer: When you apply the Pythagorean theorem to the required surfaces, the result is equal to the sum of the squares of the three measures. That's why it works.

use cylindrical or spherical coordinates, whichever seems more appropriate. find the volume v of the solid e that lies above the cone z

Answers

To find the volume of the solid e that lies above the cone z, we will use spherical coordinates.

First, we need to define the cone z. We know that it is a cone, so it has a circular base with radius r and height h. We can write the equation of the cone as:

z = h - √(x^2 + y^2)

Next, we need to find the limits of integration for the spherical coordinates. We know that the solid e lies above the cone z, so the limits for the radial coordinate will be r = 0 to r = h. For the polar coordinate, we can choose any angle since the solid is symmetric about the z-axis. Let's choose θ = 0 to θ = 2π. For the azimuthal angle, we need to find the limits based on the cone z. We know that the cone intersects the sphere at the point (0, 0, h), so the azimuthal angle will go from 0 to the angle Φ such that z = 0:

0 = h - √(r^2 sin^2 Φ)
r^2 sin^2 Φ = h^2
sin^2 Φ = h^2/r^2
Φ = arcsin(h/r)

Therefore, the limits for the azimuthal angle will be Φ to π/2.

Now, we can set up the integral for the volume V:

V = ∫∫∫ r^2 sin Φ dr dΦ dθ
V = ∫0^h ∫Φ^π/2 ∫0^2π r^2 sin Φ dr dΦ dθ

Evaluating this integral gives:

V = (1/3)πh^3

Therefore, the volume of the solid e that lies above the cone z is (1/3)πh^3, which is the volume of a cone with height h and base radius h.

To learn more about azimuthal angle : brainly.com/question/28544932

#SPJ11

QUESTION 6 dạy dy The equation of motion of a body is given byd2y/dt2 +4dy/dt +13y = e2t cost, where y is the distance dt and t is the time. Determine a general solution for y in terms of t. [12] dt2

Answers

The general solution to the differential equation is:

y(t) = y_h(t) + y_p(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t)) - (1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)

We have the differential equation:

d^2y/dt^2 + 4 dy/dt + 13y = e^(2t)cos(t)

The characteristic equation is:

r^2 + 4r + 13 = 0

Using the quadratic formula, we get:

r = (-4 ± sqrt(4^2 - 4(13)))/(2) = -2 ± 3i

So the general solution to the homogeneous equation is:

y_h(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t))

To find a particular solution to the non-homogeneous equation, we can use the method of undetermined coefficients. Since e^(2t)cos(t) is of the form:

e^(at)cos(bt)

We guess a particular solution of the form:

y_p(t) = A e^(2t)cos(t) + B e^(2t)sin(t)

Taking the first and second derivatives, we get:

y'_p(t) = 2A e^(2t)cos(t) - A e^(2t)sin(t) + 2B e^(2t)sin(t) + B e^(2t)cos(t)

y''_p(t) = 4A e^(2t)cos(t) - 4A e^(2t)sin(t) + 4B e^(2t)sin(t) + 4B e^(2t)cos(t) + 2A e^(2t)sin(t) + 2B e^(2t)cos(t)

Substituting these back into the original equation, we get:

(4A + 2B) e^(2t)cos(t) + (4B - 2A) e^(2t)sin(t) + 13(A e^(2t)cos(t) + B e^(2t)sin(t)) = e^(2t)cos(t)

We can equate coefficients of like terms on both sides to get a system of equations:

4A + 2B + 13A = 1

4B - 2A + 13B = 0

Solving for A and B, we get:

A = -1/170

B = 3/170

So a particular solution to the non-homogeneous equation is:

y_p(t) = (-1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)

Therefore, the general solution to the differential equation is:

y(t) = y_h(t) + y_p(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t)) - (1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)

To learn more about undetermined visit:

https://brainly.com/question/31392685

#SPJ11

Write the equation of the line perpendicular to the tangent line through (2,3)

Answers

Note that the equation of the line perpendicular to the tangent to the curve y = x³ − 3x+1 is y = (-1/9)x + 7/3.

Why is this so ?

To find the  equation of the line perpendicular to the tangent of the curve at  the point (2, 3):


Get the slop of the tangent at that point.

To do this, we take  derivative of the function y = x³ - 3x + 1 and evaluating it at x = 2:

y' = 3x² - 3

y '(2) = 3 (2) ² -  3 = 9

So the slope of  (2, 3) =  9.

Since   the line we are looking for is  perpendicular to this tangent, its slope will be the  negative reciprocal of 9, which is -1/ 9.

Next,  use the point-slope form of a line to write the equation of the line

y - 3 = (-1/9) ( x - 2)

⇒ y = (-1/9)x  + 7/3

So the  equation of the lie perpendicular to the tangent to the curve at the point (2,3) is y = (-1/9)x + 7/3.

Learn more about tangent  at:

https://brainly.com/question/19064965

#SPJ1

Full Question:

Although part of your question is missing, you might be referring to this full question:

Find equation to the line perpendicular to the tangent to the curve y=x³−3x+1 , at the point (2,3)

.

Find the spherical coordinate expression for the function F(x, y, z). F(x, y, z) = x5y3yx2 + y2 + z2 Kp, θ, φ) =

Answers

The spherical coordinate expression for F(x, y, z) is:

[tex]F(\rho , \theta , \phi) = \rho^5*sin^3(\theta)*cos^2(\theta)*sin(\phi)^2 + \rho^2*sin^2(\phi)^2, where \rho = \sqrt{x^2 + y^2 + z^2}, \theta = arctan(y/x), and \phi = arccos(z/\rho).[/tex]

To find the spherical coordinate expression for F(x, y, z), we need to convert (x, y, z) to (ρ, θ, φ).

First, we need to find ρ, which is the distance from the origin to the point (x, y, z). Using the formula for ρ in spherical coordinates, we have:

[tex]\rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Next, we need to find θ and φ, which are the angles that the point (x, y, z) makes with the positive x-axis and positive z-axis, respectively. Using the formulas for θ and φ in spherical coordinates, we have:

θ = arctan(y/x)
φ = arccos(z/ρ)

Finally, we can express F(x, y, z) in terms of (ρ, θ, φ) using the following formula:

[tex]F(\rho, \theta , \phi) = \rho^5*sin^3(\theta)*cos^2(\theta)*sin(\phi)^2 + \rho^2*sin^2(\phi)^2[/tex]

Therefore, the spherical coordinate expression for F(x, y, z) is:

[tex]F(\rho , \theta , \phi) = \rho^5*sin^3(\theta)*cos^2(\theta)*sin(\phi)^2 + \rho^2*sin^2(\phi)^2, where \rho = \sqrt{x^2 + y^2 + z^2}, \theta = arctan(y/x), and \phi = arccos(z/\rho).[/tex].

To learn more about spherical coordinate expression here:

https://brainly.com/question/31432580#

#SPJ11

Monique works h hours as a lifeguard this week, earning $12 per hour. she also earns $20 for dog sitting. Which expression represents how much money Monique will make this week?

Answers

Answer:

The expression that represents how much money Monique will make this week is:

12h + 20

Where 12h represents the money she earns as a lifeguard (h hours at $12 per hour) and 20 represents the money she earns for dog sitting.

Throw n balls into m bins, where m and n are positive integers. Let X be the number of bins with exactly one ball. Compute varX.

Answers

By using the formula for variance

[tex]varX= m*(n*(m-1)/m^n)(1 - n(m-1)/(m^n-1))[/tex]

To compute varX:

we first need to find the expected value of X, denoted as E(X).

We can approach this by using the linearity of expectation, which states that the expected value of the sum of random variables is equal to the sum of their individual expected values.

Let's define a random variable Xi as the number of bins with exactly one ball. Then, we have:

[tex]X = X1 + X2 + ... + Xm[/tex]

where m is the total number of bins.

By the definition of Xi, we know that Xi can only take on values between 0 and 1, since a bin can either have exactly one ball (Xi = 1) or not (Xi = 0).

To find E(Xi), we can use the probability of Xi being 1. The probability that a specific bin has exactly one ball is given by:

[tex]P(Xi = 1) = (n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]

The first term (n choose 1) represents the number of ways to choose one ball out of n balls to put into the bin. The second term ((m-1) choose (n-1)) represents the number of ways to choose (n-1) balls out of the remaining (m-1) bins. Dividing by (m choose n) gives us the probability that exactly one bin has one ball.

Therefore, we have:

E(Xi) = P(Xi = 1) * 1 + P(Xi = 0) * 0
     = P(Xi = 1)=[tex](n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]
Using the linearity of expectation, we can find E(X) as:

E(X) = E(X1) + E(X2) + ... + E(Xm)
    = [tex]m * (n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]

Now, to find varX, we need to find the variance of Xi and use the formula for variance of a sum of random variables.

The variance of Xi can be found as:

Var(Xi) = E(Xi^2) - (E(Xi))^2

Since Xi can only take on values 0 or 1, we have:

E(Xi^2) =[tex]0^2 * P(Xi = 0) + 1^2 * P(Xi = 1) = P(Xi = 1)[/tex]

Therefore, we have:

Var(Xi) = P(Xi = 1) - (E(Xi))^2
      = [tex]m*(n*(m-1)/m^n) + m*(m-1)(n(m-1)/m^n)^2 - (mn(m-1)/m^n)^2[/tex]

Using the formula for variance of a sum of random variables, we have:

varX = Var(X1 + X2 + ... + Xm)
    = Var(X1) + Var(X2) + ... + Var(Xm)      (since Xi's are independent)
    = [tex]m*(n*(m-1)/m^n)(1 - n(m-1)/(m^n-1))[/tex]

To know more about Formula of Variance:

https://brainly.com/question/20066860

#SPJ11

Consider the following reaction occurring at 298 K and 1 atm pressure. 2 H2O2(0) - 2 H2O(1) + O2(g) What is A San Cin J/(K mol)) at 298 K for this reaction? Round your answer to the tenths (0.1) place

Answers

The San Cin value, A is A = 23.5 J/(K mol).

The standard reaction enthalpy, ΔH°, can be calculated using the bond energies of the reactants and products. Using the bond energies listed in the textbook or online resources, we get:

ΔH° = 2ΔH(O-H) - 2ΔH(O=O) - 2ΔH(O-H) = -196 kJ/mol

The standard reaction entropy, ΔS°, can be calculated using the standard entropy values of the reactants and products. Using the standard entropy values listed in the textbook or online resources, we get:

ΔS° = 2S(H2O) - 2S(H2O2) - S(O2) = -118.6 J/(K mol)

The standard reaction Gibbs free energy, ΔG°, can be calculated using the equation:

ΔG° = ΔH° - TΔS°

Substituting the values we obtained, we get:

ΔG° = -196000 - 298(-118.6)/1000 = -161.5 kJ/mol

The standard reaction Gibbs free energy can also be expressed in terms of the equilibrium constant, K, using the equation:

ΔG° = -RTlnK

where R is the gas constant (8.314 J/(K mol)) and T is the temperature in Kelvin. Solving for K, we get:

K = e^(-ΔG°/RT) = 2.2 x 10^19

Finally, the San Cin (Clausius-Clapeyron) equation can be used to calculate the temperature dependence of lnK:

lnK2/K1 = -ΔH°/R(1/T2 - 1/T1)

where K1 and T1 are the equilibrium constant and temperature at one condition, and K2 and T2 are the equilibrium constant and temperature at another condition. Assuming that ΔH° and ΔS° are independent of temperature, we can use the values we obtained at 298 K as the reference condition (K1 = 2.2 x 10^19, T1 = 298 K). To calculate the equilibrium constant at another temperature, T2, we need to know the standard reaction volume, ΔV°:

ΔV° = (-2ΔH(O-H) - ΔH(O=O))/RT = -25.5 cm^3/mol

Using the given pressure of 1 atm, we can convert ΔV° to ΔV:

ΔV = ΔV° + RT/P = -22.7 cm^3/mol

Substituting the values we obtained, we get:

lnK2/2.2x10^19 = -(-196000)/(8.314)(1/T2 - 1/298) - 22.7(1 - 1/T2)/(2.303)(8.314)

Solving for lnK2, we get:

lnK2 = -40.4 + 20820(1/T2 - 1/298)

Finally, solving for K2, we get:

K2 = e^lnK2 = 2.1 x 10^20

Therefore, the San Cin value, A, can be calculated as:

A = ln(K2/K1)/(1/T2 - 1/298) = 23.5 J/(K mol)

Rounding to the tenths place, we get A = 23.5 J/(K mol).

Learn more about "reaction": https://brainly.com/question/25769000

#SPJ11

A square with sides measuring 8 millimeters each is drawn within the figure shown. A point within the figure is randomly selected.

What is the approximate probability that the randomly selected point will lie inside the square?

Responses

5.4%

8.5%

21.6%

34.0%

Answers

The approximate probability that the randomly selected point will lie inside the square is,

≈ 13.3%

Since, Area of square with side of 5 mm is:

A = a² = (5 mm)² = 25 mm²

Now, Find total area of the figure:

A(total) = A(trapezoid) + A(triangle)

A(total) = (b₁ + b₂)h/2 + bh/2

A(total) = (14 + 18)(17 - 12)/2 + 18 x 12/2

           = 80 + 108 = 188

Hence, Find the percent value of the ratio of areas of the square and full figure, which determines the probability we are looking for:

= 25/188  x 100%

= 13.2978723404 %

≈ 13.3%

Thus,  the approximate probability that the randomly selected point will lie inside the square is,

≈ 13.3%

Learn more about the probability visit:

https://brainly.com/question/13604758

#SPJ1

(1 point) Let f(x)= cos(3x^3) – 1/ x^5. Evaluate the 7th derivative of f at x = 0. f^(7)(0) = Hint: Build a Maclaurin series for f(x) from the series for cos(x).

Answers

The 7th derivative of f(x)=cos(3x³) - 1/x⁵ at x=0 is 3240.

To find the 7th derivative of f(x) at x=0, we need to build a Maclaurin series for f(x) from the series for cos(x). The Maclaurin series for cos(x) is:

cos(x) = 1 - x²/²! + x⁴/⁴! - x⁶/⁶! + ...

Using this, we can build a Maclaurin series for f(x) as follows:

f(x) = cos(3x³) - 1/x⁵

= (1 - (3x³)²/²! + (3x³)⁴/⁴! - (3x³)⁶/⁶! + ...) - 1/x⁵

= 1 - 9x⁶/²! + 81x¹²/⁴! - 729x¹⁸/⁶! + ... - 1/x⁵

= 1 - 9x⁶/²! + 81x¹²/⁴! - 729x¹⁸/⁶! + ... - x⁻⁵

Taking the 7th derivative of this expression and evaluating at x=0 gives:

f⁷ * ⁰ = 7! * (-9)/2!

= 3240

Therefore, the 7th derivative of f(x)=cos(3x³) - 1/x⁵ at x=0 is 3240.

Learn more about derivative

https://brainly.com/question/12047216

#SPJ4

What is the median of the data set?

A. 49

B. 86

C. 87

D. 85

Answers

The value of the median of the data set is,

⇒ 86

We have to given that;

Math test score are shown in figure.

Here Number of values are 21

Hence, The value of the median of the data set is,

⇒ (21 + 1)/2

⇒ 22/2

⇒ 11th term

⇒ 8 | 6

⇒ 86

Hence, The value of the median of the data set is,

⇒ 86

Learn more about the addition visit:

https://brainly.com/question/25421984

#SPJ1

Solve the following: 1. Considering the first four terms in the Maclaurin's series expansion of cot(x), calculate the truncation error if x = 0.5. 2. In the expansion of xsinx – 1 in powers of x - 11/2.4, what is equal to? 3. What is the z-transform of h(n) = S(n) - 28(n − 1) + S(n - 2). 4. Determine the sequence x(n) of the Z-transform - 1 Z ... 1 - 125z + +0.3752 -1

Answers

1. The truncation error is 0.66346 (approx)

2. the coefficient of [tex](x - 1)^2[/tex] in the expansion is 1, and the coefficient of [tex](x - 1)^4[/tex] is -1/3!.

3. [tex]H(z) = (1 - 28z^{-1} + z^{-2})/(1 - z^{-1})[/tex]

4. [tex]x(n) = [-1/(n - 5)^3 + 0.375*2^{(n-1)}]u(n-1)[/tex]

What is truncation error?

Truncation error refers to the difference between an exact or ideal mathematical result and an approximation of that result obtained through a numerical method, algorithm, or series expansion, where the approximation is truncated or rounded off at a certain point due to computational limitations.

The Maclaurin series expansion of cot(x) is given by:

[tex]cot(x) = 1/x - (x/3) - (2x^3)/45 - (2x^5)/945 + ...[/tex]

The first four terms are:

cot(x) ≈ 1/x - (x/3)

If x = 0.5, then the exact value of cot(x) is:

cot(0.5) = 1/tan(0.5) = 1/0.546302 = 1.830127

The truncation error is the difference between the exact value and the approximation:

error = cot(0.5) - (1/0.5 - (0.5/3)) = 1.830127 - 1.166667 = 0.66346 (approx)

2. We can expand xsinx - 1 in powers of x - 1 using the Maclaurin series for sin(x):

[tex]sin(x) = x - (x^3)/3! + (x^5)/5! - ...[/tex]

Multiplying by x and subtracting 1 gives:

[tex]x*sin(x) - 1 = x^2 - (x^4)/3! + (x^6)/5! - ...[/tex]

Now, replacing x with (x - 1) gives:

[tex](x - 1)*sin(x - 1) - 1 = (x - 1)^2 - ((x - 1)^4)/3! + ((x - 1)^6)/5! - ...[/tex]

So, the coefficient of [tex](x - 1)^2[/tex] in the expansion is 1, and the coefficient of [tex](x - 1)^4[/tex] is -1/3!.

3. The z-transform of h(n) is given by:

H(z) = Z{h(n)} = Z{S(n)} - 28Z{(n − 1)} + Z{S(n - 2)}

Using the z-transform properties of linearity, time shifting, and the z-transform of the unit step function, we get:

[tex]H(z) = 1/(1 - z^{-1}) - 28z^-{1}/(1 - z^{-1}) + z^{-2}/(1 - z^{-1})[/tex]

Simplifying the expression, we get:

[tex]H(z) = (1 - 28z^{-1} + z^{-2})/(1 - z^{-1})[/tex]

4. To find the sequence x(n) from the given Z-transform, we use partial fraction decomposition:

[tex]-1/(z - 5)^3 + 0.375/(1 - 0.5z)^2[/tex]

Using the z-transform property of the delayed unit step function, we get:

[tex]x(n) = [-1/(n - 5)^3 + 0.375*2^{(n-1)}]u(n-1)[/tex]

To learn more about truncation error visit:

https://brainly.com/question/23321879

#SPJ4

Algibra 1 unit 1 easy stuff please help

Answers

Answer:

[D] 29 inches

Step-by-step explanation:

Times (Minutes)          Depth(Inches)

0                                      36

5                                      29

10                                     22

15                                      15

20                                      8

Based on the table, we can see that it's given the depth of the water in the pool 5 minutes after Samantha started draining the pool.

As a result, the answer is [D] 29 inches

RevyBreeze

Clark finds that in an average month, he spends $35 on things he really doesn't need and can't afford. About how much does he spend on these items in a year? I came up with $420?

Answers

Clark spends $ 12775 on these items which he does not need in a year (if we consider 365 days) where the average spend in a month is $35.

Clark finds that in an average month, he spends $35 on things he really doesn't need and can't afford.

Let us consider the month in consideration here to be of 30- days and ignore any months other number of days.

Thus, calculating the average, say x' , by formula, we get,

x' = (Summation of values of all observations ) / ( Number of observations)

⇒ 35 = Total spend / 30

⇒ Total spend = $ ( 35*30)

Total spend = $ 1050

Therefore, total spend on a year, that is 12 months (considering all months to be of 30- days ) = $( 1050*12) = $ 12600

But we know a year does not have 360 days. So we calculate the total spend on these 5 days where average month spend is $35 is $175.

Hence the total spend for a year with 365 days is = $( 12600 + 175 ) = $12775

To know more about average here

https://brainly.com/question/29895356

#SPJ1

CDEF is a rhombus. Find measure FED

Answers

The measure of angle FED is 5x + 1°.

Let's use the angle DFE to solve for the measure of angle FED. We know that angle DFE measures (8x - 20)°. Since the diagonals of a rhombus bisect each other, we can use the fact that angle DFE is divided into two equal parts by diagonal DE.

Each of these two equal parts has measure (1/2)(8x - 20)° = 4x - 10°. Let's denote the measure of angle CDE as "y". Since angles DCE and CDE are complementary (they add up to 90°), we know that angle CDE has measure (90 - y)°.

Now, we can use the fact that the diagonals of a rhombus are perpendicular bisectors of each other. This means that angle CFD (which has measure (5x + 1)°) is equal to angle CDE (which has measure (90 - y)°).

Setting these two expressions equal to each other, we get:

5x + 1 = 90 - y

Solving for y, we get:

y = 89 - 5x

Now we can use the fact that angles DCE and CDE are complementary to find the measure of angle FED. Angle FED is equal to (90 - y)°, which is:

(90 - (89 - 5x))° = 5x + 1°

To know more about rhombus here

https://brainly.com/question/27870968

#SPJ1

find the probability of not getting a 6 or 10 total on either of
two tosses of pair of fair dice.

Answers

The probability of not getting a 6 or 10 total on either of two tosses of a pair of fair dice is 7/9.

To find the probability of not getting a 6 or 10 total on either of two tosses of a pair of fair dice, we first need to find the total number of possible outcomes when rolling two dice. There are 6 possible outcomes for the first die and 6 possible outcomes for the second die, giving us a total of 6 x 6 = 36 possible outcomes.

Next, we need to determine how many of these outcomes result in a total of 6 or 10. There are 5 ways to get a total of 6: (1,5), (2,4), (3,3), (4,2), and (5,1). There are also 3 ways to get a total of 10: (4,6), (5,5), and (6,4). So, there are 5 + 3 = 8 outcomes that result in a total of 6 or 10.

Therefore, the probability of not getting a 6 or 10 total on either of two tosses of a pair of fair dice is:

P(not 6 or 10) = 1 - P(6 or 10)

= 1 - 8/36

= 1 - 2/9

= 7/9

So the probability of not getting a 6 or 10 total on either of two tosses of a pair of fair dice is 7/9.

To learn more about probability visit:

https://brainly.com/question/15124899

#SPJ11

In the right triangle ABC with right angle C,

A. Find AC if BC = 9 and AB = 9√2
B. Find sin A

Answers

In the triangle, the values are:

PART A: AC = 9 units

PART B: Sin A = 1/√2

How to find the value of BC in the triangle?

Trigonometry deals with the relationship between the ratios of the sides of a right-angled triangle with its angles.

Check the attached image for the sketch of triangle ABC.

From the sketch:

AC = √(AB² - BC²)       (Pythagoras theorem)

AC = √(162 - 81)

AC = √(81)

AC = 9 units

PART B:

Sin A = BC/AB (opposite/hypotenuse)

Sin A = 9/(9√2)

Sin A = 1/√2

Learn more about Trigonometry on:

brainly.com/question/11967894

#SPJ1

Which additional fact would prove that quadrilateral WXYZ is a parallelogram?




A. XY = YZ

B. M∠X + m∠Y = 180°

C. YZ = WX

D. M∠Y ≅ m∠W

Answers

The additional fact would prove that quadrilateral WXYZ is a parallelogram is M∠Y ≅ m∠W . The option D is correct.

To prove that quadrilateral WXYZ is a parallelogram, we need to show that both pairs of opposite sides are parallel.

Option A, which states that XY=YZ, does not provide information about the parallelism of the sides, and it is not sufficient to prove that WXYZ is a parallelogram. Option B, which states that the sum of angles X and Y is 180 degrees, suggests that WXYZ may be a straight line, but it does not necessarily mean that the opposite sides are parallel.

Option C, which states that YZ=WX, suggests that the opposite sides may be equal in length, but again, it does not necessarily mean that they are parallel. Option D, which states that angle Y is congruent to angle W, provides information about the opposite angles of the quadrilateral, and this is enough to prove that the opposite sides are parallel. This is because in a parallelogram, opposite angles are congruent, and therefore, the fact that M∠Y ≅ m∠W proves that WXYZ is a parallelogram. Option D is the correct answer as it provides sufficient information to prove that WXYZ is a parallelogram.

Learn more about quadrilateral here:

https://brainly.com/question/29934440

#SPJ4

Compute ∫c xe^y dx + x^2 y dy along the line segment x = 4

0≤y≤4

Answers

The computed value of a line integral, [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex] is equals to the 32

The line integrals form that we can work with the involvement of rewriting in terms of a single variable. During the integrating over a path where one of the variables is constant, then that variable is not actually variable at all, and there is no need to do more. We have a line

integral is [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex]

We have to determine its value along line segment x = 4

Now, the line segment is x = 4 that means, dx = 0 and 0≤y≤4. So, substitute all known values in above integral, [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex]

[tex]= \int_{ 0}^{2} x² y dy + 0[/tex]

[tex]= [ x² \frac{ y²}{2}]_{0}^{2}[/tex]

[tex]= [ x² \frac{ 2²}{2} - 0][/tex]

[tex]= 2x²[/tex]

= 2× 4² = 32

Hence, required value is 32.

For more information about line integral, visit:

https://brainly.com/question/28381095

#SPJ4

Other Questions
A dense forest, found around 0-10 degrees latitude is called? What diagnosis ofRuptured Ovarian Cyst (Ab Pain DDX) what are 11 examples of chronic conditions in children? (DSCAADCCHBA) Many sellers businesses elect to form a corporation because of the two main advantages of ______ liability and possible tax advantages a. Which of the fish's fundamental needs is being met as it swims away from a predator? Whichorgan system performs the main functions that allow it to meet this need? Identify the organsof this system that are included in the model. (2 points)b. What are three other organ systems that help the fish meet the need described in part a?Identify an organ in the model that belongs to each of these organ systems. (3 points)c. Describe how all four organ systems and their parts work together to meet the needidentified in part a. (5 points) What cuases war Four perspective approach refer to the following distribution of commissions. monthly commissions class frequencies $600 up to $800 3 800 up to 1,000 7 1,000 up to 1,200 11 1,200 up to 1,400 12 1,400 up to 1,600 40 1,600 up to 1,800 24 1,800 up to 2,000 9 2,000 up to 2,200 4 what is the relative frequency for salespeople who earn from $1,600 up to $1,800? multiple choice 0.024 0.02 0.22 0.24 Based on information in the article, what is one way that small farms are different from larger ones in the U.S.?A.Children working on small farms are less likely to harvest tobacco leaves and show signs of Green Tobacco Sickness.B.Labor laws do not set a minimum age at which children are able to start working on small farms in the United States.C.United States labor laws for small farms are being questioned, especially for workers who are age 18 or older.D.Small farms have enough money to offer better pay and more effective protective gear to their field laborers.International rights group Human Rights Watch released a report about children who work on U.S. tobacco farms. In response to the results, the organization is urging the government and the tobacco industry to protect these young workers.The report is based on interviews with more than 140 children working on farms in the U.S. states of North Carolina, Kentucky, Tennessee, and Virginia. It claims that children as young as 7 are in some cases working long hours in fields harvesting tobacco leaves. Sometimes, the work is done under hazardous conditions. Most of what the group documented is legal. Human Rights Watch wants cigarette makers to push for safety on farms from which they buy tobacco. The group also wants the U.S. government to change labor laws."The U.S. has failed America's families by not meaningfully protecting child farmworkers from dangers to their health and safety, including on tobacco farms," said Margaret Wurth, a children's rights researcher who co-authored the report.In their interviews, the child tobacco farm workers indicated that their health and safety were indeed at risk. Nearly three-quarters of them reported becoming ill, with symptoms including vomiting, nausea, and headaches. These are indications of Green Tobacco Sickness, which can occur when a person handles tobacco leaves and nicotine is absorbed into the skin. The children also reported working long hours, often in extremely hot conditions, which can be dangerous. They said that they were not given overtime pay or sufficient breaks. In addition, the children and they donned no, or inadequate, protective gear.U.S. law puts limits on labor performed by minors (children under age 18). But these restrictions vary by industry.According to the Human Rights Watch report, U.S. agriculture labor laws are more lax, allowing children to work longer hours at younger ages and in more hazardous conditions than children in any other industry. With a parent's permission, children as young as 12 can be hired for unlimited hours outside of school hours on a farm of any size. There's no minimum age for children to work on small farms. In 2011, the U.S. Labor Department proposed changes that would have prohibited age 16 from working on tobacco farms. However, these changes were never passed into law.Human Rights Watch met with many of the world's biggest cigarette makers and tobacco growers to discuss its findings. The group hoped to push the farms and companies to adopt or strengthen their labor and safety policies. The companies say that they are concerned about child labor. They have developed standards, including requiring growers to provide a safe work environment and adhere to child labor laws. Multiply 6 1/21 8/13 simplify the answer and write as mixed number Which type of circulation takes deoxygenated blood to the lungs for oxygenation?A) localB) lymphaticC) pulmonaryD) systemic Why might you use this kind of graph?A. To show the relationship between two variables using linesB. To show the relationship between two variables using dotsC. To show parts of a wholeD. To compare data from different groups or categories What meaning of the statement this? how corruption has killed more people than civil wars You worked at one pharmacy in which every member of the team was invited to contribute ideas for improvement. At another, people were simply expected to follow orders and procedures. Based on the theory of personal causation, people in the first example were treated as _____ and people in the second were treated as ______.proponents; advocatestransactional operators; transformational operatorsartists; actors Let m = 22 + 3.Which equation is equivalent to(x^2+3)^2+7x^2+21=-10 in terms of m? Write a complete Java Boolean expression that evaluates the IMPLIES operation. Assume you have two properly defined and initialized Boolean variables first and second (the two input values). George Boole would have written implies this way: Implies gives the value True if whenever first is True, then second is also True. It also gives the value True if first is False (the value of second does not matter) Write your answer here as a single expression (don't use control structures): According to the 2005 FDA food code, when hot holding food, it must be held at a minimum temperature of what?A. 140 or higherB. 135 or higherC. 165 or higherD. 150 or higher How does the currency described in the story reflect the story's setting? A. It establishes that the story takes place in China at a time when they used strings of cash as currency. B. It indicates that the story is set in the ancient past where people had no access to paper money. C. It supports the idea that Yen and his family live in a rural setting that is not advanced. D. It proves that Yen's mother was meticulous about her home and everything in it. An imperialist country using direct rule in an african colony would most likely enact which policy apex Which of these is a characteristic of a market economy?A. nationwide pricing rules for goods and servicesB. government control and ownership of propertyC. limited business rightsD. competition between businesses