Identify the property of real numbers illustrated in the following equation.(-5) + (y · 7) = (y · 7) + (-5)

Identify The Property Of Real Numbers Illustrated In The Following Equation.(-5) + (y 7) = (y 7) + (-5)

Answers

Answer 1

By definition, the commutative property of addition says that changing the order of addends does not change the sum, which is precisely what the equation is trying to show by changing the order of the sum, therefore, the property illustrated is the commutative property of addition.


Related Questions

Josslyn placed $4,400 in a savings account which earns 3.2% interest, compounded annually. How much will she have in the account after 12 years?Round your answer to the nearest dollar.

Answers

The equation for the total amount after compounded interest is as follows:

[tex]A=P(1+\frac{r}{n})^{nt}^{}[/tex]

Where A is the final amount, P is the initial amount, r is the annual interest, n is how many times per year the interest is compounded and t is the time in years.

Since the interest is compounded annually, it is compounded only once per year, so

[tex]n=1[/tex]

The other values are:

[tex]\begin{gathered} P=4400 \\ r=3.2\%=0.032 \\ t=12 \end{gathered}[/tex]

So, substituteing these into the equation, we have:

[tex]\begin{gathered} A=4400(1+\frac{0.032}{1})^{1\cdot12} \\ A=4400(1+0.032)^{12} \\ A=4400(1.032)^{12} \\ A=4400\cdot1.4593\ldots \\ A=6421.0942\ldots\approx6421 \end{gathered}[/tex]

So, she will have approximately $6421.

Find the coordinates of the other endpoint of a segment with the given endpoint and Midpoint M.T(-8,-1)M(0,3)

Answers

If we have 2 endpoints (x1, y1) and (x2, y2), the coordinates of the midpoint will be:

[tex]\begin{gathered} x=\frac{x_1+x_2}{2} \\ y=\frac{y_1+y_2}{2} \end{gathered}[/tex]

Now, we know the coordinates of one endpoint (x1, y1) equal to (-8, -1) and the midpoint (x, y) equal to (0,3), so we can replace those values and solve for x2 and y2.

Then, for the x-coordinate, we get:

[tex]\begin{gathered} 0=\frac{-8+x_2}{2} \\ 0\cdot2=-8+x_2 \\ 0=-8+x_2 \\ 0+8=-8+x_2+8 \\ 8=x_2 \end{gathered}[/tex]

At the same way, for the y-coordinate, we get:

[tex]\begin{gathered} 3=\frac{-1+y_2}{2} \\ 3\cdot2=-1+y_2 \\ 6=-1+y_2 \\ 6+1=-1+y_2+1 \\ 7=y_2 \end{gathered}[/tex]

Therefore, the coordinates of the other endpoint are (8, 7)

Answer: (8, 7)

Use Vocabulary in Writing 9. Explain how you can find the product 4 X 2 and the product 8 X 2 Use at least 3 terms from the Word List in your explanation.

Answers

Okay, here we have this:

A game fair requires that you draw a queen from a deck of 52 ards to win. The cards are put back into the deck after each draw, and the deck is shuffled. That is the probability that it takes you less than four turns to win?

Answers

Explanation

The probability (P) is winning in less than four turns can be decomposed as the following sum:

The probability of winning in one turn is

[tex]P(\text{Winning in turn 1})=\frac{\#Queens}{\#Cards}=\frac{4}{52}.[/tex]

The probability of winning in the second turn is

[tex]\begin{gathered} P(\text{ Winning in the second turn})=P(\text{ Lossing (in turn 1)})\cdot P(\text{ Winning (in turn 2)}), \\ \\ P(\text{ Winning in the second turn})=\frac{\#NoQueens}{\#Cards}\cdot\frac{\#Queens}{\#Cards}, \\ \\ P(\text{ Winning in the second turn})=\frac{48}{52}\cdot\frac{4}{52}\text{.} \end{gathered}[/tex]

The probability of winning in the third turn is

[tex]\begin{gathered} P(\text{ Winning in the third turn})=P(\text{ Lossing (in turn 1)})\cdot P(\text{ Lossing (in turn 2)})\cdot P(\text{ winning (in turn 3)}), \\ \\ P(\text{ Winning in the third turn})=\frac{\#NoQueens}{\#Cards}\cdot\frac{\#NoQueens}{\#Cards}\cdot\frac{\#Queens}{\#Cards}, \\ \\ P(\text{ Winning in the third turn})=\frac{48}{52}\cdot\frac{48}{52}\cdot\frac{4}{52}\text{.} \end{gathered}[/tex]

Adding all together, we get

[tex]\begin{gathered} P(\text{ Winning in less than four turns})=\frac{4}{52}+\frac{48}{52}\cdot\frac{4}{52}+\frac{48}{52}\cdot\frac{48}{52}\cdot\frac{4}{52}, \\ \\ P(\text{ Winning in less than four turns})=\frac{469}{2197}, \\ \\ P(\text{ Winning in less than four turns})\approx0.2135, \\ \\ P(\text{ Winning in less than four turns})\approx21.35\% \end{gathered}[/tex]

Answer

The probability of winning in less than four turns is (approximately) 21.35%.

Use the slope and y-intercept to graph the line whose equation is given. 2 y = -x + 5x+1

Answers

ok

y = -2/5 + 1

This is the graph

A polynomial function is given.
Q(x) = −x2(x2 − 9)
(a) Describe the end behavior of the polynomial function.
End behavior: y → as x → ∞
y → as x → −∞

Answers

The end behavior of the polynomial is:

y →  −∞ as x → ∞

y →  −∞ as x → −∞

How is the end behavior?

Here we have the polynomial:

Q(x) = -x²*(x² - 9)

Remember that polynomials with even degrees have the same behavior for the negative values of x than for the positive, in this case if we expand the polynomial we get:

Q(x) = -x⁴ + 9x²

The leading coefficient is negative, then the end behavior will tend to negative infinity in both ends, then we get:

y →  −∞ as x → ∞

y →  −∞ as x → −∞

Learn more about end behavior:

https://brainly.com/question/1365136

#SPJ1

2. What is the greatestcommon factor of12. 18, and 36?

Answers

The Solution:

Given the numbers below:

12, 18 and 36.

We are asked to find the greatest common factor of the above numbers.

Note:

Greatest Common Factor means Highest Common Factor (HCF).

Recall:

The Greatest common factor of 12, 18 and 36 is the highest number that can divide 12, 18 and 36 without any remainder.

Thus, the correct answer is 6.

Aaquib can buy 25 liters of regular gasoline for $58.98 or 25 liters of permimum gasoline for 69.73. How much greater is the cost for 1 liter of premimum gasolinz? Round your quotient to nearest hundredth. show your work :)
YOU WILL GET 70 POINTS!

Answers

The cost for 1 liter of premium gasoline is $0.43 greater than the regular gasoline.

What is Cost?

This is referred to as the total amount of money and resources which are used by companies in other to produce a good or service.

In this scenario, we were given 25 liters of regular gasoline for $58.98 or 25 liters of premium gasoline for $69.73.

Cost per litre of premium gasoline is = $69.73 / 25 = $2.79.

Cost per litre of regular gasoline is = $58.98/ 25 = $2.36.

The difference is however $2.79 - $2.36 = $0.43.

Therefore the cost for 1 liter of premimum gasoline is $0.43 greater than the regular gasoline.

Read more about Cost here https://brainly.com/question/25109150

#SPJ1

An advertising company plans to market a product to low-income families. A study states that for a particular area the mean income per family is $25,174 and the standard deviation is $8,700. If the company plans to target the bottom 18% of the families based on income, find the cutoff income. Assume the variable is normally distributed.

Answers

[tex]\begin{gathered} \text{ A percentile rank of 18 has a z-score of -0.915},\text{ with that we can use it along} \\ \text{ with the other given} \\ z=-0.915 \\ \mu=25174 \\ \sigma=8700 \\ \text{ We use the formula for getting the z-score and substitute} \\ z=\frac{x-\mu}{\sigma} \\ -0.915=\frac{x-25174}{8700} \\ (-0.915)(8700)=x-25174 \\ -7960.50=x-25174 \\ 25174-7960.50=x \\ 17213.50=x \\ x=17213.50 \\ \text{ The target cutoff is \$17213.50} \end{gathered}[/tex]

Date: t rates to determine the better buy? b. Stop and Shop: 6 packages of Oreos cost $15.00 Key Food: 5 packages of Oreos cost $13.25

Answers

To determine the better buy you have to calculate how much one package costs in each shop.

1) 6 packages cost $15.00

If you use cross multiplication you can determine how much 1 package costs:

6 packs ______$15.00

1 pack _______$x

[tex]\begin{gathered} \frac{15.00}{6}=\frac{x}{1} \\ x=\frac{15}{6}=\frac{5}{2}=2.5 \end{gathered}[/tex]

Each package costs $2.5

2) 5 packages cost $13.25

5packs_____$13.25

1 pack______$x

[tex]\begin{gathered} \frac{13.25}{5}=\frac{x}{1} \\ x=\frac{13.25}{5}=2.65 \end{gathered}[/tex]

Each package costs $2.65

For the second purchase each package cost $0.15 more than in the first purchase.

Is best to buy the 6 packages at $15.00

A baby cows growth. About how many pounds does the baby cow gain each week?

Answers

Growth per week = 124 - 122 = 126 - 124 = 2

. = 2 pounds + 1 pound additional

. = 3

Then answer is

OPTION B) 3 pounds

A house has increased in value by 35% since it was purchased. If the current value is S432,000, what was the value when it was purchased?

Answers

Answer:

The value of the house when it was purchased = $32000

Explanation:

The original percentage value = 100%

The current percentage value = 100% + 35% = 135%

Current value = $432000

Original value = x

[tex]\begin{gathered} The\text{ current value =}\frac{135}{100}\times The\text{ original value} \\ \\ 432000=1.35\times x \\ \\ x=\frac{432000}{1.35} \\ \\ x=$ 320000 $ \end{gathered}[/tex]

The value of the house when it was purchased = $32000

18. Yvonne paid $18.72 for 8 gallons of gas. How much would she have spent on gas if she had only needed 5 gallons of gas?

Answers

As given by the question

There are given that $18.72 for 8 gallons of gas.

Now,

Since, $18.72 for 8 gallons of gas;

Then,

First calculate the price of one-gallon gas

So,

[tex]\frac{18.72}{8}=2.34[/tex]

The price og one g

find the simple interest earned, to the nearest cent, for each principal interest rate, and time.

Answers

Answer:

$8.40

Explanation:

From the given statement:

Principal = $840

Time = 6 Months

Rate = 2%

Note that Time must be in Years, therefore:

Time = 6 Months = 6/12 = 0.5 Years

[tex]\begin{gathered} \text{Simple Interest }=P\times R\times T \\ =840\times2\%\times0.5 \\ =840\times0.02\times0.5 \\ =\$8.40 \end{gathered}[/tex]

The simple interest earned is $8.40

The cost to mail a package is 5.00. Noah has postcard stamps that are worth 0.34 and first-class stamps that are worth 0.49 each. An equation that represents this is 0.49f + 0.34p = 5.00Solve for f and p.If Noah puts 7 first-class stamps, how many postcard stamps will he need?

Answers

ANSWER

[tex]\begin{gathered} f=\frac{5.00-0.34p}{0.49} \\ p=\frac{5.00-0.49f}{0.34} \\ p=4.618\approx5\text{ postcard stamps} \end{gathered}[/tex]

EXPLANATION

The equation that represents the situation is:

[tex]0.49f+0.34p=5.00[/tex]

To solve for f, make f the subject of the formula from the equation:

[tex]\begin{gathered} 0.49f=5.00-0.34p \\ \Rightarrow f=\frac{5.00-0.34p}{0.49} \end{gathered}[/tex]

To solve for p, make p the subject of the formula from the equation:

[tex]\begin{gathered} 0.34p=5.00-0.49f \\ \Rightarrow p=\frac{5.00-0.49f}{0.34} \end{gathered}[/tex]

To find how many postcard stamps Noah will need if he puts 7 first-class stamps, solve for p when f is equal to 7.

That is:

[tex]\begin{gathered} p=\frac{5.00-(0.49\cdot7)}{0.34} \\ p=\frac{5.00-3.43}{0.34}=\frac{1.57}{0.34} \\ p=4.618\approx5\text{ postcard stamps} \end{gathered}[/tex]

Which inequality is equivalent to this one?y-83-2O y-8+82-2-8O y 8+82-248o y 8+22-248o Y8+ 25-242

Answers

Given the inequality:

[tex]y-8\le-2[/tex]

If we add 2 on both sides, the inequality remains the same and we get:

[tex]y-8+2\le-2+2[/tex]

Suppose that the distribution for total amounts spent by students vacationing for a week in Florida is normally distributed with a mean of 650 and a standard deviation of 120. Suppose you take a simple random sample (SRS) of 35 students from this distribution.

What is the probability that an SRS of 35 students will spend an average o between 600 and 700 dollars? Round to five decimal places

Answers

The probability that an SRS of 35 students will spend an average o between 600 and 700 dollars is 98.61%

Given,

The mean of the normal distribution, μ = 650

Standard deviation of the distribution, σ = 120

n = 35

By using central limit theorem, standard deviation for SRS of n, δ = σ/√n = 120/√35

The z score = (x - μ) / σ

By using central limit theorem,

z score =  (x - μ) / δ

Here,

We have to find the probability that an SRS of 35 students will spend an average o between 600 and 700 dollars:

(p value of z score of x = 700) - (p value of z score of x = 600)

z score of x = 700

z = (x - μ) / δ = (700 - 650) /( 120/√35) = (50 × √35) / 120 = 2.46

p value of z score 2.46 is 0.99305

z score of x = 600

z = (x - μ) / δ = (600 - 650) /( 120/√35) = (-50 × √35) / 120 = -2.46

p value of z score -2.46 is 0.0069469

Now,

0.99305 - 0.0069469 = 0.9861031 = 98.61%

That is, the probability that an SRS of 35 students will spend an average o between 600 and 700 dollars is 98.61%

Learn more about probability here:

https://brainly.com/question/14228383

#SPJ1

which property justifies the following statement if 3x=9,then x=3.

Answers

Answer:

Multiplication Property

Division Property

This can be justified using multiplication property and division property:

Multiplication property:

If both sides of equation:

3x = 9

are multiplied by 1/3, we have:

x = 3

Division property

Divide both sides of the equation:

3x = 9 by 3, we have:

x = 3

Find an expression equivalent to the one shown below.913 x 9-6OA. 79OB.919OC. 97OD. 9-78

Answers

Answer:

C. 9⁷

Explanation:

We will use the following property of the exponents:

[tex]x^a\times x^b=x^{a+b}[/tex]

It means that when we have the same base, we can simplify the expression by adding the exponents. So, in this case, the equivalent expression is:

[tex]9^{13}\times9^{-6}=9^{13-6}=9^7[/tex]

Therefore, the answer is C. 9⁷

if [tex] \sqrt{ \times } [/tex]is equal to the coordinate of point D in the diagram above, then X is equal to:

Answers

11)

The number line is divided into 5 equal intervals. if the fourth segment is 7, then we would find the distance between each segment

The distance between the fourth segment and the first segment is 7 - - 1 = 8

Since we are considering the distance between segment 1 and segment 4, the distance between each segment would be

8/4 = 2

Thus,

point D = 7 + 2 = 9

If

[tex]\begin{gathered} \sqrt[]{x\text{ }}\text{ = D, then} \\ \sqrt[]{x}\text{ = 9} \\ \text{Squaring both sides of the equation, we have} \\ x=9^2 \\ x\text{ = 81} \end{gathered}[/tex]

Option E is correct

do you think you'd be able to help me with this

Answers

x = wz/y

Explanation:[tex]\frac{w}{x}=\frac{y}{z}[/tex]

To solve for x, first we need to cross multiply:

[tex]w\times z\text{ = x }\times y[/tex]

Now we make x the subject of the formula:

[tex]\begin{gathered} To\text{ make x stand alone, we n}ed\text{ to remove any other variable around x} \\ \text{divide both sides by y}\colon \\ \frac{w\times z}{y}\text{ =}\frac{\text{ x }\times y}{y} \end{gathered}[/tex][tex]x\text{ = }\frac{wz}{y}[/tex]

Write an equation of the line that passes through (4, 3) and is parallel to the line defined by 5x-2y-3. Write the answer in slope-intercept form (if possible)
and in standard form (Ax+By-C) with smallest integer coefficients. Use the "Cannot be written" button, if applicable.

Answers

The final answer to the question is highlighted in the box

The length of a rectangular pool is 6 meters less than twice the width. If the pools perimeter is 84 meters, what is the width? A) Write Equation to model the problem (Use X to represent the width of the pool) B) Solve the equation to find the width of the pool (include the units)

Answers

I have a problem with the perimeter of a pool expressed in an unknown which corresponds to "x"

The first thing to do is to pose the corresponding equation, this corresponds to section A of the question

For the length, we have a representation of twice the width minus 6, i.e. 2x-6

For the width we simply have x

Remember that the sum of all the sides is equal to the perimeter which is 84, However, we must remember that in a rectangle we have 4 sides where there are two pairs of parallel sides, so we must multiply the length and width by 2

Now we can represent this as an equation

[tex]2(2x-6)+2x=84[/tex]

This is the answer A

Now let's solve the equation for part B.

[tex]\begin{gathered} 2(2x-6)+2x=84 \\ 4x-12+2x=84 \\ 6x=84+12 \\ x=\frac{96}{6} \end{gathered}[/tex][tex]x=16[/tex]

In conclusion, the width of the pool is 16

Find all solutions in[0, 2pi): 2sin(x) – sin (2x) = 0

Answers

Based on the answer choices, replace the pair of given values and verify the equation, as follow:

For x = π/4, π/6

[tex]2\sin (\frac{\pi}{4})-\sin (\frac{2\pi}{4})=2\frac{\sqrt[]{2}}{2}-1\ne0[/tex]

the previous result means that the given values of x are not solution. The answer must be equal to zero.

Next, for x = 0, π

[tex]\begin{gathered} 2\sin (\pi)-\sin (2\pi)=0-0=0 \\ 2\sin (0)-\sin (0)=0-0=0 \end{gathered}[/tex]

For both values of x the question is verified.

The rest of the options include π/4 and π/3 as argument, you have already shown that these values of x are not solution.

Hence, the solutions for the given equation are x = 0 and π

Finding an output of a function from its graphThe graph of a function fis shown below.Find f (0).543-2f(0) =I need help with this math problem.

Answers

Given:

Given a graph of the function.

Required:

To find the value of f(0), by using graph.

Explanation:

From the given graph

[tex]f(0)=-4[/tex]

Final Answer:

[tex]f(0)=-4[/tex]

School: Practice & Problem Solving 7.1.PS-18 Question Help A rectangle and a parallelogram have the same base and the same height. How are their areas related? Provide an example to justify your answer The areas equal. A rectangle has dimensions 5 m by 7 m, so its area is m² A parallelogram with a base of 5 m and a height of 7 m has an area of (Type whole numbers.)

Answers

The image shown below shows the relationship between areas of rectangle and parallelogram

It can be seen that the areas are equal when they have the same sides or dimension

A rectangle has dimensions 5 m by 7 m, so its area is 5m x 7m = 35m²

A parallelogram with a base of 5 m and a height of 7 m has an area of 5m x 7m = 35m²

A taxi service charges $3 for the first mile and then $2.25 for every mile after that. The farthest the taxi will travel is 35 miles. If X represents the number of miles traveled, and Y represents the total cost of the taxi ride, what is the most appropriate domain for the solutions?

Answers

Solution:

Given:

[tex]\begin{gathered} A\text{ taxi service charges \$3 for the first mile} \\ \text{ \$2.25 for every mile after that.} \\ \text{The farthest the taxi will travel is 35 miles.} \end{gathered}[/tex]

Since x represents the number of miles traveled

y represents the total cost of the taxi ride

From the description, the number of miles the taxi will travel is between 0 and 35miles since 35 miles is the farthest it could go.

This means the domain which refers to the set of possible input values will be;

[tex]\begin{gathered} x>0\text{ because the service is charged once a certain distance is covered.} \\ \text{when no distance is covered, no charge is made.} \\ \text{Also,} \\ x\le35\text{ because the farthest is 35miles. This means the ta}\xi\text{ can not travel beyond 35miles.} \\ \\ \text{From the descriptions made, the domain will be:} \\ 0

Therefore, the most appropriate domain for the solutions is;

[tex]0 The correct answer is OPTION B.

solve the following system of equations-5x-3y=-16-3x+2y=-21x=y=

Answers

-5x - 3y = -16

-3x + 2y = -21

Solving for y the first equation:

-5x + 16 = 3y

y = (-5/3)x + (16/3)

Using this value of y into the second equation:

-3x + 2(-5/3)x + 2(16/3) = -21

-3x - (10/3)x + 32/3 = -21

Multiplying all by 3:

-9x - 10x + 32 = -63

-19x = -63 - 32 = -95

x = 95/19

Using this value of x into the y we found with the first equation:

y = (-5/3)x + 16/3

y = (-5/3)(95/19) + 16/3 = -475/57+ 304/57 = -171/57

y = -171/57

x = -31/19 = -1.6315

y = -171/57 = -3

Answer:

x = -1.6315

y = -3

A rectangular room is 1.5 times as long as it is wide, and its perimeter is 26 meters. Find the dimension of the room.The length is :The width is :

Answers

The rectangular room is 1.5times as long as it is wide and its perimeter is 26m. Let "x" represent the room's width, then the length of the room can be expressed as "1.5x"

The perimeter of a rectangle is equal to the sum of twice the width and twice the length following the formula:

[tex]P=2w+2l[/tex]

We know that:

P=26m

w=x

l=1.5x

Then, replace the measurements on the formula:

[tex]\begin{gathered} 26=2x+2\cdot1.5x \\ 26=2x+3x \end{gathered}[/tex]

From this expression, you can calculate x, first, add the like terms:

[tex]26=5x[/tex]

Second, divide both sides by 5 to determine the value of x:

[tex]\begin{gathered} \frac{26}{5}=\frac{5x}{5} \\ 5.2=x \end{gathered}[/tex]

The width is x= 5.2m

The length is 1.5x= 1.5*5.2= 7.8m

need help. first correct answer gets brainliest plus 15 pts

Answers

We are given that lines V and 0 and lines C and E are parallel.

We are asked to prove that ∠15 and ∠3 are congruent (equal)

In the given figure, angles ∠3 and ∠7 are "corresponding angles" and they are equal.

[tex]\angle3=\angle7[/tex]

In the given figure, angles ∠7 and ∠6 are "Vertically opposite angles" and they are equal.

[tex]\angle7=\angle6[/tex]

Angles ∠6 and ∠14 are "corresponding angles" and they are equal.

[tex]\angle6=\angle14[/tex]

Angles ∠14 and ∠15 are "Vertically opposite angles" and they are equal.

[tex]\angle14=\angle15[/tex]

Therefore, the angles ∠15 and ∠3 are equal.

[tex]\angle3=\angle7=\angle6=\angle14=\angle15[/tex]

Other Questions
a rope passing through a capstan on a dock is attached to a boat offshore. the rope is pulled in at a constant rate of 6 ft/s and the capstan is 5 ft vertically above the water. how fast is the boat traveling when it is 12 ft from the dock? Segment AC has a midpoint B. If AB = 2x - x - 42 andBCI_x+11x +21, find the length of Ac. What is the kinetic energy of the ocean liner ? What the difference between velocity and speed by definition, mutator methods exhibit which of the following types of side effect? group of answer choices modification of fields of the object on which they're called modification of local variables declared within the method modification of fields of the object calling the method modification of the parameters of the method Suppose increasing the sample size will not change the sample mean or the standard deviation. What will happen to the p-value by increasing the sample size?. The Hull House that Addams founded in Chicago offered services for? Find the area of the shaded circles. Leave your answer in terms of pi or round to the nearest 10th in what ways are the us constitution and louisiana state constitution alike Jaclyn has $120 saved and earns $40 each month in allowance. Pedro has $180 saved and earns $20 a month in allowance.If they both save their entire allowances, how long will it take before Jaclyn and Pedro have saved the same amount of money?Enter your answer in the box help me please I'm confused Amelia used 6 liters of gasoline to drive 48 kilometers.How many kilometers did Amelia drive per liter?kilometers =At that rate, how many liters does it take to drive 1 kilometer?liters = Find the midpoint of the coordinates (3. -18) and (-5, -10) WHAT IS THE XVALUE? What is the explanation for line 22 of i wandered lonely as a cloud a flat coil of wire consisting of 17 turns, each with an area of 50 cm2, is positioned perpendicularly to a uniform magnetic field that increases its magnitude at a constant rate from 3 t to 6 t in 2.0 s. what is the magnitude of the emf (in volts) induced in the coil? your answer should be a number with two decimal places, do not include the unit. a company using the periodic inventory system has the following account balances: inventory (beginning of the year), $3,874; freight-in, $608; purchases, $14,424; purchases returns and allowances, $2,521; purchases discounts, $250. the cost of merchandise purchased is how do I do domin and range on a graph Let h(t)=tan(4x + 8). Then h'(3) isand h''(3) is When Elizabeth left her phone in her house this morning How does Healeys argument reflect the concerns of the Progressive reformers in the early 1900s?