Answer:
1.24 L of H₂ at STP .
Explanation:
2Al(s) +6HCl(aq) → 2AlCl₃(aq) + 3H₂(g)
2 moles 3 x 22.4 L
2 x 27 g of Al reacts to give 3 x 22.4 L of H₂ at STP .
1 g of Al will react to give 3 x 22.4 / ( 2 x 27 ) L of H₂ at STP .
= 1.24 L of H₂ at STP .
The volume of hydrogen produced by 1 grams of Al has been 1.24 L.
The balanced chemical reaction has been given as:
[tex]\rm 2\;Al\;+\;6\;HCl\;\rightarrow\;2\;AlCl_3\;+\;3\;H_2[/tex]
From the equation, 2 moles of Aluminum gives 3 moles of Hydrogen
The mass of the compound from moles can be given as:
Mass = moles × molecular mass
Mass of 2 moles Al = 2 × 27 g
Mass of 2 moles Al = 54 g
Mass of 3 moles hydrogen = 3 × 2 g
Mass of 3 moles hydrogen = 6 g
From the equation,
54 g aluminum gives = 6 grams hydrogen
[tex]\rm 1\;gram\;aluminum\;=\;\dfrac{6}{54}\;\times\;1[/tex]
1 gram Aluminum = 0.11 grams hydrogen
The mass of hydrogen produced by 1 gram Al has been 0.11g. The moles equivalent to 0.11g hydrogen has been given as:
Mass = moles × molecular mass
0.11 g = moles × 2 g/mol
Mole of hydrogen = 0.055 mol
The moles of hydrogen produced by 1 gram of Al has been 0.055 mol.
According to the ideal gas equation, any gas at STP has 1 mole equivalent to 22.4 L. So,
1 mol = 22.4 L
0.055 mol = 0.055 × 22.4 L
0.055 mol = 1.244 L.
The volume of hydrogen produced by 1 grams of Al has been 1.24 L.
For more information about volume at STP, refer to the link:
https://brainly.com/question/11676583
Which is one way that minerals crystallize from materials dissolved in water?
from the air
from solutions that evaporate
from hot water solutions when water boils
from the soil
Answer:
the second answer its science behind it
Answer:
b
Explanation:
Josh heated a certain amount of blue copper sulfate crystals to get 2.1 g of white copper sulfate powder and 1.4 g of water. What is most likely the mass of the blue copper sulfate that he heated and why?
Answer: The mass of blue copper sulfate is 3.5 g
Explanation:
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The chemical equation for the heating of copper sulfate crystals is:
Let the mass of blue copper sulfate be 'x' grams
We are given:
Mass of copper sulfate powder = 2.1 grams
Mass of water = 1.4 grams
Total mass on reactant side = x
Total mass on product side = (2.1 + 1.4) g
So, by applying law of conservation of mass, we get:
Hence, the mass of blue copper sulfate is 3.5 grams
Measurements show that unknown compound X has the following composition: element mass % carbon 41.0% hydrogen 4.58% oxygen 54.6% Write the empirical chemical formula of X.
Answer:
CHO
Explanation:
Carbon = 41%, Hydrogen = 4.58%, oxygen = 54.6%
Step 1:
Divide through by their respective relative atomic masses
41/ 12, 4.58/1, 54.6/16
3.41 4.58 3.41
Step 2:
Divide by the lowest ratio:
3.41/3.41, 4.58/3.41, 3.41/3.41
1, 1, 1
Hence the empirical formula is CHO
Answer:
The empirical formula of X is C3H4O3.
Explanation:
If you collect 5.74 mL of O 2 at 298 K and 1.00 atm over 60.0 seconds from a reaction solution of 5.08 mL, what is the initial rate of the reaction
Answer:
7.71 × 10⁻⁴ M/s
Explanation:
The initial rate of the reaction can be expressed by using the formula:
[tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
where the number of moles of O₂ = [tex]\dfrac{PV}{RT}[/tex]
where;
Pressue P = 1.00 atm
Volume V =5.74mL = (5.74 /1000) L
Rate R = 0.082 L atm/mol.K
Temperature = 298 K
[tex]= \dfrac{1.00 \ atm \times \dfrac{5.74 }{1000}L}{0.082 \ L \ atm/mol.K \times 298 K}[/tex]
= 2.35 × 10⁻⁴ mol
Δ[O₂] = [tex]\dfrac{moles \ produced - initial \ mole}{\dfrac{5.08 }{1000}L }[/tex]
Δ[O₂] = [tex]\dfrac{2.35 \times 10^{-4} M - 0 M}{\dfrac{5.08 }{1000}}[/tex]
Δ[O₂] = 0.04626 M
The initial rate = [tex]\dfrac{\Delta [O_2]}{\Delta t}[/tex]
= [tex]\dfrac{0.04626}{60}[/tex]
= 7.71 × 10⁻⁴ M/s
Why does sodium chloride form a crystal lattice
Answer:
Ions of opposite charge strongly attract each other; those of like charges repel. As a result ions in an ionic compound are arranged in a particular manner.
Explanation:
Google is smart
A balloon contains 1.1 L of gas at a pressure of 0.80 atm. How will the volume
change if the pressure is increased to 2.0 atm?
Answer:
Final volume = 0.44 L
Explanation:
Given data:
Initial volume of balloon = 1.1 L
Initial pressure = 0.80 atm
Final volume = ?
Final pressure = 2.0 atm
Solution:
The given problem will be solved through the Boly's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
0.80 atm × 1.1 L = 2.0 atm × V₂
V₂ = 0.88 atm. L/ 2.0 atm
V₂ = 0.44 L
4. Horizontal rows of the Periodic Table are called:
a, Clusters
Groups
b. Families
d) Periods
A certain chemical reaction releases of heat for each gram of reactant consumed. How can you calculate the heat produced by the consumption of of reactant? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols.
Complete Question
The complete question is shown in the first uploaded image
Answer:
So the math expression is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
Explanation:
From the question we are told that
The heat released for 1 gram of reactant consumed is [tex]H = 37.5 \ KJ/g [/tex]
The mass of reactant considered is [tex]m = 1.9 \ kg = 1900 \ g[/tex]
So if
[tex]37.5 \ KJ [/tex] is produced for 1 gram
Then
x kJ is produced for 1900 g
=> [tex]x = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
So the heat released is
[tex]heat = \frac{ 35. 7 KJ * 1900 \ gram }{ 1 \ gram }[/tex]
An unknown compound contains only carbon, hydrogen, and oxygen (CxHyOz). Combustion of 5.50 g of this compound produced 8.07 g of carbon dioxide and 3.30 g of water.
Required:
a. How many moles of carbon, C, were in the original sample?
b. How many moles of hydrogen, H, were in the original sample?
Answer:
a. 0.183 mol C
b. 0.366 mol H
Explanation:
Assuming total combustion, all of the carbon in the unknown compound turned into carbon dioxide, CO₂.
So first we calculate the CO₂ moles produced, using its molecular weight:
8.07 g CO₂ ÷ 44 g/mol = 0.183 mol CO₂This means in the unknown compound there were 0.183 moles of carbon, C.
Conversely, all of the hydrogen in the unknown compound turned into water, H₂O.
Calculating the H₂O moles:
3.30 g ÷ 18 g/mol = 0.183 mol H₂OWe multiply the water moles by two, as there are 2 H moles per H₂O mol:
0.183 * 2 = 0.366 mol H.What is the pH of a solution made by mixing 0.050 mol of NaCN with enough water to make a liter of solution
Answer:
pH = 11
Explanation:
The equilibrium of a weak base as NaCN in water is:
NaCN(aq) + H₂O(l) ⇄ OH⁻(aq) + Na⁺(aq) + HCN(aq)
And kb, the equilibrium constant, is:
Kb = [OH⁻] [HCN] / [NaCN]
Where Kb of NaCN is 2.04x10⁻⁵
In the beginning, the [NaCN] is 0.050mol / L = 0.050M.
Both [OH⁻] and [HCN] are produced from this equilibrium, and its concentration is X, that is:
2.04x10⁻⁵ = [X] [X] / [0.050M]
1.02x10⁻⁶ = X²
X = 1x10⁻³ = [OH⁻]
As pOH = - log [OH⁻]
pOH = 3.00
And pH = 14 - pOH
pH = 11
When you finish exercising, you are hot, tired, and sweating. After a bottle of juice, you feel a lot better. Which organ systems are working together in this scenario?
Answer:
Nervous and Excretory
Explanation:
The nervous system makes you thirsty. The integumentary system makes you sweat. the integumentary system is very similar to the Excretory system.
Nervous and Excretory systems are working together in this scenario.
The nervous system makes you thirsty. The integumentary system makes you sweat. the integumentary system is very similar to the Excretory system.
The blood flow increases, your brain is exposed to more oxygen and nutrients. Exercise also induces the release of beneficial proteins in the brain. Sweating cools the body when it becomes warm. When the body temperature rises, such as when exercising on a hot day, the dermal blood vessels dilate.The excretory system works with the endocrine system to help maintain homeostasis.Learn more:
brainly.com/question/17342396
SOMEONE PLZ HELP!!!!
Answer:
4.22mL
Explanation:
V=m/d
v= 18.45g/4.37g/mL
Determine each type of reaction. 2 C 2 H 2 ( g ) + 5 O 2 ( g ) ⟶ 4 C O 2 ( g ) + 2 H 2 O ( l ) 2CX2HX2(g)+5OX2(g)⟶4COX2(g)+2HX2O(l) Choose... N H 4 N O 3 ( s ) ⟶ N 2 O ( g ) + 2 H 2 O ( l ) NHX4NOX3(s)⟶NX2O(g)+2HX2O(l) Choose... C O ( g ) + 2 H 2 ( g ) ⟶ C H 3 O H ( l ) CO(g)+2HX2(g)⟶CHX3OH(l) Choose... 2 F e ( s ) + 6 H C l ( a q ) ⟶ 2 F e C l 3 ( a q ) + 3 H 2 ( g ) 2Fe(s)+6HCl(aq)⟶2FeClX3(aq)+3HX2(g) Choose... C a C l 2 ( a q ) + N a 2 C O 3 ( a q ) ⟶ 2 N a C l ( a q ) + C a C O 3 ( s ) CaClX2(aq)+NaX2COX3(aq)⟶2NaCl(aq)+CaCOX3(s) Choose...
Answer:
2 C 2 H 2 ( g ) + 5 O 2 ( g ) ⟶ 4 C O 2 ( g ) + 2 H 2 O ( l )- combustion reaction
N H 4 N O 3 ( s ) ⟶ N 2 O ( g ) + 2 H 2 O ( l )- decomposition reaction
C O ( g ) + 2 H 2 ( g ) ⟶ C H 3 O H ( l ) - combination reaction
2 F e ( s ) + 6 H C l ( a q ) ⟶ 2 F e C l 3 ( a q ) + 3 H 2 ( g )- Redox reaction
C a C l 2 ( a q ) + N a 2 C O 3 ( a q ) ⟶ 2 N a C l ( a q ) + C a C O 3 ( s )- double displacement reaction
Explanation:
We can determine the type of reaction by considering the reactants and products.
Combustion is a reaction between a substance and oxygen which produces heat and light. The first reaction is the equation for the combustion of ethyne.
A decomposition reaction is one in which a single reactant breaks down to form products. The second reaction is the decomposition of ammonium nitrate.
A combination reaction is said to occur when two elements or compounds react to form a single product. The third reaction is the combination of carbon dioxide and methane to form methanol.
An oxidation-reduction reaction is a reaction in which there is a change in oxidation number of species from left to right of the chemical reaction equation. The fourth reaction is the oxidation of iron (0 to +3 state) and reduction of hydrogen (+1 to 0 state).
A double displacement reaction is a reaction in which ions exchange partners from left to right in the reaction equation. The fifth reaction is a double displacement reaction. Both Na^+ and Ca^2+ exchanged partners from left to right of the reaction equation.
Reactions are the formation of the products from the reactant. The types of reactions are combustion, decomposition, combination, Redox and double displacement.
What are the types of reactions?The reaction is a chemical change in the properties of the reactant that forms the products. It can be of various types based on the formation of the product.
The first reaction is combustion as the reactants react and use oxygen to form heat, carbon dioxide and water. The combustion reaction of ethyne can be shown as,
[tex]\rm 2 C _{2} H _{2} ( g ) + 5 O _{2} ( g ) \rightarrow 4 C O _{2} ( g ) + 2 H _{2} O ( l )[/tex]
The second reaction is decomposition in which a single reactant decomposes to form two or more products. The decomposition of ammonium nitrate can be shown as,
[tex]\rm N H _{4} N O _{3} ( s ) \rightarrow N _{2} O ( g ) + 2 H _{2} O ( l )[/tex]
The third reaction is a combination reaction in which two compound or elements combines to form one product. The combination reaction between carbon monoxide and hydrogen to form methanol can be shown as,
[tex]\rm C O ( g ) + 2 H _{2} ( g ) \rightarrow C H _{3} O H ( l )[/tex]
The fourth reaction is redox and includes the oxidation and the reduction of the species of the reaction. In the reaction, iron undergoes oxidation and hydrogen reduction. The redox reaction can be shown as,
[tex]\rm 2 F e ( s ) + 6 H C l ( a q ) \rightarrow 2 F e C l _{3} ( a q ) + 3 H _{2} ( g )[/tex]
The fifth reaction is a double displacement reaction in which the calcium and sodium interchange their position in the product formation. The reaction can be shown as,
[tex]\rm C a C l _{2} ( a q ) + N a _{2} C O _{3} ( a q ) \rightarrow 2 N a C l ( a q ) + C a C O _{3} ( s )[/tex]
Therefore, the type of reactions is 1. combustion, 2. decomposition, 3. combination, 4. redox and 5. double displacement.
Learn more about types of reactions here:
https://brainly.com/question/20927858
Question 1 of 10
What is technology?
A. An understanding of something new.
B. The steps that engineers go through to create a product.
C. Something created using science for use by society.
D. A method that is used to solve problems,
SUBMIT
Answer:
C.
Explanation:
You can use the series of elimination for this. First, you look at A. Technology is not an understanding of something new, so we cross that out. Second, you look at B. Technology isn't a series of steps, so we can mark that one off. Third, you look at C. Technology is something created using science for use by society, so we can keep that in mind. Lastly, we check D. Technology doesn't match up to the definition, so we can cross that one out. The answer that would make the most sense would be D.
A student measured the masses of four different-sized blocks. The student determined that each block had a mass of 50 grams.
(There is a small block, a little bit bigger block, a big block and the biggles block)
Which block has the least density?
Answer:..
Explanation:
In the laboratory you dissolve 18.7 g of copper(II) bromide in a volumetric flask and add water to a total volume of 375mL.
Required:
a. What is the molarity of the solution?
b. What is the concentration of the copper(II) cation?
c. What is the concentration of the acetate anion?
Answer:
a) - 0.2 M
b) - 0.2 M
c)- 0
Explanation:
The chemical formula of copper (II) bromide is CuBr₂. Its molar mass (MM) is calculated as follows:
MM(CuBr₂)= MM(Cu) + (2 x MM(Br) = 63.5 g/mol + (2 x 80 g/mol)= 223.5 g/mol
a). Molarity = moles CuBr₂/1 L solution
moles CuBr₂ = mass/MM = 18.7 g x 1 mol/223.5 g = 0.084 mol
Volume in L = 375 mL x 1 L/1000 mL = 0.375 L
M = 0.084 mol/(0.375 L) = 0.223 M ≅ 0.2 M
b). When is added to water, CuBr₂ dissociates into ions as follows:
CuBr₂ ⇒ Cu²⁺ + 2 Br⁻
We have 1 mol Cu²⁺ (copper (II) cation) per mol of CuBr₂. Thus, the concentration of copper (II) cation is:
0.2 mol CuBr₂ x 1 mol Cu²⁺/mol CuBr₂ = 0.2 M
c). The concentration of acetate anion is 0. There is no acetate anion in the solution (the anion from CuBr₂ is bromide Br⁻).
What is the most highly populated rotational level of Cl2 (i) 25deg C and (ii) 100 deg C? Take B=0.244cm-1.This question should not be resubmitted, it is a textbook question from the Atkins physical chemistry txtbook. 10 e.
Answer:
i
[tex]J_{m} = 20 [/tex]
ii
[tex]J_{m} = 22.5 [/tex]
Explanation:
From the question we are told that
The first temperatures is [tex]T_1 = 25^oC = 25 +273 =298 \ K[/tex]
The second temperature is [tex]T_2 = 100^oC = 100 +273 = 373 \ K[/tex]
Generally the equation for the most highly populated rotational energy level is mathematically represented as
[tex]J_{m} = [ \frac{RT}{2B}] ^{\frac{1}{2} } - \frac{1}{2}[/tex]
Here R is the gas constant with value [tex]R =8.314 \ J\cdot K^{-1} \cdot mol^{-1}[/tex]
Also
B is given as [tex]B=\ 0.244 \ cm^{-1}[/tex]
Generally the energy require per mole to move 1 cm is 12 J /mole
So [tex]0.244 \ cm^{-1}[/tex] will require x J/mole
[tex]x = 0.244 * 12[/tex]
=> [tex]x = 2.928 \ J/mol [/tex]
So at the first temperature
[tex]J_{m} = [ \frac{8.314 * 298 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5 [/tex]
=> [tex]J_{m} = 20 [/tex]
So at the second temperature
[tex]J_{m} = [ \frac{8.314 * 373 }{2* 2.928 }] ^{\frac{1}{2} } - 0.5 [/tex]
=> [tex]J_{m} = 22.5 [/tex]
Which profile best shows the topography alone line AD
What two types of elements make up an Ionic bond ?
Answer:
Metals and Non-metals
Explanation:
2 2 6 2 6 2 10 3
1s 2s 2p 3s 3p 4s 3d 4p
=
Answer:
ARSENIC
Explanation:
It has an atomic number of 33
Consider the diagram below.
What does C represent?
A) enthalpy of reaction
B) activation energy
C) activated complex
D) energy of the reactants
Answer:
A) enthalpy of reaction
Explanation:
The region C signifies the enthalpy of reaction.
This diagram is the energy profile of an endothermic reaction. In such reaction, heat is absorbed from the surrounding. At the end of the reaction, the heat of product is lesser than that of the reactants.
Enthalpy changes are heat changes accompanying a physical and chemical change. An enthalpy is the difference between the sum of the heat contents of products and sum of the heat contents of reactants.it is indeed A) enthalpy of reaction
The molar mass of gallium (Ga) is 69.72 g/mol.
Calculate the number of atoms in a 27.2 mg sample of Ga.
Write your answer in scientific notation using three significant figures.
atoms Ga
Answer:
2.35 x 10²⁰ atoms Ga
Explanation:
After converting from mg to g, use the molar mass as the unit converter to convert to moles. Then using Avogadro's number, 6.022 x 10²³ convert from moles to atoms of Ga.
[tex]27.2mgGa*\frac{1g}{1000mg} *\frac{1 mol Ga}{69.72gGa} *\frac{6.022*10^2^3 atoms Ga}{1 molGa} = 2.349 * 10^2^0 atoms Ga[/tex]
Then round to 3 significant figures = 2.35 x 10²⁰ atoms Ga.
The number of atoms in 27.2 mg sample of Ga is 2.35 × 10²⁰ atoms
StoichiometryFrom the question, we are to calculate the number of atoms in a 27.2 mg sample of Ga.
First, we will determine the number of moles of Ga present
Using the formula,
[tex]Number\ of\ moles = \frac{Mass}{Molar\ mass} [/tex]
Mass = 27.2 mg = 0.0272 g
Molar mass = 69.72 g/mol
Then,
[tex]Number\ of\ moles \ of\ Ga = \frac{0.0272}{69.72} [/tex]
[tex]Number\ of\ moles \ of\ Ga = [/tex] 0.000390132 moles
Now, for the number of atoms present
From the formula
Number of atoms = Number of moles × Avogadro's constant
Then,
Number of Ga atoms = 0.000390132 × 6.022×10²³
Number of Ga atoms = 2.35 × 10²⁰ atoms
Hence, the number of atoms in 27.2 mg sample of Ga is 2.35 × 10²⁰ atoms
Learn more on stoichiometry here: https://brainly.com/question/14464650
plz help answer both will mark brainest
Problem:
[Ar]4s2
Identify the period (p) , group (g) and valence electrons block of the element
Answer:
it is Calcium (Ca)
4th period, 2nd group, 2 valence electrons
What concentration of NO−3NO3− results when 897 mL897 mL of 0.497 M NaNO30.497 M NaNO3 is mixed with 813 mL813 mL of 0.341 M Ca(NO3)2?
Answer:
Explanation:
NaNO₃ = Na⁺ + NO₃⁻¹
.497 M .497 M
moles of NO₃⁻¹ = .897 x .497 = .4458 moles
Ca( NO₃)₂ = Ca + 2 NO₃⁻¹
.341 M 2 x .341 M = .682 M
moles of NO₃⁻¹ = .813 x .682 = .5544 moles
Total moles = .4458 moles + .5544 moles
= 1.0002 moles
volume of solution = 897 + 813 = 1710 mL
= 1.710 L
concentration of nitrate ion = 1.0002 / 1.710 M
= .585 M
1. What 2 subatomic particles have charges? List the particle name and its charge.
Answer: Proton - positive charge (+)
Neutron - neutral charge (0)
Electron - negative charge (-)
Explanation:
Solid diarsenic trioxide reacts with fluorine gas (F2) to produce liquid arsenic pentafluoride and oxygen gas (O2). Write the Qc for this reaction.
Answer:
QC= [O2]^3/[F2]^10
Explanation:
PLEASE HELP! WILL DO BRAINLIEST! What do scientists call all of the compounds that contain carbon and are found in living things?
organic
inorganic
acidic
nonacidic
Answer:
acidic because of electrical issues and the body of electrical equipment
How many moles of H2 are needed to produce 24 moles of NH3?
Answer:
36 mol of H2
Explanation:
The balanced equation of the reaction is given as;
3H2 + N2 --> 2NH3
From the reaction;
It takes 3 mol of H2 reacting with 1 mol of N2 to form 2 mol of NH3
3 mol of H2 = 2 mol of NH3
x mol of H2 = 24 mol of NH3
x = (24 * 3) / 2 = 36 mol of H2
If the earth was a guava fruit, the space where the seeds are would be the core/mantle