Answer:
NO= 18
Step-by-step explanation:
If we dissect the image, we can see that triangle LMN there are two similar triangles; triangle LMN and smaller triangle OPN. By definition of similar triangles, corresponding parts of similar triangles will have the same ratios. So, as we can see, sides NP and NM are corresponding. The ratio of the two sides is 24/44 (just put the smaller side over the longer side). Simplified, the ratio is 6/11. So, we know that the opposite sides' ratio will also be 6/11. So, all we have to do is multiply NL (33) by 6/11, which equals 18.
Check:
24/44=6/11, and 18/33=6/11, so the ratios are the same.
If h(x) = √6 + 5f(x), where f(2)= 6 and f'(2) = 5, find h'(2).
Using chain rule to find the derivative of h(x), the value of h'(2) is 25
What is the value of the functionThe chain rule is a rule in calculus that allows us to find the derivative of a composite function. A composite function is a function that is composed of two or more functions. For example, if we have two functions f(x) and g(x), then the composite function, denoted by h(x), would be h(x) = f(g(x)).
Using the chain rule, we can find the derivative of h(x) with respect to x as follows:
h(x) = √6 + 5f(x)
h'(x) = d/dx (√6 + 5f(x))
h'(x) = d/dx (√6) + d/dx (5f(x))
h'(x) = 0 + 5f'(x)
Now, to find h'(2), we substitute x=2 in the expression above and use the given value of f'(2):
h'(2) = 5f'(2)
h'(2) = 5(5)
h'(2) = 25
Therefore, h'(2) = 25.
Learn more on chain rule here;
https://brainly.com/question/17035616
#SPJ1
Apple has a sale for new iPhone 12
.They are selling the phones for $795
. That is a 35% mark up from their wholesale priceWhat is Apples' cost for the iPhone 12?
Cost price of iPhone12 is $588.89
To determine Apple's cost for the iPhone 12, we need to work backwards from the retail price of $795 and account for the 35% mark-up.
If we assume that the retail price includes the mark-up and the wholesale price is the original cost price of the product, we can set up an equation to solve for the cost:
Cost + 35% of Cost = Retail Price
Let's simplify the equation by converting the percentage to a decimal:
Cost + 0.35Cost = $795
Combining like terms:
1.35Cost = $795
Dividing both sides by 1.35:
Cost = $588.89
Therefore, Apple's cost for the iPhone 12 is approximately $588.89. This means that Apple makes a profit of $206.11 per phone sold.
It's important to note that this calculation is based on the assumption that the retail price includes only the 35% mark-up and not additional costs such as marketing, shipping, and other expenses that Apple incurs. Additionally, the actual wholesale cost may vary depending on a number of factors such as production volume, component prices, and supplier negotiations.
While we can estimate Apple's cost for the iPhone 12 based on the mark-up and retail price, it's important to keep in mind that the actual cost and profit margins may be more complex and variable in reality.
To know more about Cost Price here:
https://brainly.com/question/19104371
#SPJ1
The product of 4 and a number is 3 less than the number. What is the number?
Answer:
2
Step-by-step explanation:
is y= |x| + 4 a relation or function
The answer you're probably wanting is "function," since it is a function.
Technically though, it's both. A function is a relation, one where each x-value (or input) has exactly one y-value (or output). So every function is a relation, but not every relation is a function.
Which of the following best describes the equation below?
y=x/3
A. neither a relation nor a function
B. both a relation and a function
C. relation only
D. function only
Draw and shade in a separate venn diagram representing
BIA
According to the information, the Venn diagram that relates the image data would look like this (image attached).
What is a Venn diagram?A Venn diagram is a term that refers to a type of graph that is used to graph similarities, differences, and relationships between sets, ideas, categories, among others. The sales diagram is made up of interlocking circles in which the data is classified.
To draw this Venn diagram we have the following data:
U: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.A: 4, 6, 8, 10, 12.B. 9, 10, 11, 12.Since we must draw the separate Venn diagram, we must make three circles and classify the data accordingly as shown in the image.
Learn more about Venn Diagram in: https://brainly.com/question/29301560
#SPJ1
Two concentric circles have radii of 14 and 16. Find the area of the ring. Round to the nearest tenth.
The area of the ring formed by concentric circles is approximately 188.5 square units.
What is area?
An object's area is how much space it takes up in two dimensions. It is the measurement of the quantity of unit squares that completely cover the surface of a closed figure.
The ring is formed by two concentric circles.
The area of the ring can be found by subtracting the area of the smaller circle from the area of the larger circle.
The area of a circle with radius r is given by the formula A = πr².
So, the area of the larger circle with radius 16 is -
A1 = π(16)² = 256π
And the area of the smaller circle with radius 14 is -
A2 = π(14)² = 196π
Therefore, the area of the ring is -
A ring = A1 - A2
A ring = 256π - 196π
A ring = 60π
To round to the nearest tenth, we can approximate π as 3.14 -
A ring ≈ 60 × 3.14 = 188.4
Rounding to the nearest tenth, we get -
A ring ≈ 188.4 ≈ 188.5
Therefore, the area of the ring is 188.5 square units.
To learn more about area from the given link
https://brainly.com/question/25292087
#SPJ1
For the figures given in the first column, match their corresponding values of x.
answer options:
6√3
4√2
The corresponding values of x for the given figures are 1. 4√2 and 2. 6√3.
What is sine function?The ratio of a right-angled triangle's hypotenuse to its opposite side is known as the sine function in trigonometry. Use the sine function to get the unknown angle or sides of a right triangle. The sine of an angle in a right-angled triangle is the proportion between the hypotenuse and the side parallel to the angle.
The sine function defines the relationship between the opposing side and the hypotenuse.
For the first figure we can write:
sin (45) = opposite side / hypotenuse = x / 8
1/√2 = x/8
x = 8/√2 = 4√2.
For the second figure we have:
sin 60 = opposite side / hypotenuse
√3/2 = x/12
x = 12√3/2 = 6√3
Hence, the corresponding values of x for the given figures are 1. 4√2 and 2. 6√3.
Learn more about sine function here:
https://brainly.com/question/4406079
#SPJ1
During her trip kaitlyn's calls to the United States total 100 minutes.What will be the total cost for these calls explain.
The total cost of Kaitlyn's calls to the United States depends on the rate charged by her service provider, and it is important to be aware of any additional fees or charges that may apply.
The total cost of Kaitlyn's calls to the United States depends on the rate charged by her service provider. If Kaitlyn has a plan with a specific rate for international calls, her total cost can be calculated by multiplying the number of minutes by the rate. For example, if her plan charges $0.10 per minute, then 100 minutes of calls would cost $10. However, if Kaitlyn does not have a plan that includes international calls, the cost per minute may be significantly higher, and there may be additional fees or charges. Therefore, it is important to check with the service provider for specific rates and fees before making international calls. It may be beneficial for Kaitlyn to consider purchasing an international calling plan or using a calling app to minimize costs. Overall, the total cost for Kaitlyn's calls to the United States will depend on the specific rate charged by her service provider, and it is important to be aware of any additional fees or charges that may apply.
To learn more about total cost please click on below link
https://brainly.com/question/15171617
#SPJ1
The school cafeteria sells three different types of sandwiches: chicken, turkey, and roast beef.
Chicken sandwiches sell for $3, turkey sandwiches sell for $3.50, and roast beef sandwiches sell for $4. The cafeteria makes 500 sandwiches in total, and, if all sandwiches are sold, the cafeteria will take in $1730. If the cafeteria makes the same number of chicken sandwiches as it does turkey sandwiches, how many of each type of sandwich does the school make? Show your work using any method you prefer.
By using a system οf equatiοns, the schοοl makes 180 chicken sandwiches, 180 turkey sandwiches, and 140 rοast beef sandwiches.
What is a system οf equatiοns?A system οf equatiοns is a set οf twο οr mοre equatiοns that need tο be sοlved tοgether tο find the values οf the variables that satisfy all οf the equatiοns.
Let's use a system οf equatiοns tο sοlve the prοblem.
Let c be the number οf chicken sandwiches sοld, t be the number οf turkey sandwiches sοld, and r be the number οf rοast beef sandwiches sοld.
Frοm the prοblem, we knοw that:
c + t + r = 500 (the tοtal number οf sandwiches sοld is 500)
3c + 3.5t + 4r = 1730 (the tοtal revenue frοm selling all sandwiches is $1730)
We alsο knοw that the cafeteria makes the same number οf chicken sandwiches as it dοes turkey sandwiches, sο: c = t
Nοw we can substitute c fοr t in the first twο equatiοns:
c + c + r = 500
3c + 3.5c + 4r = 1730
Simplifying these equatiοns, we get:
2c + r = 500
6.5c + 4r = 1730
We can sοlve fοr r in the first equatiοn:
r = 500 - 2c
Substituting this intο the secοnd equatiοn and sοlving fοr c, we get:
6.5c + 4(500 - 2c) = 1730
6.5c + 2000 - 8c = 1730
-1.5c = -270
c = 180
Sο the cafeteria sells 180 chicken sandwiches and 180 turkey sandwiches (since c = t). We can find the number οf rοast beef sandwiches by substituting c and t intο οne οf the οriginal equatiοns:
c + t + r = 500
180 + 180 + r = 500
r = 140
Therefοre, the schοοl makes 180 chicken sandwiches, 180 turkey sandwiches, and 140 rοast beef sandwiches.
To learn more about system of equations visit:
brainly.com/question/21620502
#SPJ1
[9-A] Let f: R→→R be defined by the formula
The values οf a and b that make the functiοn f cοntinuοus at x = -2 and x = 3 are a = -2 and b = 1
Describe Functiοn?A functiοn is said tο be cοntinuοus if it has nο jumps, breaks, οr hοles in its graph. In οther wοrds, a functiοn is cοntinuοus if it can be drawn withοut lifting the pen frοm the paper. Fοrmally, a functiοn is cοntinuοus at a pοint x = c if the limit οf the functiοn as x apprοaches c frοm bοth the left and the right exists and is equal tο the value οf the functiοn at c.
Fοr example, the functiοn f(x) = x² is cοntinuοus everywhere because it is a smοοth curve with nο jumps οr breaks in its graph. On the οther hand, the functiοn g(x) = 1/x is cοntinuοus everywhere except at x = 0, where it has a vertical asymptοte and a hοle in its graph.
The cοncept οf cοntinuity is impοrtant in many areas οf mathematics, including calculus and analysis, as it allοws us tο study the behaviοr οf functiοns at specific pοints and οver intervals. It is alsο impοrtant in real-wοrld applicatiοns, such as in engineering and physics, where cοntinuοus functiοns mοdel physical phenοmena like mοtiοn, heat transfer, and fluid flοw.
Tο find the values οf a and b, we can use the cοntinuity οf the functiοn at x = -2 and x = 3. Fοr a functiοn tο be cοntinuοus at a pοint, it must exist at that pοint and its limit as x apprοaches that pοint frοm bοth sides must be equal.
At x = -2:
The left-hand limit οf f(x) as x apprοaches -2 is f(-2-) = 2(-2)² - 3 = 5.
The right-hand limit οf f(x) as x apprοaches -2 is f(-2+) = a(-2) + b.
Since the functiοn is cοntinuοus at x = -2, these limits must be equal:
f(-2-) = f(-2+) => 5 = -2a + b
At x = 3:
The left-hand limit οf f(x) as x apprοaches 3 is f(3-) = a(3) + b.
The right-hand limit οf f(x) as x apprοaches 3 is f(3+) = (6/3) - 3 = -1.
Since the functiοn is cοntinuοus at x = 3, these limits must be equal:
f(3-) = f(3+) => a(3) + b = -1
We nοw have twο equatiοns with twο unknοwns:
5 = -2a + b
a(3) + b = -1
Sοlving fοr b in terms οf a in the first equatiοn gives:
b = 2a + 5
Substituting this expressiοn fοr b intο the secοnd equatiοn gives:
a(3) + 2a + 5 = -1
3a + 5 = -1
3a = -6
a = -2
Substituting this value οf a intο the first equatiοn gives:
5 = -2(-2) + b
5 = 4 + b
b = 1
Therefοre, the values οf a and b that make the functiοn f cοntinuοus at x = -2 and x = 3 are a = -2 and b = 1.
To know mοre about equation visit:
brainly.com/question/2254063
#SPJ1
Supplementary angles have a measure of how many degrees
A)90 degrees
B)360 degrees
C)equal
D)180 degrees
Supplementary angles have a measure of 180 degrees
can someone help me? please
3. a. A solution or feasible region, is the triangular region in the graph of the inequality, with vertices (0.7, -3.35), (8, -7), (8, -25.25)
Please find attached the graph of the feasible region of the inequality, created with MS Excel
b. The feasible region in the graph of the inequality indicates that the inequality remains true for the coordinates of points within the feasible region
What is an inequality?An inequality is an unequal comparison between values or expressions using inequality symbols such as <, >, ≤, and ≥.
3. The system of inequalities are presented as follows;
4·x + 8·y ≤ -24
-12·x - 4·y < 5
a. Making y the subject of the above inequalities, we get;
4·x + 8·y ≤ -24
y ≤ (-24 - 4·x) ÷ 8 = -3 - 0.5·x
y ≤ -3 - 0.5·x...(1)
-12·x - 4·y < 5
-4·y < 5 + 12·x
y > -1.25 - 3·x...(2)
The solution point is therefore;
-3 - 0.5·x = -1.25 - 3·x
2.5·x = 1.75
x = 1.75/2.5 = 0.7
The x-value of the solution point is therefore the point x = 0.7
y > -1.25 - 3 × 0.7 = -3.35
y > -3.35
The y-value of the solution point is the point y > -3.35
The solution point is therefore the point slightly to the right of the point (0.7, -3.35)
b. The solution space is the triangular region bounded by the points, (0.7, -3.35), (8, -7), and (8, -25.25)
A possible solution obtained from the graph is therefore, the point (6, -10), plugging in the values in the inequalities, we get;
When x = 6
y ≤ -3 - 0.5·x...(1)
y ≤ -3 - 0.5 × 6 = -6
The y-value at the point x = 6 is -10 ≤ -6, which satisfies the first inequality
The second inequality, indicates that we get;
y > -1.25 - 3·x
y > -1.25 - 3 × 6 = -19.25
The y-value at the selected point x = 6 is -10 > -19.25, which satisfies the second inequality
Therefore; The inequality is true at a specified point in the solution space as indicated from the graph
Learn more on inequalities here: https://brainly.com/question/27590365
#SPJ1
This is the bone density score separating the bottom, 7% from the top 93%
This means that bone density scores below -1.88 are in the bottom 7% of scores, and scores above 1.88 are in the top 93% of scores.
What is Algebraic expression ?
Algebraic expression can be defined as combination of variables and constants.
It is relates to bone density score distribution, where the bottom 7% of scores are separated from the top 93% of scores. This could be interpreted in a few different ways, but here's one way to approach it:
If we assume that the bone density scores are normally distributed (which is a common assumption in statistics), then we can use the properties of the normal distribution to estimate the cutoff values for the bottom 7% and top 93% of scores.
The standard normal distribution has a mean of 0 and a standard deviation of 1. Using this distribution, we can look up the cutoff values for the bottom 7% and top 93% of scores using a standard normal distribution table or calculator. These cutoff values represent the bone density scores below which 7% of scores fall and above which 93% of scores fall.
For example, using a standard normal distribution table, we can find that the cutoff value for the bottom 7% of scores is approximately -1.88, and the cutoff value for the top 93% of scores is approximately 1.88.
Therefore, This means that bone density scores below -1.88 are in the bottom 7% of scores, and scores above 1.88 are in the top 93% of scores.
To learn more about Algebraic expression from given link.
brainly.com/question/953809
#SPJ1
If p varies inversely with q and p=2 when q=1 , find the equation that relates p and q.
Answer: If p varies inversely with q, it means that their product is a constant value, which we can represent as k. That is:
p*q = k
We can solve for k using the given values:
p = 2 when q = 1
2 * 1 = k
k = 2
Now we can substitute k into the equation to get the general equation that relates p and q:
p*q = 2
or
p = 2/q
Therefore, the equation that relates p and q is p = 2/q, where p and q are variables that vary inversely and 2 is the constant of proportionality.
Step-by-step explanation:
Every MAC address is made up of 6 sets of 2-digit hexadecimal numbers. Here's an example: D5-BE-E9-8D-44-9C What's the maximum number of devices that can have unique MAC addresses?
The maximum number of devices that can have unique MAC addresses is given as follows:
16^12 = 2.81 x 10^14.
What is the Fundamental Counting Theorem?The Fundamental Counting Theorem states that if there are m ways to do one thing and n ways to do another, then there are m x n ways to do both. This can be extended to more than two events, where the number of ways to do all the events is the product of the number of ways to do each individual event.
There are 16 hexadecimal digits, from 0 to 9 and then A to E, hence we have 12 digits, each with 16 possible numbers.
Then the total number of unique sequences is given as follows:
16^12 = 2.81 x 10^14.
More can be learned about the Fundamental Counting Theorem at https://brainly.com/question/15878751
#SPJ1
In a large population, 67% of the households have cable tv. A simple random sample of 64 households is to be contacted and the sample proportion computed. What is the mean and standard deviation of the sampling distribution of the sample proportions?
Answer:
The mean of the sampling distribution of the sample proportions is the same as the population proportion, which is 0.67.
The standard deviation of the sampling distribution of the sample proportions can be calculated using the formula:
σp = sqrt [p * (1 - p) / n]
where p is the population proportion (0.67), n is the sample size (64), and σp is the standard deviation of the sampling distribution of the sample proportions.
Plugging in the values, we get:
σp = sqrt [0.67 * (1 - 0.67) / 64]
= sqrt [0.2211 / 64]
= 0.061
Therefore, the standard deviation of the sampling distribution of the sample proportions is 0.061.
In a popular shopping centre, the waiting time for an ABC Bank ATM machine is found to be uniformly distributed between 1 and 5 minutes. What is the probability of waiting between 2 and 4 minutes to use the ATM?
The probability of waiting between 2 and 4 minutes to use the ATM is 0. 5 or 50 %.
How to find the probability ?For a uniform distribution, the probability density function is constant within the given interval. In this case, the interval is between 1 and 5 minutes. The length of the interval is 5 - 1 = 4 minutes.
Now, we want to find the probability of waiting between 2 and 4 minutes. The length of this subinterval is 4 - 2 = 2 minutes. To find the probability of waiting between 2 and 4 minutes, we multiply the probability density by the length of the subinterval:
Probability = probability density × (length of subinterval) = (1/4) × 2 = 1/2 = 0.5
So, the probability of waiting between 2 and 4 minutes to use the ATM is 0.5 or 50%.
Find out more on probability at https://brainly.com/question/22209943
#SPJ1
I will mark you brainiest!
A math teacher gave her class two tests. 25% of the class passed both tests and 42% of the class passed the first test. What percent of those who passed the first test also passed the second test? How would one find the answer to this model?
A) 0.25 divided by 0.67
B) 0.67 divided by 0.42
C) 0.42 divided by 0.67
D) 0.25 divided by 0.42
Answer:
D) 0.25 divided by 0.42.
Step-by-step explanation:
The answer can be found using the formula for conditional probability:
P(B|A) = P(A and B) / P(A)
Let A be the event of passing the first test and B be the event of passing the second test. We know that:
P(A and B) = 25%
P(A) = 42%
To find P(B|A), we need to divide P(A and B) by P(A):
P(B|A) = P(A and B) / P(A) = 0.25 / 0.42
So the answer is D) 0.25 divided by 0.42.
Given ∠=m angle , j m l , equals 80 and ∠=,m angle , k m l , equals 33 comma what is ∠?
The measurement for angle m ∠JMK is obtained as 47°.
What is an angle?
An angle is a figure in plane geometry that is created by two rays or lines that have a shared endpoint. The Latin word "angulus," which meaning "corner," is the source of the English term "angle." The shared terminus of two rays is known as the vertex, and the two rays are referred to as sides of an angle.
The measure of angle JML is given as = 80°.
The measure of angle KML is given as = 33°.
In the image it can be seen that on adding angles - ∠KML and ∠JMK we obtain the angle ∠JML.
This can be represented in the equation form as -
∠JML = ∠KML + ∠JMK
Substitute the values in the equation -
80° = 33° + ∠JMK
Simplify the equation given -
∠JMK = 80° - 33°
∠JMK = 47°
Therefore, the angle JMK measures 47°.
To learn more about angle from the given link
https://brainly.com/question/2046046
#SPJ1
Angles a and c are considered what type of angles
A)Supplementary
B)vertical
C)corresponding
D) adjacent
What is y = -4x + 11 , 3x + y =9
Which ordered pair in the form (x, y) is a solution of this equation?
x + 6y = 9
Answer:
there is (0,1.5) and (9,0)
Step-by-step explanation:
there is my prrof that this is the answer
Stacy’s Dress Shop received a $1,110 invoice dated July 14 with 4/10, 3/15, n/60 terms. On July 28, Stacy’s sent a $248 partial payment.
What credit should Stacy’s receive?
What is Stacy’s outstanding balance?
1. The credit which Stacy's will receive is $255.670.97.
2. Stacy's outstanding balance will be $854.33.
What credit should Stacy’s receive?A credit refers to the ability of a customer to obtain goods or services before payment based on trust that payment will be made in the future.
From July 28 - July 14, we have 14 days. We are using the 3% discount.
The Credit receivable =
= Partial payment / (1 - discount rate)
= $248 / (1-0.03)
= $248 / 0.97
= $255.670103
= $255.67
What is Stacy’s outstanding balance?An outstanding balance refers to the amount you owe on any debt that charges interest, like a credit card.
Stacy’s outstanding balance:
= $1,110 - $255.67
= $854.33.
Read more about payment
brainly.com/question/26049409
#SPJ1
The function f(x) = 223 - 6a? - 144x + 7 is increasing on the interval
(-00, A) U (B, co) and decreasing on the interval (A, B).
A =
and B =
f is concave up on (C, ∞) and concave down on (-00, C).
C =
The function f(x) = 223 - 6a? - 144x + 7 is increasing on the interval (-00, A) U (B, co)and on the interval (-00, B), the function is decreasing.
What is function?Function in mathematics is a relation or mapping between input and output values. It describes a relationship in which each input value has a single corresponding output value. Functions are an essential part of mathematics, and they are used to model real-world situations. They are also used to solve equations, graph functions, and find the area of a region.
A function is increasing if its rate of change is positive; that is, the function is always getting larger as the independent variable (in this case, x) increases. Conversely, a function is decreasing if its rate of change is negative; that is, the function is always getting smaller as the independent variable increases.
The function f(x) = 223 - 6a? - 144x + 7 is increasing on the interval (-00, A) U (B, co). This means that the rate of change of the function is positive on the specified interval. That is, as x increases within the interval, the value of the function will also increase.
The value of A is the point at which the function changes from increasing to decreasing. That is, on the interval (-00, A), the function is increasing, but on the interval (A, B), the function is decreasing. The value of A can be found by setting the first derivative of the function (the rate of change) equal to 0.
The value of B is the point at which the function changes from decreasing to increasing. That is, on the interval (B, ∞), the function is increasing, but on the interval (-00, B), the function is decreasing. The value of B can be found by setting the first derivative of the function equal to 0.
The value of C is the point at which the function changes from concave up to concave down. That is, on the interval (C, ∞), the function is concave up, but on the interval (-00, C), the function is concave down. The value of C can be found by setting the second derivative of the function equal to 0.
For more questions related to derivative,
https://brainly.com/question/23819325
#SPJ1
Approximate the mean for following GFDT.
Data Frequency
50 - 54 1
55 - 59 1
60 - 64 4
65 - 69 3
70 - 74 8
75 - 79 10
80 - 84 15
85 - 89 22
90 - 94 11
mean =
The mean for the grouped frequency data-set given in this problem is as follows:
80.8.
How to obtain the mean of a data-set?The mean of a data-set is obtained as the sum of all observations in the data-set divided by the number of observations in the data-set, which is also called the cardinality of the data-set.
The number of observations in the data-set is given as follows:
1 + 1 + 4 + 3 + 8 + 10 + 15 + 22 + 11 = 75.
We are given a frequency distribution, hence for each interval we take the midpoint, and thus the sum of the values is given as follows:
S = 1 x (52 + 57) + 4 x 62 + 3 x 67 + 8 x 72 + 10 x 77 + 15 x 82 + 22 x 87 + 11 x 92
S = 6060.
Hence the mean is given as follows:
6060/75 = 80.8.
More can be learned about the mean of a data-set at brainly.com/question/1156334
#SPJ1
i need help white this one too
The value of x and y in the equation are 1 and -4 respectively
What is Simultaneous equation?Simultaneous equations are two or more algebraic equations that share variables e.g. x and y . Example of Simultaneous equation is ;
3x + 2 = y equation 1
5x +3 = 2y equation 2
Simultaneous equations can be solved either by elimination or substitution methods.
y = -7x +3 ( equation 1)
y = -x-3 (equation 2)
subtract equation 1 from 2
-x -(-7) -3-3 = 0
-x+7 -6 = 0
x = 7-6
x = 1
substitute 1 for x in equation 1
y = -7(1) +3
y = -7+3
y = -4
therefore the value of x and y are 1 and -4 respectively
learn more about Simultaneous equation from
https://brainly.com/question/148035
#SPJ1
Simplify the given expression, and most importantly show the steps, please.
Answer:
(3 sqrt(2))/2
Step-by-step explanation:
Simplify the following:
6/sqrt(8)
Rationalize the denominator. 6/sqrt(8) = 6/sqrt(8)×(8^(1 - 1/2))/(8^(1 - 1/2)) = (6×8^(1 - 1/2))/8:
(6×8^(1 - 1/2))/8
The gcd of 6 and 8 is 2, so (6×8^(1 - 1/2))/8 = ((2×3) 2 sqrt(2))/(2×4) = 2/2×(3×2 sqrt(2))/4 = (3×2 sqrt(2))/4:
(3×2 sqrt(2))/4
2/4 = 2/(2×2) = 1/2:
Answer: (3 sqrt(2))/2
Given:-
6/√8 .To Do :-
To simplify the given expression.Solution:-
We have ;
[tex]\implies \dfrac{6}{\sqrt8} \\[/tex]
We can write 8 as 2³ . So ,
[tex]\implies \dfrac{6}{\sqrt{2^3}} \\[/tex]
[tex]\implies \dfrac{6}{2\sqrt2} \\[/tex]
[tex]\implies \dfrac{3}{\sqrt2} \\[/tex]
Rationalize the denominator by multiplying numerator and denominator by √2 .
[tex]\implies \dfrac{3\sqrt2}{\sqrt2.\sqrt2} \\[/tex]
[tex]\implies\boxed{ \dfrac{3\sqrt2}{2}} \\[/tex]
This is given required answer.
and we are done!
Suav wants to use a sheet of fiberboard 27 inches long to create a skateboard ramp with a 19 degree angle of elevation from the ground. How high will the ramp rise from the ground at its highest end? Round your answer to the nearest hundredth of an inch if necessary.
PLEASE HELPPP!
The ramp rises 8.79 inches from the lowest point on the ground to the nearest hundredth.
A right angle triangle is what?A right angle triangle has a 90 degree angle as one of its angles. Trigonometric ratios can be used to determine the sides. The length of the fiberboard becomes the hypotenuse of the right triangle that is so constructed. As a result, the ramp rises 8.79 inches from the ground at its tallest point to the closest hundredth.
The opposite side of the right triangle is the height of the ramp that is created.
Hence,
sin 19° = opposite / hypotenuse
sin 19° = h / 27
cross multiply
h = 27 × sin 19°
h = 27 × 0.32556815445
h = 8.79034017034
h = 8.79 inches.
To know more about right angle visit:-
https://brainly.com/question/27403620
#SPJ1
1.Amy invested £200 into a bank account with 10% simple interest per year. How much money will she have in her account after 2 years?
Answer:
Amy will have £240 in her account.
Step-by-step explanation:
To calculate the amount of money Amy will have in her account after 2 years, we can use the formula:
A = P(1 + rt)
Where:
A = the total amount of money in the account after 2 years
P = the principal (the initial amount of money invested)
r = the interest rate (as a decimal)
t = the time in years
In this case, Amy invested £200 at an interest rate of 10% per year for 2 years. We can plug in these values into the formula and solve for A:
A = 200(1 + 0.1 × 2)
A = 200(1.2)
A = £240
Therefore, after 2 years, Amy will have £240 in her account.