The solution:
Given:
[tex]\begin{gathered} \text{ A sphere of radius 4m.} \\ \\ A\text{ cube of side 6.45m} \end{gathered}[/tex]Required:
To compare the volume and area of bot shapes.
The Sphere:
[tex]\begin{gathered} Area=4\pi r^2=4(4)^2\pi=64\pi=201.062m^2 \\ \\ Volume=\frac{4}{3}\pi r^3=\frac{4}{3}\times\pi\times4^3=268.083m^3 \end{gathered}[/tex]The Cube:
[tex]\begin{gathered} Area=6s^2=6\times6.45^2=249.615m^2 \\ \\ Volume=s^3=6.45^3=268.336m^3 \end{gathered}[/tex]Clearly, we can see that:
Both shapes have approximately the same volume.
But the cube has a greater volume than that of the sphere.
Therefore, the correct answer is [option 4]
In an electrical circuit, the voltage across a resistor is directly proportional to the current running through the resistor. If a current of 14 amps produces 280 volts across a resistor, how many volts would a current of 5.5 amps produce across an identical resistor?
A current of 5.5 amps produce across an identical resistor will produce 110Volts across an identical resistor
What is a current?From above,
Current 1 (I₁) = 14 amps
P.d (V₁) = 280 V
By Ohm's law which states that that for a linear circuit the current flowing through it is proportional to the potential difference across it so the greater the potential difference across any two points the bigger will be the current flowing through it.
V₁ = I₁R
= 280 = 14R
= 20Ω = R
Current 2 (I₂) = 3.5 A
Resistance (R) = 20 Ω
Assuming the resistance stays the same,
Using Ohm's law,
V₂ = I₂R
= 5.5*20
= 110 Volts
110Volts would be produced across an identical resistor
Learn more about current on:https://brainly.com/question/23005284
#SPJ1
Find the radius of a circle with a circumstance of 28π
We have the next formula to find the circumference of a circle
[tex]C=2\pi r[/tex]where C is the circumference and r is the radius
In our case we have
C= 28π
we substitute the value in the formula
[tex]28\pi=2\pi r[/tex]then we isolate the r
[tex]r=\frac{28\pi}{2\pi}=14[/tex]the radius is 14.
Consider the graph shown. Which ordered pairs are on the inverse of the function? Check all that apply.
Notice that the graph of the function is a cubic polynomial. Also, the graph is moved one unit upwards, then, the function f(x) is:
[tex]f(x)=x^3+1[/tex]now, we can see from the y and x intercepts, that if we evaluate x= 0 and x = 1, we get:
[tex]\begin{gathered} f(0)=-1 \\ f(1)=0 \end{gathered}[/tex]then, applying the inverse function on both sides (we can do this since f(x) is a polynomial function and they always have inverse function), we get the following:
[tex]\begin{gathered} f^{-1}(f(0))=f^{-1}(-1) \\ \Rightarrow0=f^{-1}(-1) \end{gathered}[/tex]we can see that the first point that is on the graph of the inverse function is (-1,0). Doing the same on the second equation, we get:
[tex]\begin{gathered} f^{-1}(f(1))=f^{-1}(0) \\ \Rightarrow f^{-1}(0)=1 \end{gathered}[/tex]thus, the points that lie on the inverse function are (-1,0) and (0,1)
The dimensions of a rectangular prism are shown below length 1 1over2 width 1 foot hight 2 1over2
Solution
Given the dimensions of a rectangular prism as
length: 1.5 ft
width: 1 ft
Height: 2.5 ft
Part A.
Volume of a rectangular prism =
[tex]\begin{gathered} V_{RP}=l\times w\times h \\ \\ l\text{ is the length} \\ \\ w\text{ is the width} \\ \\ h\text{ is the height} \end{gathered}[/tex][tex]V_{RP}=1.5\times1\times2.5=3.75\text{ ft}^3[/tex]Volume of small cubes
[tex]V_{SC}=0.5^3=0.125\text{ ft}^3[/tex]Number of small cubes that can be packed in a rectangular prism is 30
[tex]N=\frac{V_{RP}}{V_{SC}}=\frac{3.75}{0.125}=30[/tex]Hence, there are 30 small cubes that can be packed in the rectangular box.
Part B.
The volume is given as
[tex]\sqrt[3]{30}=3.12[/tex]Sketch the vectors u and w with angle θ between them and sketch the resultant.|u|=45, |w|= 25, θ=30°
Step 1
Find the resultant of the vectors
[tex]undefined[/tex]Solve the inequality: -1 <= x - 3 > 7
-1 ≤x-3>7
So:
-1≤x-3
x-3>7
Solve each
-1≤x-3
Add 3 to both sides:
-1+3≤x-3+3
2≤x
x-3>7
add 3 to both sides:
x-3+3>7+3
x>10
Solution:
2≤x or >10
I apologize about the quality the shaded region is the trapezoid part not the square in the middle
First, find the area of the trapezoid.
Area of a trapezoid = 0.5 ( sum of bases ) x height
bases = 15in, 8in
height = 8in
A 1 = 0.5 (15 + 8 ) x 8 = 92 in 2
Then, subtract the area of the rectangle:
Area of a rectangle = lenght x width
L = 5
W= 3
A2 = 5 x 3 = 15 in 2
Area of the shaded region = A1 - A2 = 92 - 15 = 77 in2
Find the volume of a cube with a side length of 2.8 in, to the nearest tenth of a cubic inch (if necessary).
Given:
Length of side = 2.8 in
Let's find the volume of the cube.
To find the volume of a cube, apply the formula:
[tex]V=a^3[/tex]Where:
a is the side length = 2.8 in
Hence, to find the volume, we have:
[tex]\begin{gathered} V=2.8^3 \\ \\ V=2.8*2.8*2.8 \\ \\ V=21.952\approx22.0\text{ in}^3 \end{gathered}[/tex]Therefore, the volume of the cube is 22.0 cubic inch.
ANSWER:
22.0 in³
Make a table for the graph labeled hours studies average grade
We can easily create a table with the first column labeled "hours studied" and second column labeled "average grade".
The hours studied are:
0, 1, 2, 3, and 4
The respective average grades are:
56, 75, 85, 90, 100
The table can look like this:
Answer:
To make the table, you must correlate the average test grade with the hours spent studying.
The graph shows the idea that the more we learn, the higher will be our test grades.
The table is attached.
I need help with this please it’s revisiting proportional relationships
In order to calculate the cost of 7.5 lbs of walnuts, we can use the following rule of three, knowing that 3/4 lbs have a cost of $3.45:
[tex]\begin{gathered} \text{weight}\to\text{ cost} \\ \frac{3}{4}\text{ lbs}\to3.45 \\ 7.5\text{ lbs}\to x \end{gathered}[/tex]Now, we can write the following proportion and solve for x:
[tex]\begin{gathered} \frac{\frac{3}{4}}{7.5}=\frac{3.45}{x} \\ x\cdot\frac{3}{4}=7.5\cdot3.45 \\ x=\frac{7.5\cdot3.45\cdot4}{3} \\ x=34.5 \end{gathered}[/tex]Therefore the cost is $34.50.
decide whether circumference or area would be needed to calculate the total number of equally sized tiles on a circular floor and explain your reasoning
The total number of equally-sized tiles on a circular floor.
Here, we are covering the region or the total space occupied by all the tiles on the floor.
Hence, the area is calculated.
ok so I understand the first 2 steps of solving this but I dont entirely get it........
You have the following equation:
2x² - 12x + 16 = 0
in order to solve the previous equation, first divide by 2 both sides:
x² - 6x + 8 = 0
next, consider that the factors of the previous expression has the form:
(x - )(x - ) = 0
consider the first number inside the first factor is the result of the sum of two numbers, and the number of the second factor is the product of the same numbers. Such numbers are:
(2)·(4) = 8
2 + 4 = 6
hence, the factorized expression is:
(x - 8)(x - 2) = 0
the solutions of the equations are:
x = 8
x = 2
Interpreting the parameters of a linear function that models a real-world situation
SOLUTION
The equation relating x and y is
[tex]\begin{gathered} y=27x+600 \\ \text{Where } \\ x=\text{Total number of minutes } \\ y=\text{Total amount of water in the pond} \end{gathered}[/tex]The equation connecting x and y is an equation of the form
[tex]\begin{gathered} y=mx+c \\ \text{Where m is the slope or chnages betwe}enx\&y\text{ } \\ \end{gathered}[/tex]Since slope is also refers to as changes between two variables,
Hence
Cmparing with the equation given,
[tex]\begin{gathered} m=27 \\ \text{Slope}=27 \end{gathered}[/tex]Therefore,
The change per minute in the total amount of water in the pond is 27 litres
The starting amount ot water is when the time is at 0 minutes .
Hence, substite x=0 into the equation given and obtain the value of y which stands for the amount of water at the begining.
[tex]\begin{gathered} y=27x+600 \\ \text{put x=0} \\ y=27(0)+600 \\ y=0+600 \\ \text{Then } \\ y=600 \end{gathered}[/tex]Therefore,
The starting amount of water is 600 litres
Answer: A) 27 litres B). 600 litres
C. In which of the two functions is it possible to have negative output?
It is possible to have a negative output on:
[tex]y=a|x|[/tex]Since a can take possitive values and negative ones, and since it isn't inside the absolute value barrs.
Help I’ll give extra points!10. Camilla is saving to purchase a new pair of bowling shoes that will cost at least $39. She hasalready saved $19. What is the least amount of money she needs to save for the shoes?11. Suppose you earn $20 per hour working part time at a tax office. You want to earn at least$1,800 this month, before taxes. How many hours must you work?For problem 12, translate the phrase intoalgebraic inequality.12. A tour bus can seat 55 passengers. A minimum of 15 people must register for the tour to bookthe bus.
the least amount of money she needs to save is 20
the number of hours you must work is at least 90hours
Explanation:
10) The pair of shoes cost at least $39
at least $39 means: the cost is ≥ 39
≥ means greater than or equal to
Amount saved = $19
Let the least amount of money = x
x + 19 ≥ 39
x ≥ 39-19
x ≥ 20
This means the least amount of money she needs to save is 20
11) Let the number of hours worked = x
Amount earned per hour = $20
Amount to be earned this month is at least $1,800
This means amount to be earned this month ≥ 1800
[tex]\begin{gathered} 20\times x\text{ }\ge\text{ 1800} \\ 20x\text{ }\ge\text{ 1800} \\ \text{Divide through by 20} \\ x\text{ }\ge\text{ }\frac{1800}{20} \\ x\text{ }\ge\text{ 90} \end{gathered}[/tex]This means the number of hours you must work is at least 90hours
I need help on this please! Assignment is called “Periods and Amplitudes” not sure if that helps lol
Solution:
The sine function is generally expressed as
[tex]\begin{gathered} y=A\sin(B(x+C))+D\text{ ---- equation 1} \\ where \\ A\Rightarrow amplitude \\ C\Rightarrow phase\text{ shift} \\ D\Rightarrow vertical\text{ shift} \\ \end{gathered}[/tex]The period of the function is expressed as
[tex]period=\frac{2\pi}{B}[/tex]Given the function:
[tex]y=\sin((\frac{7\pi}{4}x))\text{ ---- equation 2}[/tex]Comparing equations 1 and 2, we see that
[tex]B=\frac{7\pi}{4}[/tex]Thus, by substituting the value of B into the period formula, we have
[tex]\begin{gathered} period=\frac{2\pi}{\frac{7\pi}{4}} \\ =2\pi\times\frac{4}{7\pi} \\ =\frac{2\times\text{4}}{7} \\ =\frac{8}{7} \end{gathered}[/tex]Hence, the period of the function is
[tex]\frac{8}{7}[/tex]you started this year with $141 saved and you continue to save $27 per month. Write an equation to model this situation (use m for months and s for savings)
The money we would have at any time can be modeled as
M = 27k + 141
Why?
you started with $141, so that is the base amount,
every month you add 27 dollars,
in one month you add 27 dollars,
in two months you 27 again making 54 dollars,
so , in x months, you have added 27x dollars to the 141 dollars,
thus our equation is
M = 27k + 141
Use the function below to find the indicated value:4x – 10,x21+12 <33
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Explain the given function
It can be seen from the function that there are three conditions which are defined below:
When x is less than 3, this states that we execute the first function for values of x less than 3
When x is between 3 and less than 7, this means that whenever x ranges from 3 to 6, we execute the second function.
When x is greater than or equals to 7, we execute the last function.
STEP 2: find f(7)
Since the value of x which is 7 is greater than or equal to 7, therefore we use the last function as seen below:
[tex]\begin{gathered} f(x)=f(7) \\ f(x)=\frac{x+1}{x-3} \\ Substitute\text{ 7 for x} \\ f(7)=\frac{7+1}{7-3}=\frac{8}{4}=2 \end{gathered}[/tex]Hence, the result is 2
A number decreased
by the sum of the number and three
Answer:
-3
Step-by-step explanation:
x - (x+3)
x - x -3
-3
What is the midpoint of the x-intercepts off(x) = (x – 4)(x + 4)?(0,0)(0,4)(–4,0)(2,0)
Given:
[tex]f(x)=(x-4)(x+4)[/tex]Required:
To find midpoint of intercepts.
Explanation:
We know that when y=0,x=4,-4
therefore x- intercept of the function are (4,0) and (-4,0)
We know that the midpoint of this intercept is at equidistance from both the graph, therefore the points from which graph is equidistance is at origin (0,0)
Required answer:
Hence the midpoint of the x- intercepts of f(x) will be at (0,0) or at the origin of the graph so option 1 is correct.
What is the height of a parallelogram with an area of 50 square meters
and a base length of 5 meters?
The height of a parallelogram with an area of 50 square meters and a base length of 5 meters is 10 meters
What is a parallelogram?The word "parallelogram" is a translation of the Greek phrase "parallelogrammon," which means "bounded by parallel lines." As a result, a quadrilateral that is bound by parallel lines is called a parallelogram. It has parallel and equal opposite sides on all sides. Square, rectangle, and rhombus are the three primary varieties of parallelograms, and each one has distinct characteristics. If a quadrilateral's opposite sides are parallel and congruent, it will be a parallelogram. So a quadrilateral with both pairs of opposite sides being parallel and equal is known as a parallelogram.
Various forms of parallelograms can be distinguished from one another based on their unique characteristics. It can be broadly classified into three distinct types:
RectangleSquareRhombusArea = 50
Base = 5
Area of ║gm = base (height)
50 = 5(X)
x = 10
To know more about parallelogram ,visit:
brainly.com/question/16287616
#SPJ13
I’m the relationship shown by the data linear, if so, model with an equation . A. The relationship is linear;
The relation is data if the difference between every 2 x is equal and the difference between every 2 y is equal
Since:
-5 - (-7) = -5 + 7 = 2
-3 - (-5) = -3 + 5 = 2
-1 - (-3) = -1 + 3 = 2
Since:
9 - 5 = 4
13 - 9 = 4
17 - 13 = 4
Then
The difference between every 2 x is constant and the difference between every 2 y constant
Then the relation is linear
Since the form of the linear equation is
[tex]y-y_1=m(x-x_{1)}[/tex]m is the rate of change of y with respect to x (the slope of the line)
(x1, y1) is a point on the line
Let us find m
[tex]\begin{gathered} m=\frac{\Delta y}{\Delta x} \\ \Delta y=4 \\ \Delta x=2 \\ m=\frac{4}{2} \\ m=2 \end{gathered}[/tex]Since x1 = -7 and y1 = 5, then
[tex]\begin{gathered} y-5=2(x--7) \\ y-5=2(x+7) \end{gathered}[/tex]Find the value of x in this equation.
|2x − 3| − 11 = 0
Answer:7
Step-by-step explanation:
Answer:
x=−4
x=7
Step-by-step explanation:
1. Combine similar terms and use the equality properties to get the variable on one side of the equals sign and the numbers on the other side. Remember to respect the order of operations.
2. Add 11 to both sides of the equation.
3. Use the absolute value definition.
4. Add 3 to both sides of the equation.
5. Divide both sides by 2.
6. The answer is: x=7
x=−4
Sorry for the bad English, love from Vanuatu!
f(x)=3x-4g(x)=-x^2+2x-5h(x)2x)^2+1j(x)=6x^2-8xk(x)=-x+7calculate (g+j)(x)
To calculate (g+j)(x) we need the function:
[tex]\begin{gathered} g(x)=-x^2+2x-5 \\ j(x)=6x^2-8x \end{gathered}[/tex]and we can made the addition so:
[tex]\begin{gathered} (g+j)(x)=g(x)+j(x) \\ (g+j)(x)=-x^2+2x-5+6x^2-8x \end{gathered}[/tex]and we can simplify
[tex](g+j)(x)=5x^2-6x-5[/tex]A store charges $140 for every 10 bags of fertilizer a farmer buys. a. Complete the table. Graph the values. 30 40 Fertilizer (bags) 10 Cost ($) 140 280 840 b. How much would a farmer pay for 50 bags of fertilizer? Explain. a. Complete the table. 30 40 Fertilizer (bags) 10 Cost ($) 140 280 840
Question:
Solution
a) If for every 10 bags the store charges $140 then
1. for 10x2 = 20 bags the store charges 2x$140 = 280.
2. for 10x3 = 30 bags the store charges 3x$140 = 420.
3. for 10x4 = 40 bags the store charges 4x$140 = 560
4. for 10x6 = 60 bags the store charges 6x$140 = 840
b) According to the previous item, we can conclude that for 10x5 = 50 bags the store charges 5x$140 = 700 then, the farmer must pay $700 for 50 bags.
c)
According to the previous item, we can conclude that for 10x5 = 50 bags the store charges 5x$140 = 700 then, the farmer must pay $700 for 50 bags.
The table gives a set of outcomes and their probabilities. Let A be the event "the outcome is divisible by 6". Find P(A). Outcome Probability 1 0.394 - 2. 0.152 3 0.001 4 0.09 5 0.112 6 0.047 7 0.053 8 0.151
Problem-Solving in Probability.
Prob( A ) = Prob( Outcome divisible by 6 ):
only outcome 6 is divisible by 6, and it has a probability of 0.047
Hence,
[tex]\text{Prob(A) =Prob(outcome 6) = 0.047}[/tex]Hence, the correct answer is 0.047
Consider the following functions.S(x) = x2 - 4x + 4 and g(x) = x - 2Step 1 of 2: Find• ()a). simplify your answer.AnswerKeybo(*)(x) =Subn
Answer:
[tex]x-2[/tex]Explanation:
Here, we want to simplfy the given expression
From what we have:
[tex](\frac{f}{g})(x)\text{ = }\frac{f(x)}{g(x)}[/tex]Substituting the values, we have it that:
[tex]\frac{x^2-4x+4}{x-2}\text{ = }\frac{(x-2)(x-2)}{x-2}\text{ =x-2}[/tex]In the country of United States of Heightlandia, the height measurements of ten-year-old children are approximately normally distributed with a mean of 57 inches, and standard deviation of 7.3 inches.What is the probability that the height of a randomly chosen child is between 49.55 and 73.35 inches? Do not round until you get your your final answer, and then round to 3 decimal places.
0.834
Explanations:The formula calculating the z-score is expressed as:
[tex]z=\frac{x-\mu}{\sigma}[/tex]Given the following parameters
• x1 = 49.55
,• x2 = 73.35
,• mean μ = 57inches
,• standard deviation σ = 7.3in
Convert the x-values to z-score
[tex]\begin{gathered} z_1=\frac{x_1-\mu}{\sigma} \\ z_1=\frac{49.55-57}{7.3} \\ z_1=-\frac{7.45}{7.3} \\ z_1=-1.02 \end{gathered}[/tex]For z2;
[tex]\begin{gathered} z_2=\frac{73.35-57}{7.3} \\ z_2=\frac{16.35}{7.3} \\ z_2=2.24 \end{gathered}[/tex]Determine the required probability
[tex]\begin{gathered} P(-1.02Hence the probability that the height of a randomly chosen child is between 49.55 and 73.35 inches is 0.834What is the vertex of the graph of the function below?y = x^2 + 10x + 24O A. (-4,-1)O B. (-5, -1)O C. (-5,0)O D. (4,0)
For any given parabola in the form
[tex]f(x)=ax^2+bx+c[/tex]The vertex is the point:
[tex]V=(-\frac{b}{2a},f(-\frac{b}{2a}))[/tex]This way,
[tex]\begin{gathered} y=f(x)=x^2+10x+24 \\ \rightarrow a=1 \\ \rightarrow b=10 \\ \rightarrow c=24 \\ \\ \rightarrow-\frac{b}{2a}=-\frac{10}{2\cdot1}=-5 \\ \\ \rightarrow f(-5)=(-5)^2+10(-5)+24=-1 \end{gathered}[/tex]Therefore, the vertex is:
[tex]V(-5,-1)[/tex]Answer: Option B
ea of the rectangle. 9 mm square millimeters х 30 mm
For this problem, we are given a rectangle and its dimensions. We need to use this information to determine the area of the rectangle.
The rectangle's area is given by the following expression:
[tex]A=(\text{width)}\cdot(\text{length)}[/tex]For this problem, we have:
[tex]A=9\cdot30=270\text{ square milimiters}[/tex]The rectangle's area is 270 square milimiters