Geometry Problem - Given: segment AB is congruent to segment AD and segment FC is perpendicular to segment BD. Conclusion: Triangle AEG is isosceles. (Reference diagram in picture)

Geometry Problem - Given: Segment AB Is Congruent To Segment AD And Segment FC Is Perpendicular To Segment

Answers

Answer 1

As the triangle AEF has 2 angles with the same measure, triangle AEF is isosceles.

Geometry Problem - Given: Segment AB Is Congruent To Segment AD And Segment FC Is Perpendicular To Segment

Related Questions

Given the points (3, -2) and (4, -1) find the slope

Answers

Slope is

[tex]\text{slope}=\frac{y2-y1}{x2-x1}[/tex]

Then:

[tex]\text{slope}=\frac{-1-(-2)}{4-3}=\frac{-1+2}{1}=\frac{1}{1}=1[/tex]

Answer: slope = 1

Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials andthe probability of obtaining a success. Round your answer to four decimal places.P(X= 15), n = 18, p = 0.8TablesKeynad

Answers

Recall that the probability of a binomial distribution is given by

[tex]P(X=x)=^^nC_r\cdot p^x\cdot(1-p)^{n-x}[/tex]

Where n is the number of trials, p is the probability of success, and x is the variable of interest.

nCr is the number of combinations.

For the given case, we have

n = 18

p = 0.8

x = 15

Let us find the probability P(X=15)

[tex]\begin{gathered} P(X=15)=^{18}C_{15}\cdot0.8^{15}\cdot(1-0.8)^{18-15} \\ P(X=15)=816\cdot0.8^{15}\cdot0.2^3 \\ P(X=15)=0.2297 \end{gathered}[/tex]

Therefore, the probability P(X=15) is 0.2297

Explain the behavior of f(x)= ln (x-a) when x=a. Give values to x and a such that x-a=0

Answers

SOLUTION:

Step 1:

In this question, we are given the following:

Explain the behavior of :

[tex]f(x)\text{ = ln\lparen x-a\rparen}[/tex]

when x=a.

Give values to x and a such that:

[tex](x-a)\text{ = 0}[/tex]

Step 2:

The graph of the function:

[tex]f(x)\text{ = In \lparen x- a \rparen}[/tex]

are as follows:

Explanation:

From the graph, we can see that the function:

[tex]f(x)\text{ = ln\lparen x-a\rparen}[/tex]

is a horizontal translation, shift to the right of its parent function,

[tex]f(x)\text{ = In x}[/tex]

The initial directions are in the pic below. I’m sending 2 pics now. And the other 2 soon. For a total of 4.

Answers

Recall that the rule of transformation of a point reflected over the y-axis is as follows:

[tex](x,y)\rightarrow(-x,y).[/tex]

Therefore, the transformed coordinates of the vertices of the triangle are:

[tex]\begin{gathered} N(4,6)\rightarrow N^{\prime}(-4,6), \\ P(1,6)\rightarrow P^{\prime}(-1,6), \\ Q(3,4)\rightarrow Q^{\prime}(-3,4)\text{.} \end{gathered}[/tex]

Therefore, the image of the triangle is the triangle with the above vertices.

Answer:

Segment AB and segment CD intersect at point E. Segment AC and segment DB are parallel.

Answers

To begin we shall sketch a diagram of the line segments as given in the question

As depicted in the diagram, line segment AC is parallel to line segment DB.

This means angle A and angle B are alternate angles. Hence, angle B equals 41 degrees. Similarly, angle C and angle D are alternate angles, which means angle C equals 56.

Therefore, in triangle EAC,

[tex]\begin{gathered} \angle A+\angle C+\angle AEC=180\text{ (angles in a triangle sum up to 180)} \\ 41+56+\angle AEC=180 \\ \angle AEC=180-41-56 \\ \angle AEC=83 \end{gathered}[/tex]

The measure of angle AEC is 83 degrees

Determine the transformations that produce the graph of the functions g (T) = 0.2 log(x+14) +10 and h (2) = 5 log(x + 14) – 10 from the parent function f () = log 1. Then compare the similarities and differences between the two functions, including the domain and range. (4 points)

Answers

[tex]\begin{gathered} f(x)=\log x \\ g(x)=0.2\log (x+14)+10 \end{gathered}[/tex]

The transformation to get g(x) from f(x) are:

translate 14 units to the left and 10 unit upwards

[tex]h(x)=5\log (x+14)-10[/tex]

the transformatio to get h(x) from f(x) are:

translate 14 units to the left and 10 units downwards

Missed this day of class and have no idea how to solve this last problem on my homework

Answers

From the given expression

a) The linear system of a matrix form is

[tex](AX=B)[/tex]

The linear system of the given matrix will be

[tex]\begin{gathered} 2x+y+z-4w=3 \\ x+2y+0z-7w=-7 \\ -x+0y+oz+w=10 \\ 0x+0y-z+3w=-9 \end{gathered}[/tex]

b) The entries in A of the matrix is

[tex]\begin{gathered} \text{For }a_{22}=2 \\ a_{32}=0 \\ a_{43}=-1 \\ a_{55}\text{ is undefined} \end{gathered}[/tex]

c) The dimensions of A, X and B are

[tex]\begin{gathered} A\mathrm{}X=B \\ \begin{bmatrix}{2} & 1 & {1} & -4 \\ {1} & {2} & {0} & {-7} \\ {-1} & {0} & {0} & {1} \\ {0} & {0} & {-1} & {3}\end{bmatrix}\begin{bmatrix}x{} & {} & {} & {} \\ {}y & {} & {} & {} \\ {}z & {} & {} & {} \\ {}w & {} & {} & {}\end{bmatrix}=\begin{bmatrix}3{} & {} & {} & {} \\ {}-7 & {} & {} & {} \\ {}10 & {} & {} & {} \\ {}-9 & {} & {} & {}\end{bmatrix} \end{gathered}[/tex]

Find the area of the triangle below.9 cm6 cm2 cm

Answers

We recall that the area of a triangle is defined by the product of the triangle's base times its height divided by 2.

So we notice that in our image, we know the height (6 cm), and we also know the base of the triangle (2 cm)

Therefore the triangles are is easily estimated via the formula:

[tex]\text{Area}=\frac{base\cdot height}{2}=\frac{2\cdot6}{2}=6\, \, cm^2[/tex]

Then the area is 6 square cm.

Identify the graph that has a vertex of (-1,1) and a leading coefficient of a=2.

Answers

To determine the vertex form of a parabola has equation:

[tex]f(x)=a(x-h)^2+k[/tex]

where V(h,k) is the vertex of the parabola and 'a' is the leading coefficient.

From the question, we have that, the vertex is (-1, 1)

and the leading coefficient is a = 2

We substitute the vertex and the leading coefficient into the vertex form to

get:

[tex]\begin{gathered} f(x)=2(x+1)^2\text{+}1 \\ f(x)=2(x+1)^2+1 \end{gathered}[/tex]

The graph of this function is shown in the attachment.

Hence the equation of parabola is

[tex]f(x)=2(x+1)^2+1[/tex]

Rewrite 25% as a fraction in simplest form.

Answers

Answer:

1/4

Step-by-step explanation:

Michael earned some Money doing odd jobs last summer and put it in a savings account that earns 13% interest compounded quarterly after 2 years there is 100.00 in the account how much did Michael earn doing odd jobs

Answers

Michael earned some Money doing odd jobs last summer and put it in a savings account that earns 13% interest compounded quarterly after 2 years there is 100.00 in the account How much did Michael earn doing odd jobs​?

____________________________________

13% interest compounded quarterly

after 2 years there is 100.00

_________________________________-

interest compounded

A = P(1 + r/n)^nt

A= Final amount

P= Principal Amount

r= interest

n= number of compounding periods (year)

t= time (year)

_____________________

Data

A= 100.00

P= Principal Amount (The question)

r= interest (0.13)

n= number of compounding periods (4)

t= time (2)

_________________

Replacing

A = P(1 + r/n)nt

P = A / ((1 + r/n)^nt)

P = 100.00/ ((1 + 0.13/4)^4*5)

P= 100.00/ (1.0325^20)

P= 52

________________

Michael earns doing odd jobs 52 dollars.

152. ) Find all real x such that square root x + 1 = x - Square root x - 1.

Answers

Given the equation:

[tex]\sqrt[]{x}+1=x-\sqrt[]{x}-1[/tex]

Solving for x:

[tex]\begin{gathered} \sqrt[]{x}+\sqrt[]{x}=x-1-1 \\ 2\sqrt[]{x}=x-2 \end{gathered}[/tex]

Now, we take the square on both sides of the equation:

[tex]\begin{gathered} 4x=x^2-4x+4 \\ 0=x^2-8x+4 \end{gathered}[/tex]

Now, using the general solution of quadratic equations:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

From the problem, we identify:

[tex]\begin{gathered} a=1 \\ b=-8 \\ c=4 \end{gathered}[/tex]

Then, the solutions are:

[tex]\begin{gathered} x=\frac{-(-8)\pm\sqrt[]{(-8)^2-4\cdot1\cdot4}}{2\cdot1}=\frac{8\pm\sqrt[]{64-16}}{2} \\ x=\frac{8\pm4\sqrt[]{3}}{2}=4\pm2\sqrt[]{3} \end{gathered}[/tex]

But the original equation √(x), so x can not be negative if we want a real equation. Then, the only real solution of the equation is:

[tex]x=4+2\sqrt[]{3}[/tex]

40. Coach Hesky bought 3 new uniforms for his basketball team. He spent a total of $486. If the same amount was spent on each uniform, how much did he spend per player? .

Answers

new uniforms = 3

Total amount spent = $486

Amount spent per player = $486 /3 = $162

A ball bounces to a height of 6.1 feet on the first bounce. Each subsequent bounce reaches a height that is 82% of the previous bounce. What is the height, in feet, of the fifth bounce? Round your answer to the thousandths place.

Answers

In the first bounce, the height is

[tex]6.1\times(0.82)^0=6.1[/tex]

In the second bounce, the height is

[tex]6.1\times(0.82)^2=5.002[/tex]

Then, we can note that the pattern is

[tex]6.1\times(0.82)^{n-1}[/tex]

where n represents the number of bounces of the ball. Then, for n=5 (fifth bounce), we get

[tex]\begin{gathered} 6.1\times(0.82)^{5-1} \\ 6.1\times(0.82)^4 \end{gathered}[/tex]

which gives

[tex]6.1\times(0.82)^4=2.7579[/tex]

Therefore, by rounding to the nearest thousandths, the answer is 2.758 feet

11. Let the supply and demand functions for sugar is given by the following equations. Supply: p = 0.4x Demand: p = 100 - 0.4x (a) Find the equilibrium demand.

Answers

SOLUTION:

Step 1:

In this question, we are given the following:

Let the supply and demand functions for sugar be given by the following equations. Bye

Supply: p = 0.4x

Demand: p = 100 - 0.4x

a) Find the equilibrium demand.

Step 2:

At Equilibrium,

[tex]\begin{gathered} \text{Supply}=\text{ Demand} \\ 0.\text{ 4 x = 100 - 0. 4 x} \end{gathered}[/tex]

collecting like terms, we have that:

[tex]\begin{gathered} 0.4\text{ x + 0. 4 x = 100} \\ 0.8\text{ x = 100} \end{gathered}[/tex]

Divide both sides by 0.8, we have that:

[tex]\begin{gathered} x\text{ = }\frac{100}{0.\text{ 8}} \\ x\text{ = 125} \end{gathered}[/tex]



Step 3:

Recall that:

[tex]\begin{gathered} \text{Equilibrium Demand : p = 100 - 0. 4 x } \\ we\text{ put x = 125, we have that:} \\ p\text{ = 100 - 0. 4 (125)} \\ p\text{ =100 -50} \\ p\text{ = 50} \end{gathered}[/tex]

CONCLUSION:

Equilibrium Demand:

[tex]p\text{ = 50 units}[/tex]

Compute P(7,4)
From probability and statistics

Answers

The resultant answer from computing P(7,4) from probability and statistics is 840.

What is probability?The area of mathematics known as probability deals with numerical representations of the likelihood that an event will occur or that a statement is true. An event's probability is a number between 0 and 1, where, roughly speaking, 0 denotes the event's impossibility and 1 denotes certainty.The probability is computed by dividing the total number of possible outcomes by the number of possible ways the event could occur.

So, P(7,4):

This is a permutation and can be calculated as:

ₙPₓ= n! / (n - x)!Here, n = 7 and x = 4

Put the values in the given formula:

P(7, 4) = 7! / (7 - 4)!P(7, 4) = 7! / 3!P(7, 4) = 840

Therefore, the resultant answer from computing P(7,4) from probability and statistics is 840.

To read more about probability:

brainly.com/question/25870256

#SPJ13

An online bookstore is having a sale. All paperback books are $6.00 with a flat shipping fee of $1.25. you purchase "b" booms and your total is "c". What is the independent variable?$6.00"c" cost"b" books$1.25

Answers

Let:

c = total

a = cost of each book

w = flat shipping fee

Therefore, the total is given by:

[tex]c=ab+w[/tex]

where:

b = number of books

[tex]c=6x+1.25[/tex]

The independent variable is:

"b" books

I need help on my practice sheet. needs to be simplified

Answers

[tex]\begin{gathered} \frac{x+6}{3x}\div\frac{x^2-36}{3x-18} \\ \frac{x+6}{3x}\times\frac{3x-18}{x^2-36} \\ \end{gathered}[/tex]

then

[tex]\begin{gathered} \frac{x+6}{3x}\times\frac{3(x-6)}{(x+6)(x-6)} \\ \frac{x+6}{3x}\times\frac{3}{x+6} \\ \frac{(x+6)\times3}{3x\times(x+6)} \\ \frac{3}{3x} \\ \frac{1}{x} \end{gathered}[/tex]

answer: 1/x

a store sells gift cards in preset amount. You can purchase gift cards for $20 or $30 . You spent $380 on gift cards. let x be the number of gift cards for $20 And let y be your gift cards for $30 . Write an equation in standards for to represent this situation
ANSWER= 20x+30y=380
but what ab this one
What are three combinations of gift cards you could have​ purchased?

Answers

The equation that represent the situation is as follows:

20x + 30y = 380

The three combination of the gift cards you can purchase is as follows:

13 and 410 and 67 and 8

How to represent equation in standard form?

The store sells gift cards. One can purchase  gift cards for $20 or $30 .

You spent $380 on gift cards. let x be the number of gift cards for $20 And let y be your gift cards for $30 .

The equation in standard form to represent the situation is as follows:

The standard form of a linear equation is A x + By = C.  A, B, and C are

constants, while x and y are variables.

Therefore,

x = number of gift cards for 20 dollars

y = number of gift card for 30 dollars

Hence,

20x + 30y = 380

The three combination one could have purchased is as follows:

20(13) + 30(4) = 38020(10) + 30(6) = 38020(7) + 30(8) = 380

learn more on equation here: https://brainly.com/question/7222455

#SPJ1

In the accompanying diagram of circle O, COA is adiameter, O is the origin, OA = 1, and mLBOA = 30. Whatare the coordinates of B?

Answers

Given:

COA is a diameter

O is the origin

OA = 1

m< BOA = 30

Re-drawing the diagram to show the coordinates of the B:

Let the coordinates of B be (x,y)

Using trigonometric ratio, we can find the length of side AB

From trigonometric ratio, we have:

[tex]tan\text{ }\theta\text{ = }\frac{opposite}{adjacent}[/tex]

Substituting we have:

[tex]\begin{gathered} tan\text{ 30 = }\frac{y}{1} \\ Cross-Multiply \\ y\text{ = tan30 }\times\text{ 1} \\ y\text{ = 0.577} \\ y\text{ }\approx\text{ 0.58} \end{gathered}[/tex]

Hence, the coordinates of B is (1, 0.58)

a sample size 115 will be drawn from a population with mean 48 and standard deviation 12. find the probability that x will be greater than 45. round the final answer to at least four decimal places
B) find the 90th percentile of x. round to at least two decimal places.

Answers

The probability that x will be greater than 45 is 0.1974.

The 90th percentile of x is 63.3786

Given,

The sample size drawn from  a population = 115

The mean of the sample size = 48

Standard deviation of the sample size = 12

a) We have to find the probability that x will be greater than 45.

Here,

Subtract 1 from p value of the z score when x = 45

Then,

z = (x - μ) / σ

z = (45 - 48) / 12 = -3/12 = -0.25

The p value of z score -0.25 is 0.8026

1 - 0.8026 = 0.1974

That is,

The probability that x will be greater than 45 is 0.1974.

b) We have to find the 90th percentile of x.

Here,

p value is 0.90

Then, z score will be equal to 1.28155

Now find x.

z = (x - μ) / σ

1.28155 = (x - 48) / 12

15.3786 = x - 48

x = 15.3786 + 48

x = 63.3786

That is,

The 90th percentile of x is 63.3786

Learn more about probability here;

https://brainly.com/question/24231438

#SPJ1

a certain number was multiplied by 3. then, this product was divided by 10.2. finally, 12.4 was subtracted from this quotient, resulting in a difference of -8.4. what was this number

Answers

A certain number was multiplied by 3. then, this product was divided by 3. Finally, 5 was subtracted from this quotient, resulting in a ...

Answer:

13.6

Step-by-step explanation:

[tex] \frac{3x}{10.2} - 12.4 = - 8.4[/tex]

[tex] \frac{3x}{10.2} = 4[/tex]

[tex]3x = 40.8[/tex]

[tex]x = 13.6[/tex]

Given the following absolute value function sketch the graph of the function and find the domain and range.

ƒ(x) = |x + 3| - 1

pls show how did u solve it

Answers

Given

Absolute value function f(x) = |x + 3| - 1

To find

Sketch the graph,Find its domain,Find its range.

Solution

In order to sketch the graph we need to find the vertex and two more points to connect with the vertex.

To do so set the inside of absolute value to zero:

x + 3 = 0x = - 3

The y-coordinate of same is:

f(-3) = 0 - 1 = - 1.

So the vertex is (- 3, - 1).

Since the coefficient of the absolute value is positive, the graph opens up, and the vertex is below the x-axis as we found above.

Find the x-intercepts by setting the function equal to zero:

|x + 3| - 1 = 0x + 3 - 1 = 0 or - x - 3 - 1 = 0x + 2 = 0 or - x - 4 = 0x = - 2 or x = - 4

We have two x-intercepts (-4, 0) and (-2, 0).

Now plot all three points and connect the vertex with both x-intercepts.

Now, from the graph we see there is no domain restrictions but the range is restricted to y-coordinate of the vertex.

It can be shown as:

Domain: x ∈ ( - ∞, + ∞),Range: y ∈ [ - 1, + ∞)

Answer:

Vertex = (-3, -1).y-intercept = (0, 2).x-intercepts = (-2, 0) and (-4, 0).Domain = (-∞, ∞).Range = [-1, ∞).

Step-by-step explanation:

Given absolute value function:

[tex]f(x)=|x+3|-1[/tex]

The parent function of the given function is:

[tex]f(x)=|x|[/tex]

Graph of the parent absolute function:

Line |y| = -x where x ≤ 0Line |y| = x where x ≥ 0Vertex at (0, 0)

Translations

[tex]f(x+a) \implies f(x) \: \textsf{translated $a$ units left}.[/tex]

[tex]f(x-a) \implies f(x) \: \textsf{translated $a$ units right}.[/tex]

[tex]f(x)+a \implies f(x) \: \textsf{translated $a$ units up}.[/tex]

[tex]f(x)-a \implies f(x) \: \textsf{translated $a$ units down}.[/tex]

Therefore, the given function is the parent function translated 3 units left and 1 unit down.

If the vertex of the parent function is (0, 0) then the vertex of the given function is:

⇒ Vertex = (0 - 3, 0 - 1) = (-3, -1)

To find the y-intercept, substitute x = 0 into the given function:

[tex]\implies \textsf{$y$-intercept}=|0+3|-1=2[/tex]

To find the x-intercepts, set the function to zero and solve for x:

[tex]\implies |x+3|-1=0[/tex]

[tex]\implies |x+3|=1[/tex]

Therefore:

[tex]\implies x+3=1 \implies x=-2[/tex]

[tex]\implies x+3=-1 \implies x=-4[/tex]

Therefore, the x-intercepts are (-2, 0) and (-4, 0).

To sketch the graph:

Plot the found vertex, y-intercept and x-intercepts.Draw a straight line from the vertex through (-2, 0) and the y-intercept.Draw a straight line from the vertex through (-4, 0).Ensure the graph is symmetrical about x = -3.

Note: When sketching a graph, be sure to label all points where the line crosses the axes.

The domain of a function is the set of all possible input values (x-values).

The domain of the given function is unrestricted and therefore (-∞, ∞).

The range of a function is the set of all possible output values (y-values).

The minimum of the function is the y-value of the vertex:  y = -1.

Therefore, the range of the given function is:  [-1, ∞).

х3,2y=x?(x, y)00(0,0)2.4(2, 4)For which value of x is the row in the table of values incorrect?3The function is the quadratic function y = -x?4366를18(3,6)(5,18 )5

Answers

Since the given equation is

[tex]y=\frac{3}{4}x^2[/tex]

If x = 0, then

[tex]y=\frac{3}{4}(0)^2=0[/tex]

Then x = 0 is correct because it gives the same value of y in the table

If x = 2

[tex]\begin{gathered} y=\frac{3}{4}(2)^2 \\ y=\frac{3}{4}(4) \\ y=3 \end{gathered}[/tex]

Since the value of y in the table is 4

Then x = 2 is incorrect

Given the triangle ABC with the points A = ( 4, 6 ) B = ( 2, 8 ) C = ( 5, 10 ) and it's dilation, triangle A'B'C', with points A' = ( 2, 3 ) B' = ( 1, 4 ) C' = ( 2.5, 5 ) what is the scale factor?

Answers

Answer:

Explanation:

Given A = (4, 6) B = (2, 8) C = (5, 10)

[tex]\begin{gathered} AB=\sqrt{(2-4)^2+(8-6)^2} \\ \\ =\sqrt{8} \\ \\ BC=\sqrt{(5-2)^2+(10-8)^2} \\ \\ =\sqrt{8} \end{gathered}[/tex]

SImilarly, for A' = (2, 3) B' = (1, 4) C' = (2.5, 5)

[tex]\begin{gathered} A^{\prime}B^{\prime}=\sqrt{(1-2)^2+(4-3)^2} \\ \\ =\sqrt{2} \\ \\ B^{\prime}C^{\prime}=\sqrt{(2.5-1)^2+(5-4)^2} \\ \\ =\sqrt{3.25} \end{gathered}[/tex]

Since it is a dilation, AB/A'B' should be the same as BC/B'C', but that is not the case here.

Find 5 number summary for data given

Answers

The 5 number summary of the data given is:

Minimum = 59

Q1 = 66.50

Median = 78

Q3 = 90

Maximum = 99

What is the 5 number summary?

A stem and leaf plot is a table that is used to display a dataset. A stem and leaf plot divides a number into a stem and a leaf. The stem is the first digit in a number while the leaf is the second digit in the number.

The minimum is the smallest number in the stem and leaf plot. This is 59. Q1 is the first quartile.

Q1 = 1/4 x (n + 1)

Where n is the total number in the dataset

1/4 x 19 = 4.75 term

(64 + 69) / 2 = 66.50

Q3 is the third quartile.

Q1 = 3/4 x (n + 1)

Where n is the total number in the dataset

3/4 x 19 = 14.25 term = 90

The median is the number that is at the center of the dataset.

Median = 1/2(n + 1)

1/2 x 19 = 8.5 term

(76 + 80) / 2  = 78

The maximum is the largest number in the dataset. This number is 99.

To learn more about median, please check: https://brainly.com/question/28060453

#SPJ1

Use the sample data and confidence level given below to complete parts (a) through (d). A drug is used to help prevent blood clots in certain patients. In clinical trials, among 4519 patients treated with the drug. 133 developed the adverse reaction of nausea Construct a 90% confidence interval for the proportion of adverse reactions. a) Find the best point estimate of the population proportion p.

Answers

We will have the following:

*First: We determine the standard deviation of the statistic, this is:

[tex]\sigma=\sqrt[]{\frac{\sum ^{133}_1(x_i-\mu)^2}{N}}[/tex]

So, we will have:

[tex]\mu=\frac{\sum^{133}_1x_i}{N}\Rightarrow\mu=\frac{8911}{133}\Rightarrow\mu=67[/tex]

Then:

[tex]\sigma=\sqrt[]{\frac{\sum^{133}_1(x_i-67)^2}{133}}\Rightarrow\sigma=\sqrt[]{\frac{196042}{133}}\Rightarrow\sigma=\sqrt[]{1474}\Rightarrow\sigma=38.39270764\ldots[/tex]

And so, we obtain the standar deviation.

*Second: We determine the margin of error:

[tex]me=cv\cdot\sigma[/tex]

Here me represents the margin of error, cv represents the critical value and this is multiplied by the standard deviation. We know that the critica value for a 90% confidence interval is of 1.645, so:

[tex]me=1.645\cdot38.39270764\ldots\Rightarrow me=63.15600407\ldots\Rightarrow me\approx63.156[/tex]

*Third: We determine the confidence interval as follows:

[tex]ci=ss\pm me[/tex]

Here ci is the confidence interval, ss is the saple statistic and me is the margin of error:

[tex]ci\approx133\pm63.156\Rightarrow ci\approx(69.844,196.256)[/tex]

And that is the confidence interval,

Sketch the graph of the polynomial function. Use synthetic division and the remainder theorem to find the zeros.

Answers

GIVEN:

We are given the following polynomial;

[tex]f(x)=x^4-2x^3-25x^2+2x+24[/tex]

Required;

We are required to sketch the graph of the function. Also, to use the synthetic division and the remainder theorem to find the zeros.

Step-by-step solution;

We shall begin by sketching a graph of the polynomial function.

From the graph of this polynomial, we can see that there are four points where the graph crosses the x-axis. These are the zeros of the function. One of the zeros is at the point;

[tex](-1,0)[/tex]

That is, where x = -1, and y = 0.

We shall take this factor and divide the polynomial by this factor.

The step by step procedure is shown below;

Now we have the coefficients of the quotient as follows;

[tex]1,-3,-22,24[/tex]

That means the quotient is;

[tex]x^3-3x^2-22x+24[/tex]

We can also divide this by (x - 1) and we'll have;

We now have the coefficients of the quotient after dividing a second time and these are;

[tex]x^2-2x-24[/tex]

The remaining two factors are the factors of the quadratic expression we just arrived at.

We can factorize this and we'll have;

[tex]\begin{gathered} x^2-2x-24 \\ \\ x^2+4x-6x-24 \\ \\ (x^2+4x)-(6x+24) \\ \\ x(x+4)-6(x+4) \\ \\ (x-6)(x+4) \end{gathered}[/tex]

The zeros of this polynomial therefore are;

[tex]\begin{gathered} f(x)=x^4-2x^3-25x^2+2x+24 \\ \\ f(x)=(x+1)(x-1)(x-6)(x+4) \\ \\ Where\text{ }f(x)=0: \\ \\ (x+1)(x-1)(x-6)(x+4)=0 \end{gathered}[/tex]

Therefore;

ANSWER:

[tex]\begin{gathered} x+1=0,\text{ }x=-1 \\ \\ x-1=0,\text{ }x=1 \\ \\ x-6=0,\text{ }x=6 \\ \\ x+4=0,\text{ }x=-4 \end{gathered}[/tex]

Simplify the square root of 25x^4

Answers

In this case, we'll have to carry out several steps to find the solution.

Step 01:

data:

[tex]\sqrt{25x^4}[/tex]

Step 02:

simplify (radical):

[tex]\sqrt{25x^4}=\sqrt{5^2x^4}=5x^2[/tex]

The answer is:

5x²

given the parent function f (x) identify whether g (x) is a reflection about a horizontal line of reflection or vertical line of reflectionf (x) = 6^x and g (x) = - (6^x)

Answers

[tex]\begin{gathered} f(x)=6^x^{} \\ g(x)=-(6^x) \end{gathered}[/tex]

The relation between this two functions is g(x) = -f(x)

This means that g(x) is a reflection of f(x) about the x-axis, that is, a reflection about a horizontal line

Other Questions
find the measures of the copleentary angles that satisfy each case angles have equal measure When you put aspirated spinach leaf disks in a beaker of sodium bicarbonate and place them in different colors of light, some disks float faster & more abundantly than others dependent on what color, if any, they were in. What made them able to float?. Why is job specialization an important feature of civilization? A. Job specialization creates social classes. B. Job specialization allows for a variety of goods and services to be produced. C. Job specialization allows the government to focus on the most urgent things first. D. Job specialization means that more people can practice religion. If P(x) = 5x and R(x) = 3x - 7, find P(x) R(x).P(x)R(x)=___ when asked, owners and managers of small hospitality businesses might say they know that their employees need training whenever they hear guests complain. the principal advantage of soliciting guest feedback as a means of training needs assessment is that: Using the information in the diagram determine the height of the tree a sales invoice included the following information: merchandise price, $5,000; freight, $900; terms 1/10, n/eom, fob shipping point. assuming that a credit for merchandise returned of $700 is granted prior to payment and that the invoice is paid within the discount period, what is the amount of cash that should be received by the seller? A ball bounces to a height of 6.1 feet on the first bounce. Each subsequent bounce reaches a height that is 82% of the previous bounce. What is the height, in feet, of the fifth bounce? Round your answer to the thousandths place. According to Harriet Robinson, what was the most surprising thing to the public about the strike?The strike was successful.A woman was speaking in public.Most members of the public supported the striking workers. Using the balanced equation:3 Ag2S + 2 Al -> Al2S3 + 6 Ag0.88 moles of Ag2S = ? grams Ag What is the meaning of life? Write a paragraph (5-7 sentences) persuading another student to begin listening to podcasts to get their news. Think about how students get their news currently and why podcasts would be a better source. What is the relationship between land-use in general and deforestation which of the following statement(s) is/are true about chemical kinetics? group of answer choices chemical kinetics shows the transfer of energy in the form of heat and/or work. chemical kinetics is the branch of physical chemistry that is concerned with the direction in which a process occurs but in itself tells nothing about its rate. a reaction rate law must match the coefficients in the balanced chemical equation reaction rate can be defined as the decrease in the concentrations of reactants with time. chemical kinetics is the study of the rates of reactions. In the accompanying diagram of circle O, COA is adiameter, O is the origin, OA = 1, and mLBOA = 30. Whatare the coordinates of B? Use the sample data and confidence level given below to complete parts (a) through (d). A drug is used to help prevent blood clots in certain patients. In clinical trials, among 4519 patients treated with the drug. 133 developed the adverse reaction of nausea Construct a 90% confidence interval for the proportion of adverse reactions. a) Find the best point estimate of the population proportion p. What is the exchange rate? Show your work. 1 US dollar = _________ euro. Which of the following are TRUE about the aftermath of the French and Indian War?France lost all territory on North American mainland.It was a war fought between the French army and the Indians on American soil.It left Britain in great debt.It was the first step on the road to the American Revolution.It left Americans more in need of British protection. Deposits are insured by the federal deposit insurance corporation up to _____________ per depositor. help me plssssssssssssss