Answer:
force on the electron is upwards
Explanation:
The magnetic force is given by the relation
F = q v x B
the bold indicates vectors, we can write the module of this expression
F = q v B sin θ
the direction of the force is given by the right hand rule.
If we have a positive charge, the flea points in the direction of velocity, in this case towards the inside of the page.
fingers extended in the direction of the magnetite field, in our case to the right and
the palm gives the direction of the force for a positive charge, for a negative charge it is in the opposite direction. The palm points downwards, so the force on the electron is upwards
His eyes are 1.83 m above the floor, and the top of his head is 0.15 m higher. Find the height above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet.
Answer:
y_lower = 0.915 m, y_superior = 1,905 m
Explanation:
In this exercise we use the law of reflection for a flat mirror.
θ’= θ
To see the feet of the person a ray of light that part of them must reach the bottom of the mirror and its reflection has to reach the eyes.
As the law of reflection the incident and reflected angles are equal, the distance from the floor to the point where the two rays (incident and reflected) touch the mirror must be symmetrical, oses from the floor
y = 1.83 / 2
y = 0.915 m
To see the head, a ray of light that comes from the tip of the head and is reflected in the mirror must reach the eyes. As the head is 0.15 m above the eyes and the incident and reflected rays have the same angle, the mirror must be at half the height, that is, the mirror is 0.075 m below the tip of the head.
In summary
* the bottom of the mirror is 0.915 m from the ground
* the top of the mirror is at 1.83 + 0.075
y_superior = 1,905 m
ground
Which element would have properties most like helium (He)?
A. Ar
B. Hg
C. H
D. O
Answer: A. Ar
Explanation: not anything else besides Ar
from
Which energy transformation is correct?
O From A to C, kinetic energy is transformed into
gravitational potential energy.
O From C to D, kinetic energy is transformed into
gravitational potential energy.
O From C to E, gravitational potential energy is
transformed into kinetic energy.
O From D to E, gravitational potential energy is
transformed into kinetic energy.
B. The energy transformation that is correct is From C to D, kinetic energy is transformed into gravitational potential energy.
What is law of conservation of energy?The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Energy transformation in the pendulum;
At point A, there's only gravitational potential energy and no kinetic energy, because the pendulum is at rest at A. At point C, it has maximum speed since all of the potential energy is transformed into kinetic energy. Therefore, at this point there is only kinetic energy and no potential energy.At point E, it is the same as at point A, but in opposite side. So, at this point there is no kinetic energy.At points B and D there are both kinetic and potential energy. At point B the kinetic energy is increasing and at point D it is decreasing.Thus, the energy transformation that is correct is From C to D, kinetic energy is transformed into gravitational potential energy.
option B is the correct answer.
Learn more about energy transformation here: https://brainly.com/question/2667612
#SPJ1
Answer:
B is Correct
Explanation:
From C to D, kinetic energy is transformed into gravitational potential energy.
You are studying a population of flowering plants for several years. When you present your research findings you make the statement that, "Increased allocation of resources to reproduction relative to growth diminished future fecundity." Which of the following graph descriptions could accurately present your data?
a) With seeds in the current year on the y-axis and seeds in the previous year on the x-axis, you would see a line that increased from left to right
b) With survivorship on the y-axis and number of seeds produced on the x-axis, you would see a line that decreased left to right.
c) With leaf area on the y-axis and number of seeds produced on the x-axis, you would see a line that increased left to right
d) With survivorship on the y-axis and number of seeds produced on the x-axis, you would see a line that increased left to right.
e) With seeds in the current year on the y-axis and seeds in the previous year on the x-axis, you would see a line that decreased from left to right
Answer:
Option A
Explanation:
The graph for this problem must depict the following ""Increased allocation of resources to reproduction relative to growth diminished future fecundity."
Hence, the survivor ship must be on the Y axis and the resources on the X axis.
Here the resources include the number of seeds produced.
hence, the higher is the number of seeds (resource), the lower is the survivorship (future fecundity)
Hence, option A is correct
The table shows the relationship between the masses of two objects, the distance between the two objects, and the gravitational force between the objects. A 4-column table with 5 rows. The first column labeled Mass of Object 1 (kilograms) has entries 1, 2, 2, 3, 9. The second column labeled Mass of Object 2 (kilograms) has entries 1, 1, 2, 3, 3. The third column labeled Distance between Objects 1 and 2 (meters) has entries 1, 1, 2, 1, 3. The fourth column labeled Gravitational Force Objects 1 and 2 (Newtons) has entries 1 G, 2 G, 1 G, 9 G, 3G. Which conclusion is supported by the data in the table? An increase in the mass of an object causes the same decrease in the gravitational force. An increase in the distance between the objects causes the same decrease in the gravitational force. An increase in the distance between the objects causes a greater change in the gravitational force than the same increase in mass. An increase in the mass causes a greater change in the gravitational force than the same increase in the distance between the objects. Brainlyest for correct answer!
Answer:
C
Explanation:
edge 2020... Using elimination it's the only one that makes sense.
The statement third "an increase in the distance between the objects causes a greater change in the gravitational force than the same increase in mass" is correct.
What is gravitational force?The gravitational force is a force that attracts all mass-bearing objects. The gravitational force is referred to as attractive because it always strives to pull masses together rather than pushing them apart.
As we know, the gravitational force is given by:
[tex]\rm F = \dfrac{Gm_1m_2}{r^2}[/tex]
Where, G is the gravitational constant.
m1 and m2 are masses.
r is the distance between the masses.
From the data given in the table, shows that:
The gravitational force is indirectly proportional to the square of the distance.
Thus, the statement third "an increase in the distance between the objects causes a greater change in the gravitational force than the same increase in mass" is correct.
Learn more about the gravitational force here:
https://brainly.com/question/12528243
#SPJ2
A spinning disc with a mass of 2.5kg and a radius of 0.80m is rotating with an angular velocity of 1.5 rad/s. A ball of clay with unknown mass is dropped onto the disk and sticks to the very edge causing the angular velocity of the disk to slow to 1.13 rad/s. What is the mass of the ball of clay
Answer:
M = 1.90 Kg
Explanation:
Given data: mass = 2.5 Kg
radius R = 0.8 m
angular velocity ω = 1.5 rad/s
Angular momentum L =0.5×Iω^2
Where, I is the moment of inertia of the spinning disc.
I = 0.5MR^2
I = 0.5×2.5×0.8^2
I = 0.8 Kg/m^2
Then L = 0.5×0.8×1.5^2 = 0.8×2.25 = 0.9 Kg-m^2/sec
Let unknown mass be M
New mass of disc = (2.5+M) Kg, R = 0.8 m
New I = 0.5(2.5+M)(0.8)^2
Since, angular momentum is conserved
Angular momentum before = angular momentum after
0.5×0.5(2.5+M)(0.8)^2×(1.13)^2 = 0.9
Solving for M we get
0.204304(2.5+M)=0.9
M = 1.90 Kg
A cylindrical space colony 8.00 km in diameter and 30.0 km long has been proposed as living quarters for future space explorers. Such a habitat would have cities, land, and lakes on the inside surface and air and clouds in the center. All this would be held in place by the rotation of the cylinder about the long axis. How fast would such a cylinder have to rotate to produce a 1-g gravitational field at the walls of the cylinder
Answer:
ω = 0.05 rad/s
Explanation:
In order to produce the acceleration equal to the acceleration due to gravity at the surface of Earth, the centripetal acceleration must be equal to the value of g:
[tex]a_c = g\\g = \frac{v^2}{r}\\\\but,\ v=r\omega\\therefore,\\\\g = \omega^2r\\\\\omega = \sqrt{\frac{g}{r}}[/tex]
where,
ω = angular speed = ?
g = acceleration due to gravity on the surface of the Earth = 9.81 m/s²
r = radius of cylinder = 8 km/2 = 4 km = 4000 m
Therefore,
[tex]\omega = \sqrt{\frac{9.81\ m/s^2}{4000\ m}}[/tex]
ω = 0.05 rad/s
What is the typical pH of acid rain?
Answer:
5.0-5.5 is the answer to your question
Suppose that an electron and a positron collide head-on. Both have kinetic energy of 1.20 MeV and rest energy of 0.511 MeV. They produce two photons, which by conservation of momentum must have equal energy and move in opposite directions. What is the energy Ephoton of one of these photons
Answer:
E = 1.711 MeV
Explanation:
From the law of the conservation of energy:
[tex]K.E_{e}+K.E_p + E_{e}+E_{p} = 2 E[/tex]
where,
[tex]K.E_e=K.Ep=[/tex] the kinetic energy of positron and electron = 1.2 MeV
[tex]E_e=E_p =[/tex] Rest energy of the electron and the positron = 0.511 MeV
E = Energy of Photon = ?
Therefore,
[tex]1.2\ MeV + 1.2\ MeV + 0.511\ MeV + 0.511\ MeV = 2E\\\\E = \frac{3.422\ MeV}{2}\\\\[/tex]
E = 1.711 MeV
Please help ASAP with questions
What are the biotic factors in this image?
Someone help thank you!!
A 10- kg ball starting from rest rolls down a 5 m tall smooth hill from one person to another person who is standing at the bottom of the hill with a big spring whose constant is 100 N/m. How far does the spring compress in order to stop the ball
Answer: 3.13 m
Explanation:
Given
mas of the ball is m=10 kg
The ball rolls down a vertical distance of 5 m
Spring constant of spring is [tex]k=100\ N/m[/tex]
Here, the potential energy of the ball converted into kinetic energy which in turn converts into elastic potential energy
[tex]\Rightarrow mgh=\frac{1}{2}kx^2\quad [\text{x=compression in the spring}]\\\\\Rightarrow 10\times 9.8\times 5=\frac{1}{2}\cdot 100\cdot x^2\\\Rightarrow x=\sqrt{9.8}\\\Rightarrow x=3.13\ m[/tex]
Thus, the spring compresses by 3.13 m.