The percentage of the large pizza they ate is 100%
To calculate the percentage of pizza they both ate we have to add and then covert the fractions to percentage.
Given from the question
Frank ate 20% of the large pizza and Joey ate 4/5 portion of the large pizza
Converting 4/5 into percentage
For converting into percentage we have to multiply 100 to the fraction
= 4/5 x 100
= 80%
Now, let us proceed by adding the collected two percentages to find out the total percentage of pizza consumed by Frank and Joey
20% + 80%
= 100%
The percentage of the large pizza they ate is 100%.
To learn more about fractions,
https://brainly.com/question/30154928
#SPJ4
help please this is due tonight and im struggling
Thus, the value of x for the given angle of cyclic quadrilateral is found as the x = 50.
Explain about the cyclic quadrilateral:When you hear the word "cyclic," think of the two round wheels on you bicycle. A quadrilateral is a figure with four sides. The result is a cyclic quadrilateral, which is defined as any four-sided shape (quadrilateral) its four vertices (corners) are located on a circle.
A cyclic quadrilateral's opposite angles add up to 180 degrees, making them supplementary to one another.
Given data:
∠T = x + 60°∠R = x + 20°Using the property of cyclic quadrilateral: sum of opposite angle are 180 degrees.
∠T + ∠R = 180
x + 60 + x + 20 = 180
2x + 80 = 180
2x = 180 - 80
2x = 100
x = 50
Thus, the value of x for the given angle of cyclic quadrilateral is found as the x = 50.
Know more about the cyclic quadrilateral:
https://brainly.com/question/27585352
#SPJ1
Triangle PQR has vertex coordinates at P(4, 0), Q(4, 3), R(5, 1). If the triangle is translated so that Q′(4, −5), determine the translation direction and number of units.
8 units down
8 units up
8 units to the right
8 units to the left
Answer:
To determine the translation direction and number of units, we need to find the vector that connects Q to Q', and then determine the magnitude and direction of that vector.
The vector that connects Q to Q' can be found by subtracting the coordinates of Q from the coordinates of Q':
Q' - Q = (4, -5) - (4, 3) = (0, -8)
This vector indicates a translation 8 units downwards, in the negative y direction. Therefore, the translation direction is downwards and the number of units is 8.
So the correct answer is: 8 units down.
Triangle PQR was translated 8 units down.
Explanation:In mathematics, particularly in the field of geometry, a translation refers to moving each point in a shape or a figure to a different position by sliding it to a certain direction for a fixed number of spaces. Each point is moved the same distance and in the same direction.
In the case of your Triangle PQR, the Q point moves from (4, 3) to the new coordinate Q'(4, -5). The x-coordinate in both points remains at 4. Hence, there's no left or right movement. But the y-coordinate changes from 3 to -5. This indicates a downward movement. The distance between 3 and -5 on the number line is 8 units. Therefore, the triangle was translated 8 units down.
Learn more about Translation in Geometry here:https://brainly.com/question/32226769
#SPJ2
In order to study the cause and effect relationship between two variables, a researcher must perform what type of study ?
A. correlational
B. descriptive
C. experimental
D. meta-analysis
of study?
Answer: C. experimental study.
Experimental studies are used to establish cause-and-effect relationships between variables by manipulating one variable (independent variable) and observing the effect on another variable (dependent variable) while controlling for other potential factors. Correlational studies examine the relationship between two variables but do not establish causality, descriptive studies describe a phenomenon without manipulating variables, and meta-analysis is a statistical method that combines the results of multiple studies to provide an overall summary.
Step-by-step explanation:
three bolts and three nuts are in a box. two parts are chosen at random. find the probability that one is a bolt and one is a nut.
The probability of picking one bolt and one nut is 1/2 or 50%.
To find the probability that one is a bolt and one is a nut, we need to use the formula for calculating the probability of two independent events happening together: P(A and B) = P(A) × P(B)
Let's first calculate the probability of picking a bolt from the box:
P(bolt) = number of bolts / total number of parts = 3/6 = 1/2
Now, let's calculate the probability of picking a nut from the box:
P(nut) = number of nuts / total number of parts = 3/6 = 1/2
Since the events are independent, the probability of picking a bolt and a nut in any order is:
P(bolt and nut) = P(bolt) × P(nut) + P(nut) × P(bolt)
P(bolt and nut) = (1/2) × (1/2) + (1/2) × (1/2)
P(bolt and nut) = 1/2
Therefore, the probability of picking one bolt and one nut is 1/2 or 50%.
Learn more about probability
https://brainly.com/question/30034780
#SPJ4
the probability that one chosen part is a bolt and the other chosen part is a nut is 1, or 100%. This makes sense because if we choose two parts at random, we must get one bolt and one nut since there are three of each in the box.
To find the probability that one chosen part is a bolt and the other chosen part is a nut, we need to use the formula for probability:
Probability = (number of desired outcomes) / (total number of outcomes)
There are two ways we could choose one bolt and one nut: we could choose a bolt first and a nut second, or we could choose a nut first and a bolt second. Each of these choices corresponds to one desired outcome.
To find the number of ways to choose a bolt first and a nut second, we multiply the number of bolts (3) by the number of nuts (3), since there are 3 possible bolts and 3 possible nuts to choose from. This gives us 3 x 3 = 9 total outcomes.
Similarly, there are 3 x 3 = 9 total outcomes if we choose a nut first and a bolt second.
Therefore, the total number of desired outcomes is 9 + 9 = 18.
The total number of possible outcomes is the number of ways we could choose two parts from the box, which is the number of ways to choose 2 items from a set of 6 items. This is given by the formula:
Total outcomes = (6 choose 2) = (6! / (2! * 4!)) = 15
Putting it all together, we have:
Probability = (number of desired outcomes) / (total number of outcomes)
Probability = 18 / 15
Probability = 1.2
However, this answer doesn't make sense because probabilities should always be between 0 and 1. So we made a mistake somewhere. The mistake is that we double-counted some outcomes. For example, if we choose a bolt first and a nut second, this is the same as choosing a nut first and a bolt second, so we shouldn't count it twice.
To correct for this, we need to subtract the number of outcomes we double-counted. There are 3 outcomes that we double-counted: choosing two bolts, choosing two nuts, and choosing the same part twice (e.g. choosing the same bolt twice). So we need to subtract 3 from the total number of desired outcomes:
Number of desired outcomes = 18 - 3 = 15
Now we can calculate the correct probability:
Probability = (number of desired outcomes) / (total number of outcomes)
Probability = 15 / 15
Probability = 1
So the probability that one chosen part is a bolt and the other chosen part is a nut is 1, or 100%. This makes sense because if we choose two parts at random, we must get one bolt and one nut since there are three of each in the box.
learn more about probability
https://brainly.com/question/30034780
#SPJ11
Question:
The current (in amps) in a simple
electrical circuit varies inversely to
the resistance measured in ohms.
The current is 24 amps when the
resistance is 20 ohms. Find the
current (in amps) when the
resistance is 12 ohms.
The current in the circuit when the resistance is 12 ohms is 40 amps.
What is fraction?
A fraction is a mathematical term that represents a part of a whole or a ratio between two quantities.
We can use the inverse proportionality formula to solve this problem, which states that:
current (in amps) x resistance (in ohms) = constant
Let's call this constant "k". We can use the information given in the problem to find k:
24 amps x 20 ohms = k
k = 480
Now we can use this constant to find the current when the resistance is 12 ohms:
current x 12 ohms = 480
current = 480 / 12
current = 40 amps
Therefore, the current in the circuit when the resistance is 12 ohms is 40 amps.
To learn more about fraction from the given link:
https://brainly.com/question/10354322
#SPJ1
Evan takes 100 milligrams of medicine. The amount of medicine in his bloodstream decreases by 0.4 milligram each minute for a number of minutes, m, after that. He writes the expression 100 - 0.4m to find the amount of medicine in his bloodstream after m minutes. Which statement about his expression is true?
The statement that is true about Evan's expression is that it represents a linear function of the amount of medicine in his bloodstream, where the initial amount is 100 milligrams and the rate of change is -0.4 milligrams per minute.
What is the equivalent expression?
Equivalent expressions are expressions that perform the same function despite their appearance. If two algebraic expressions are equivalent, they have the same value when we use the same variable value.
The expression 100 - 0.4m represents the amount of medicine in Evan's bloodstream after m minutes, where the amount of medicine decreases by 0.4 milligrams each minute.
The coefficient of the variable m (-0.4) represents the rate of change of the amount of medicine in Evan's bloodstream per minute. It tells us that for every one minute that passes, the amount of medicine in his bloodstream decreases by 0.4 milligrams.
The constant term (100) represents the initial amount of medicine in Evan's bloodstream before the medicine starts to decrease.
Therefore, the statement that is true about Evan's expression is that it represents a linear function of the amount of medicine in his bloodstream, where the initial amount is 100 milligrams and the rate of change is -0.4 milligrams per minute.
To learn more about the equivalent expression visit:
https://brainly.com/question/2972832
#SPJ1
A circle with center O and radius 5 has central angle XOY. X and Y are points on the circle. If the measure of arc XY is 90 degrees, what is the length of chord XY?
The length of chord XY is 5√2.
What is the length of the chord?
It is described as the line segment that connects any two points on the circle's circumference without going through the circle's center. As a result, the diameter is the chord of a particular circle that is the longest and goes through its center. In mathematics, determining the chord's length can be crucial at times.
Here, we have
Given: A circle with center O and radius 5 has a central angle XOY. X and Y are points on the circle. If the measure of arc XY is 90 degrees.
We have to find the length of chord XY.
∠XOY = 90°
OX = OY = 5
We draw a perpendicular from the center to chord XY bisect XY at D.
Now, since OD bisects ∠XOY
∠XOD = ∠YOD = 90°/2 = 45°
Now, in ΔXOD
sin45° = XD/OX
1/√2 = XD/5
5/√2 = XD...(1)
In ΔYOD
sin45° = YD/OY
5/√2 = YD...(2)
Adding (1) and (2), we get
XD + YD = 5/√2 + 5/√2
XY = 5√2
Hence, the length of chord XY is 5√2.
To learn more about the length of the chord from the given link
https://brainly.com/question/26094865
#SPJ1
A tram moved downward 12 meters in 4 seconds at a constant rate. What was the change in the tram's elevation each second?
Therefore , the solution of the given problem of unitary method comes out to be during the 4-second period, the tram's elevation changed by 3 metres every second.
What is an unitary method?To complete the assignment, use the iii . -and-true basic technique, the real variables, and any pertinent details gathered from basic and specialised questions. In response, customers might be given another opportunity to sample expression the products. If these changes don't take place, we will miss out on important gains in our knowledge of programmes.
Here,
By dividing the overall elevation change (12 metres) by the total time required (4 seconds),
it is possible to determine the change in the tram's elevation every second. We would then have the average rate of elevation change per second.
=> Elevation change equals 12 metres
=> Total duration: 4 seconds
=> 12 meters / 4 seconds
=> 3 meters/second
As a result, during the 4-second period, the tram's elevation changed by 3 metres every second.
To know more about unitary method visit:
https://brainly.com/question/28276953
#SPJ1
Answer every question. Pick one option for each question. Show your work.
1. Over one week, a snack booth at a fair sold 362 cans of soft drinks for $1.75 each and
221 hot dogs for $2.35 each. Which calculation will give the total sales of soft drinks and
hot dogs?
A. 362(2.35) + 221(1.75)
B. 221(2.35) + 362(2.35)
C. 221(1.75) + 362(1.75)
D. 362(1.75) + 221(2.35)
Find the exact value of sin a, given that cos a=-5/9 and a is in quadrant 3
Since cosine is negative and a is in quadrant III, we know that sine is positive. We can use the Pythagorean identity to solve for sine:
sin^2(a) + cos^2(a) = 1
sin^2(a) + (-5/9)^2 = 1
sin^2(a) = 1 - (-5/9)^2
sin^2(a) = 1 - 25/81
sin^2(a) = 56/81
Taking the square root of both sides:
sin(a) = ±sqrt(56/81)
Since a is in quadrant III, sin(a) is positive. Therefore:
sin(a) = sqrt(56/81) = (2/3)sqrt(14)
Consider a sequence whose first five terms are:-1.75, -0.5, 0.75, 2, 3.25
Which explicit function (with domain all integers n ≥ 1) could be used to define and continue this sequence?
Step-by-step explanation:
+ 1.25
every new term is the previous term + 1.25.
with starting value -1.75
f(n) = 1.25n - 1.75
cuantos números
primos son a la vez la suma y la diferencia
Answer: there is only one number
Answer:
Solo hay un número primo que se puede escribir como suma de dos números primos y también como diferencia de dos números primos.
Espero haber ayudado :D
Find the measure of the missing side.
1. 8.2
2. 9.9
3. 7.4
4. 10.9
Answer:
1
Step-by-step explanation:
First of all we use the "law of sines"
to get the measure/length we need the opposing angle of it of the side, now in this case the missing side is x
and its opposing angle is missing so using common sense, the sum of angles in the triangle is 180°
180°=70°+51°+ x
x = 180°-121°
=59°
Using law of sines:
(sides are represented by small letters/capital letters are the angles)
a/sinA= b/sinB= c/sinC
We have one given side which is "9"
so,
9/sin70= x/sin59
doing the criss-cross method,
9×sin59=sin70×x
9×sin59/sin70=x
x=8.2 (answer 1)
I hope this was helpful <3
ASAP I really need help doing a two column proof for this please.
The two column proof is written as follows
Statement Reason
MA = XR given (opposite sides of rectangle)
MK = AR given (opposite sides of rectangle)
arc MA = arc RK Equal chords have equal arcs
arc MK = arc AK Equal chords have equal arcs
Equal chords have equal arcsAn arc is a portion of the circumference of a circle, and a chord is a line segment that connects two points on the circumference.
If two chords in a circle are equal in length, then they will cut off equal arcs on the circumference. This is because the arcs that the chords cut off are subtended by the same central angle.
Learn more on circle theorem at:
https://brainly.com/question/6240879
#SPJ1
Given that £1 = $1.62
a) How much is £650 in $?
b) How much is $405 in £?
Answer:
a 1053
b 250
multiply 650 by 1.62 for part a.
for part b divide by 1.62 since pound is less than dollar
hope this helps :)
a road perpendicular to a highway leads to a farmhouse located 1 1 mile away. an automobile traveling on the highway passes through this intersection at a speed of 45mph. 45 mph . how fast is the distance between the automobile and the farmhouse increasing when the automobile is 9 9 miles past the intersection of the highway and the road? the distance between the automobile and the farmhouse is increasing at a rate of miles per hour.
The distance traveling between them is increasing at a rate of miles per hour = 45 m/h.
The distance between the automobile and the farmhouse is increasing by 45 mph, since the automobile is traveling at this speed.
When the automobile is 9 miles past the intersection of the highway and the road, the distance between the automobile and the farmhouse is increasing at a rate of 45 mph, due to the automobile traveling at this speed.
When the automobile is 9 miles past the intersection of the highway and the road, the distance between the automobile and the farmhouse is increasing at a rate.
So,
The rate at which the distance between the automobile and the farmhouse is increasing when the automobile is 9 miles past the intersection is 45 mph.
For similar question on distance traveling:
brainly.com/question/509450
#SPJ11
5. Select Yes or No to indicate whether each ordered pair is a point of intersection
between the line x - y = 6 and the circle y² - 26 = -x².
Ordered Pair
(1,-5)
(1,5)
(5,-1)
To determine if each ordered pair is a point of intersection between the line x - y = 6 and the circle y² - 26 = -x², we need to substitute the values of x and y in both equations and see if they are true for both.
Select Yes or No to indicate whether each ordered pair is a point of intersectionFor the ordered pair (1, -5):
x - y = 6 becomes 1 - (-5) = 6, which is true.
y² - 26 = -x² becomes (-5)² - 26 = -(1)², which is false.
Therefore, (1, -5) is not a point of intersection.
For the ordered pair (1, 5):
x - y = 6 becomes 1 - 5 = -4, which is false.
y² - 26 = -x² becomes (5)² - 26 = -(1)², which is true.
Therefore, (1, 5) is a point of intersection.
For the ordered pair (5, -1):
x - y = 6 becomes 5 - (-1) = 6, which is true.
y² - 26 = -x² becomes (-1)² - 26 = -(5)², which is false.
Therefore, (5, -1) is not a point of intersection.
So the answer is:
(1,-5) - No
(1,5) - Yes
(5,-1) - No
to know more about equations
brainly.com/question/29657983
#SPJ1
A company makes 110 bags. 32 of the bags have buttons but no zips. 28 of the bags have zips but no buttons. 24 of the bags have neither zips nor buttons. How many bags have zips on them?
The number of bags that have zips on them is 28.
To solve this problem, we can use the principle of inclusion-exclusion.
First, we know that the total number of bags is 110.
Next, we know that 24 of the bags have neither zips nor buttons. Therefore, the number of bags that have either zips or buttons is 110 - 24 = 86.
We also know that 32 of the bags have buttons but no zips, and 28 of the bags have zips but no buttons.
To find the number of bags that have both zips and buttons, we can subtract the number of bags that have only buttons from the total number of bags with zips, or vice versa:
Number of bags with both zips and buttons = (Number of bags with zips) + (Number of bags with buttons) - (Number of bags with either zips or buttons)
Number of bags with both zips and buttons = 28 + 32 - 86 = -26
This result is clearly nonsensical, so we can conclude that there are no bags with both zips and buttons.
Therefore, the number of bags that have zips on them is simply the number of bags with zips but no buttons, which is 28.
Learn more about principle of inclusion-exclusion here
brainly.com/question/27975057
#SPJ4
julian rolled a normal 6-sided die 12 times. his rolls were as follows: 2, 4, 3, 3, 5, 1, 2, 6, 3, 1, 3, 5, 4. what is the probability that he will roll a 3 on the next roll?
The probability that Julian will roll a 3 on the next roll is approximately 16.67%. The probability of rolling a 3 on a normal 6-sided die is independent of the previous rolls. This means that regardless of the outcomes of Julian's previous rolls, the probability remains the same.
Explanation
On a 6-sided die, there is 1 favorable outcome for rolling a 3 (the number 3 itself) out of 6 possible outcomes (1, 2, 3, 4, 5, and 6).
To find the probability, you can use the formula:
Probability = (Number of favorable outcomes) / (Total number of outcomes)
In this case:
Probability of rolling a 3 = 1 (favorable outcome) / 6 (total outcomes)
Probability of rolling a 3 = 1/6 ≈ 0.1667 or 16.67%
So, the probability that Julian will roll a 3 on the next roll is approximately 16.67%.
To learn more about probability : brainly.com/question/27292589
#SPJ11
Find the nearest 10th the cylinder is 22 inches and 12.5 inches what is the lateral surface ?
Rounding the result off to the nearest 10th, the lateral surface area of the cylinder is 822 inches².
What is surface area?Surface area is the total area of the exposed surfaces of a three-dimensional object. It is measured in square units such as square centimeters (cm2) or square meters (m2). Surface area is an important concept in mathematics, science, and engineering, as it is the total area that determines properties such as friction, heat transfer, and fluid dynamics. For example, a larger surface area can increase the rate of heat transfer and allow for more efficient cooling. Similarly, a larger surface area can increase the friction between two objects, allowing them to grip better. Surface area is also important in chemistry, as it affects the amount of gas or liquid that can be absorbed or released by a given object.
The cylinder has a radius of 11 inches and a height of 12.5 inches. To find the lateral surface area of a cylinder, the formula used is A = 2πrℎ, where r is the radius and h is the height of the cylinder. After plugging in the values, the lateral surface area of the cylinder is 821.75 inches². Rounding the result off to the nearest 10th, the lateral surface area of the cylinder is 822 inches².
To know more about surface area click-
brainly.com/question/16519513
#SPJ1
what is the maximum number of consecutive odd positive integers that can be added together before the sum exceeds ?
The maximum number of consecutive odd positive integers that can be added together before the sum exceeds 401 is 11.
Let's assume the first odd integer is x. Then, the sum of the next n consecutive odd integers would be given by:
x + (x+2) + (x+4) + ... + (x+2n-2) = nx + 2(1+2+...+n-1) = nx + n(n-1)
We want to find the largest n such that the sum is less than or equal to 401:
nx + n(n-1) ≤ 401
Since the integers are positive and odd, we can start with x=1 and then try increasing values of n until we find the largest value that satisfies the inequality:
n + n(n-1) ≤ 401
n² - n - 401 ≤ 0
Using the quadratic formula, we find that the solutions are:
n = (1 ± √(1+1604))/2
n ≈ -31.77 or n ≈ 32.77
We discard the negative solution and round down to the nearest integer, giving us n = 11. Therefore, the maximum number of consecutive odd positive integers that can be added together before the sum exceeds 401 is 11.
Learn more about sum
https://brainly.com/question/24205483
#SPJ4
Complete Question:
what is the maximum number of consecutive odd positive integers that can be added together before the sum exceeds 401?
2. when conducting a hypothesis test, the hypothesis that illustrates what we really think is going on in the population is called the hypothesis. an. analytical b. hypothetical c. null d. theoretical e. alternative
Kubin Company’s relevant range of production is 25,000 to 33,500 units. When it produces and sells 29,250 units, its average costs per unit are as follows: Average Cost per Unit Direct materials $ 8. 50 Direct labor $ 5. 50 Variable manufacturing overhead $ 3. 00 Fixed manufacturing overhead $ 6. 50 Fixed selling expense $ 5. 00 Fixed administrative expense $ 4. 00 Sales commissions $ 2. 50 Variable administrative expense $ 2. 00 Required: 1. For financial accounting purposes, what is the total amount of product costs incurred to make 29,250 units? 2. For financial accounting purposes, what is the total amount of period costs incurred to sell 29,250 units? 3. For financial accounting purposes, what is the total amount of product costs incurred to make 33,500 units? 4. For financial accounting purposes, what is the total amount of period costs incurred to sell 25,000 units? (For all requirements, do not round intermediate calculations. )
1. Total amount of product costs
2. Total amount of period costs incurred
3. Total amount of product costs
4. Total amount of period costs
For the relevant range of production of units total amount of product and period cost as per units are,
Total amount of product costs for 29,250 units is $687,375.
Total amount of period costs incurred for 29,250 units is $58,511.50
Total amount of product costs for 33,500 units is equal to $787,250.
Total amount of period costs for 25,000 units is equal to $50,011.50.
Average Cost per Unit Direct materials = $ 8. 50
Direct labor = $ 5. 50
Variable manufacturing overhead = $ 3. 00
Fixed manufacturing overhead = $ 6. 50
Fixed selling expense = $ 5. 00
Fixed administrative expense = $ 4. 00
Sales commissions = $ 2. 50
Variable administrative expense = $ 2. 00
Total unit produced = 29,250 units,
Total product costs
= (Direct materials + Direct labor + Variable manufacturing overhead + Fixed manufacturing overhead) x Number of units produced
= ($8.50 + $5.50 + $3.00 + $6.50) x 29,250
= $23.50 x 29,250
= $687,375
The total amount of product costs incurred to make 29,250 units is $687,375.
Total period costs
= Fixed selling expense + Fixed administrative expense + Sales commissions + (Variable administrative expense x Number of units sold)
= $5.00 + $4.00 + $2.50 + ($2.00 x 29,250)
= $5.00 + $4.00 + $2.50 + $58,500
= $58,511.50
The total amount of period costs incurred to sell 29,250 units is $58,511.50
For the number of units produced changed to 33,500.
Total product costs
= (Direct materials + Direct labor + Variable manufacturing overhead + Fixed manufacturing overhead) x Number of units produced
= ($8.50 + $5.50 + $3.00 + $6.50) x 33,500
= $23.50 x 33,500
= $787,250
The total amount of product costs incurred to make 33,500 units is $787,250.
The number of units sold changed to 25,000.
Total period costs
= Fixed selling expense + Fixed administrative expense + Sales commissions + (Variable administrative expense x Number of units sold)
= $5.00 + $4.00 + $2.50 + ($2.00 x 25,000)
= $5.00 + $4.00 + $2.50 + $50,000
= $50,011.50
The total amount of period costs incurred to sell 25,000 units is $50,011.50.
Therefore, the total amount of the product and period cost for different situations are,
Total amount of product costs is equal to $687,375.
Total amount of period costs incurred is equal to $58,511.50
Total amount of product costs is equal to $787,250.
Total amount of period costs is equal to $50,011.50.
learn more about cost here
brainly.com/question/17927959
#SPJ4
a bag contains 7 red balls, 9 blue balls, and 4 yellow balls. what is the minimum number of balls that must be selected to ensure that 4 balls of the same color are chosen?
The number of balls that must be selected to ensure that 4 balls of the same color are chosen is 10 balls.
To ensure that 4 balls of the same color are chosen, we must consider the worst-case scenario where we select 3 balls of each color before selecting the fourth ball. Therefore, the minimum number of balls that must be selected is:
= 3 (red balls) + 3 (blue balls) + 3 (yellow balls) + 1 (any color)
= 10 balls.
Therefore, we must select at least 10 balls to ensure that 4 balls of the same color are chosen.
To know more about balls
https://brainly.com/question/19930452
#SPJ4
I need help with this question can you help?
Answer:
The Correct answer is sinA/3.2=sin110°/4.6
Please help me !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The equivalent exponential expression for this problem is given as follows:
A. 4^15 x 5^10.
How to simplify the exponential expression?The exponential expression in the context of this problem is defined as follows:
[tex]\left(\frac{4^3}{5^{-2}}\right)^5[/tex]
To simplify the expression, we must first apply the power of power rule, which means that when one exponential expression is elevated to an exponent, we keep the base and multiply the exponents, hence:
4^(15)/5^(-10)
The negative exponent at the denominator means that the expression can be moved to the numerator with a positive exponent, hence the simplified expression is given as follows:
4^15 x 5^10.
More can be learned about exponent rules at https://brainly.com/question/11975096
#SPJ1
in a role playing game two special dice are rolled. one die has 4 faces numbered 1 through 4 and the other has 6 faces numbered 1 thorugh 6. what is the probabilty that the total shown on the two dice after they are rolled is greater than or equal to 8?
The probability that the total shown on the two dice after they are rolled is greater than or equal to 8 is 1/9.
Last Friday, AT&T closed at $41.68. AT&T pays an annual dividend of $1.98. Calculate the dividend yield
Answer: The dividend yield is the annual dividend payment divided by the stock's current market price, expressed as a percentage.
Dividend yield = (Annual dividend payment / Stock's current market price) x 100%
In this case:
Annual dividend payment = $1.98
Stock's current market price = $41.68
Dividend yield = ($1.98 / $41.68) x 100% = 4.75%
Therefore, the dividend yield for AT&T is 4.75%.
Step-by-step explanation:
The answers are in the picture. I need help ASAP!
The perimeter and the area of the regular polygon are 20 inches and 27.53 square inches.
How to calculate the area and the perimeter of a regular polygon
The figure representing a regular polygon with five sides of same length, whose perimeter and area is well described by following formulas:
Perimeter
p = n · l
Area
A = (n · l · a) / 2
Where:
A - Area of the polygon, in square inches. n - Number of sides.l - Side length, in inches. a - Apothema, in inches. p - Perimeter, in inches.Where the apothema is:
a = 0.5 · l / tan (180° / n)
If we know that l = 4 in and n = 5, then the perimeter and the area of the polygon are:
Perimeter
p = 5 · (4 in)
p = 20 in
Area
a = 0.5 · (4 in) / tan (180° / 5)
a = 0.5 · (4 in) / tan 36°
a = 2.753 in
A = [5 · (4 in) · (2.753 in)] / 2
A = 27.53 in²
To learn more on area of regular polygons: https://brainly.com/question/12291395
#SPJ1
PLEASE HELP ME
I’LL GIVE YOU BRAINLIEST
The profit function of the company is given by P(x)=-4x^3 + 32x^2 - 64, where x is the number of toys sold in hundreds, and P(x) is the profit in thousands of dollars.
How to explain the graphThe key features of the graph of the profit function are the following:
The degree of the polynomial function is 3, which means that the graph is a cubic curve.
The coefficient of the leading term is negative (-4), which means that the graph opens downwards.
The coefficient of the quadratic term is positive (32), which means that the graph is concave up.
The y-intercept of the graph is -64, which means that the company will incur a loss of $64,000 if it does not sell any toys.
It should be noted that to find the maximum profit, we need to evaluate the profit function at x = 5.33:
P(5.33) = -4(5.33)^3 + 32(5.33)^2 - 64 = 23.78
Therefore, the maximum profit that the company can make is $23,780.
In summary, the graph of the profit function reveals that the company will incur a loss if it does not sell any toys, but it can make a profit if it sells at least some toys. The profit function has a cubic shape that opens downwards, indicating that the profit decreases as the number of toys sold increases beyond a certain point. The maximum profit occurs at x = 5.33, where the profit is $23,780.
Learn more about graph on;
https://brainly.com/question/19040584
#SPJ1