find the volume and total surface area of a right circular cone whose base diameter is 10 cm and whose altitude is 20 cm.

Answers

Answer 1

SOLUTION

Given the question in the question tab, the following are the solution steps to calculate the required measurements.

Step 1: write the given parameters

[tex]\begin{gathered} \text{diameter}=10\operatorname{cm},\text{altitude}=\text{height}=20\operatorname{cm} \\ r=\frac{d}{2}=\frac{10}{2}=5\operatorname{cm} \end{gathered}[/tex]

Step 2: Calculate the volume of the right circular cone

[tex]\begin{gathered} V=\frac{\pi r^2h}{3} \\ V=\frac{\pi\times5\times5\times20}{3} \\ V=\frac{500\pi}{3}=523.5987756 \\ V\approx523.5988\operatorname{cm}^3 \end{gathered}[/tex]

Step 3: Calculate the total surface area of the right circular cone

[tex]\begin{gathered} \text{TSA}=\pi r(r+\sqrt[]{h^2+r^2)} \\ \text{TSA}=\pi(5)(5+\sqrt[]{20^2+5^2)} \\ \text{TSA}=5\pi(5+\sqrt[]{400+25)} \\ \text{TSA}=5\pi(5+\sqrt[]{425})=5\pi(5+20.61552813) \\ \text{TSA}=5\pi(25.615528134) \\ \text{TSA}=402.3677749 \\ \text{TSA}\approx402.3678cm^2 \end{gathered}[/tex]

Hence, the volume and the total surface area of the given right circular cone are approximately 523.5988cm³ and 402.3678cm² respectively


Related Questions

Y = X - 8. y = -x +6* Parallel Perpendicular Neither

Answers

The equation of a line given in slope-intercept form is written as

[tex]\begin{gathered} y=mx+b \\ \text{Where m is the slope. This means the coeeficient of x is the slope} \end{gathered}[/tex]

For two lines to be parallel, their slopes must equal to each other. Also for the two lines to be perpendicular, their slopes must be a negative inverse of each other. An example of negative inverse is given as;

[tex]\begin{gathered} -\frac{1}{4}\text{ is a negative inverse of 4} \\ \text{Likewise, -4 is a negative inverse of }\frac{1}{4}\text{ } \end{gathered}[/tex]

The slope of the first line is 1, since the line is given as,

y = x - 8

(The coefficient of x is 1)

The slope of the second line is -1, since the line is given as,

y = -x + 8

(The coefficient of x is -1)

Therefore, since both slopes are not equal and not negative inverses of each other, then the correct answer is NEITHER.

Find the distance between the two points. Write your answer as a decimal rounded to the hundredths place if needed.

Answers

We need to find the distance between the two points given. Use the distance formula:

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Replace using P1(3,-9) and P2(-2,4):

[tex]d=\sqrt[]{((-2)_{}-3_{})^2+(4_{}-(-9)_{})^2}[/tex]

[tex]d=\sqrt[]{(-5)^2+(13)^2}[/tex][tex]d=13.9283[/tex]

Rounded to the hundredths:

[tex]d=13.93[/tex]

If z = 30, use the following proportions to find the value of x. x : y = 3:9 and y : z = 6 : 20.

Answers

We are given the following proportions:

[tex]\begin{gathered} x:y=3:9 \\ y:z=6:20 \end{gathered}[/tex]

The second proportion is equivalent to:

[tex]\frac{y}{z}=\frac{6}{20}[/tex]

Now, we substitute the value of "z":

[tex]\frac{y}{30}=\frac{6}{20}[/tex]

Now, we multiply both sides by 30:

[tex]y=30\times\frac{6}{20}[/tex]

Solving the operation we get:

[tex]y=9[/tex]

Now, since we have the value of "y" we can use the first proportion to get the value of "x":

[tex]x_:y=3:9[/tex]

This is equivalent to:

[tex]\frac{x}{y}=\frac{3}{9}[/tex]

Now, we substitute the value of "y":

[tex]\frac{x}{9}=\frac{3}{9}[/tex]

Now, we multiply both sides by 9:

[tex]x=9\times\frac{3}{9}[/tex]

Solving the operations:

[tex]x=3[/tex]

Therefore, the value of "x" is 3.

In the triangle below, suppose that mZH= (6x-4)°, mZ1 = (2x-5)°, and m Find the degree measure of each angle in the triangle.
(2x - 5) ⁰
H (6x-4)
x
mZH =
m 41 =
mZJ =
1
X

Answers

Answer: H = 122, I = 37, J = 21

Step-by-step explanation:

All the angles of a triangle add up to 180 degrees.

(6x - 4) + (2x - 5) + x = 180

Combine like terms

9x - 9 = 180

Solve for x

9x = 189

x = 21

m<H = (6*21 - 4) = 122

m<I = (2*21-5) = 37

m<J = 21

Rafael is buying ice cream for a family reunion. The table shows the prices for different sizes of two brands of ice cream.

Answers

the correct answer is that the small size of the brand Cone dreams, because the price of each pint in it will be $2.125 =4.25/2, and if we calculate the price per pint with the other options it would be the minimum of all of them.

the value of square root (8/64)³

Answers

The expression is

[tex]\begin{gathered} (\sqrt[]{\frac{8}{64}})^3 \\ By\text{ simplifying, we have} \\ (\sqrt[]{\frac{1}{8}})^3 \\ =\text{ (}\frac{1}{8})^{\frac{3}{2}} \\ 0.0442 \end{gathered}[/tex]

-1.5(x - 2) = 6. What is X equaled to

Answers

[tex]\begin{gathered} -1.5(x-2)=6 \\ (x-2)=\frac{6}{-1.5} \\ x-2=-4 \\ x=-4+2 \\ x=-2 \\ \\ \text{ x is equal to -2} \end{gathered}[/tex]

Answer:

x-2=6÷(-1.5)

x-2=-4

x=-4-2

x=-6

hi help I've been trying to solve this for an hour and I just really need the correct answer please help

Answers

First we can se the points that each line passes, and those are:

(-1, 5) & (0, 2)

(-5, -2) & (0, -4)

From this, we calculate each function, that is:

*Line 1:

[tex]m_1=\frac{2-5}{0-(-1)}\Rightarrow m_1=-3[/tex]

And we calculate the first function:

[tex]y-2=-3(x-0)\Rightarrow y=-3x+2[/tex]

*Line 2:

[tex]m_2=\frac{-4-(-2)}{0-(-5)}\Rightarrow m_2=-\frac{2}{5}[/tex]

And we calculate the second function:

[tex]y+4=-\frac{2}{5}(x-0)\Rightarrow y=-\frac{2}{5}x-4[/tex]

So the system is:

There are two boxes containing only red and purple pens.Box A has 12 purple pens and 3 red pens.Box B has 14 purple pens and 6 red pens.A pen is randomly chosen from each box.List these events from least likely to most likely.Event 1: choosing a purple or red pen from Box A.Event 2: choosing a green pen from Box B.Event 3: choosing a purple pen from Box B.Event 4: choosing a purple pen from Box A.Least likelyMost likelyEventEventEventEvent

Answers

Event 1: choosing a purple or red pen from Box A

All pens are purple or red so the probability is:

[tex]P=\frac{12+3}{15}=\frac{15}{15}=1[/tex]

Event 2: choosing a green pen from Box B

We don't have green pens, so the probability is 0.

Event 3: choosing a purple pen from Box B

We have 14 purple pens and 20 total pens, so:

[tex]P=\frac{14}{20}=\frac{7}{10}=0.7[/tex]

Event 4: choosing a purple pen from Box A

We have 12 purple pens and 15 total pens, therefore:

[tex]P=\frac{12}{15}=\frac{4}{5}=0.8[/tex]

Listing from least likely to most likely, we have:

event 2 < event 3 < event 4 < event 1

Answer:

Event 2, Event 3, Event 4, Event 1

Identify the domain and range of the relation. Is the relation a function? Why or why not?
{(-3, 1), (0, 2), (1, 5), (2, 4), (2, 1)}

Answers

Domain={-3, 0, 1, 2}, Range={1,2,5,4} and the relation is not a function.

What is a function?

A relation is a function if it has only one y-value for each x-value.

The given relation is {(-3, 1), (0, 2), (1, 5), (2, 4), (2, 1)}

The domain is the set of all the first numbers of the ordered pairs.

In other words, the domain is all of the x-values.

Domain={-3, 0, 1, 2}

The Range is the set of all the second numbers of the ordered pairs.

In other words, the range is all of the y-values.

Range={1,2,5,4}

The given relation is not a function because there are two values of y  for one value of x. It means 4 and 1 are values of 2.

Hence Domain={-3, 0, 1, 2}, Range={1,2,5,4} and the relation is not a function.

To learn more on Functions click:

https://brainly.com/question/21145944

#SPJ1

What is a solution of a system of linear equations in three variables?

Answers

Hello!

When we have a system with the same number of variables and equations, we can obtain the value for all variables.

Knowing it, the right alternative will be:

Alternative B.

Write the first 4 terms of the sequence defined by the given rule. f(1)=7 f(n)=-4xf(n-1)-50

Answers

The first 4 terms of the sequence defined by the rule f(n) = -4 x f(n - 1) - 50 are 7,

Sequence:

A sequence is an enumerated collection of objects in which repetitions are allowed and order matters.

Given,

The rule of the sequence is  f(n) = -4 x f(n - 1) - 50

Value of the first term = f(1) = 7

Now we need to find the other 4 others in the sequence.

To find the value of the sequence we have to apply the value of n.

Here we have to take the value of n as 1, 2, 3, and 4.

We already know that the value of f(1) is 7.

So, now we need to find the value of f(2), that is calculated by apply the value on the given rule,

f(2) = -4 x f(2 - 1) - 50

f(2) = -4 x f(1) - 50

f(2) = -4 x 7 - 50

f(2) = -28 - 50

f(2) = -78

Similarly, the value of n as 3, then the value of f(3) is,

f(3) = -4 x f(3 - 1) - 50

f(3) = -4 x f(2) - 50

f(3) = -4 x - 78 - 50

f(3) = 312 - 50

f(3) =  262

Finally, when we take the value of n as 4 then the value of f(4) is,

f(4) = -4 x f(4 - 1) - 50

f(4) = -4 x f(3) - 50

f(4) = -4 x 262 - 50

f(4) = -1048 - 50

f(4) =  -1099

Therefore, the first 4 sequence are 7, - 78, 262 and -1099.

To know more about Sequence here.

https://brainly.com/question/21961097

#SPJ1

Which of the following ordered pairs is a solution to the equation 2x+y=2? Select all that apply.(11,0)(−4,10)(−13,4)(−11,−1)(0,2)

Answers

You have the following equation:

2x + y = 2

In order to determine which of the given pairs is a solution, replace the values of x and y of such pairs and verify the equation, as follow:

(11,0)

2(11) + 0 = 22 ≠ 2 it's not a solution

(-4,10)

2(-4) + 10 = -8 + 10 = 2 it's a solution

(-13,4)

2(-13) + 4 = -26 + 4 ≠ 2 it's not a solution

(-11,-1)

2(-11) + (-1) = -22 - 1 ≠ 2 it's not a solution

(0,2)

2(0) + 2 = 2 it's a solution

follow me and get brainist and 100 points​

Answers

Answer:

followed

Step-by-step explanation:

now gimmie

38. A right rectangular prism has a volume of 5 cubic meters. The length ofthe rectangular prism is 8 meters, and the width of the rectangular prismis a meter.What is the height, in meters, of the prism?Niu4© 30 10

Answers

It's important to know that the volume formula for a rectangular prism is

[tex]V=l\cdot w\cdot h[/tex]

Where V = 5, l = 8, and w = 1. Let's use these values and find h

[tex]\begin{gathered} 5m^3=8m\cdot1m\cdot h \\ h=\frac{5m^3}{8m^2} \\ h=0.625m \end{gathered}[/tex]Hence, the height of the prism is 0.625 meters.

In statistics, how do I find the p-value? I understand how to get the z-value. Please help! I am so confused. Thank you in advance!

Answers

SOLUTION:

Step 1:

In this question, we are meant to discuss the p-value.

1. The p-value is calculated using the sampling distribution of the test statistic under the null hypothesis, the sample data, and the type of test being done (lower-tailed test, upper-tailed test, or two-sided test).

2.

3. What is the p-value in statistics?

The p-value is a number, calculated from a statistical test, that describes how likely you are to have found a particular set of observations if the null hypothesis were true. P-values are used in hypothesis testing to help decide whether to reject the null hypothesis.

4. How do I know when the test is left-tailed, right-tailed, or two-tailed?

Left-tailed test: The critical region is in the extreme left region (tail) under the curve.

Right-tailed test: The critical region is in the extreme right region (tail) under the curve.

5. How do you know when to use a one - tailed or two - tailed test?

This is because a two-tailed test uses both the positive and negative tails of the distribution.

In other words, it tests for the possibility of positive or negative differences. A one-tailed test is appropriate if you only want to determine if there is a difference between groups in a specific direction.

6. The formulae that involves z-score:

7. The formulae that involves p -value and standard deviation:

Consider the angle shown below that has a radian measure of 2.9. A circle with a radius of 2.6 cm is centered at the angle's vertex, and the terminal point is shown.What is the terminal point's distance to the right of the center of the circle measured in radius lengths? ______radii   What is the terminal point's distance to the right of the center of the circle measured in cm?_______ cm   What is the terminal point's distance above the center of the circle measured in radius lengths?_____ radii   What is the terminal point's distance above the center of the circle measured in cm? _____cm   

Answers

Remember that we can use some trigonometric identities to find relations between distances in a circle when the central angle is provided:

If we measure each distance in radius lengths, it is equivalent to take r=1 on those formulas.

A)

The terminal point's distance to the right of the center of the circle, measured in radius lengths, would be:

[tex]\cos (2.9\text{rad})=-0.9709581651\ldots[/tex]

This distance is signed since it indicates an orientation, but we can ignore the sign if we are only interested on the value of the distance.

Then, such distance would be approximately 0.97 radii,

B)

Multiply the distance measured in radius lengths by the length of the radius to find the distance measured in cm:

[tex]0.97\times2.6cm=2.52\operatorname{cm}[/tex]

C)

The terminal point's distance above the center of the circle can be calculated using the sine function:

[tex]\sin (2.9\text{rad})=0.2392493292\ldots[/tex]

Therefore, such distance is approximately 0.24 radii.

D)

Multiply the distance measured in radius length times the length of the radius to find the distance measured in cm:

[tex]0.24\times2.6\operatorname{cm}=0.62\operatorname{cm}[/tex]

Simplify the following expression.2(0.5x - 3)2-[?]x2 – [ ]x + [ ]-

Answers

1st blank = 0.25

2nd blank = 3

3rd blank = 9

Explanation:[tex]\begin{gathered} \text{Given: (0.5x - 3)}^2 \\ \\ To\text{ simplify the expression we expand} \end{gathered}[/tex]

Using distributive property:

[tex]\begin{gathered} (0.5x-3)^2\text{ = (0.5x - 3)(0.5x - 3)} \\ =\text{ 0.5x (0.5x - 3) - 3(0.5x - 3)} \\ =\text{ 0.5x(0.5x) -3(0.5x) -3(0.5x) - 3(-3)} \end{gathered}[/tex][tex]\begin{gathered} =0.25x^2\text{ - 1.5x - }1.5x\text{ + 9} \\ =0.25x^2\text{ - 3.0}x\text{ + 9} \\ =0.25x^2\text{ - 3x + 9} \\ \\ \text{first balnk = 0.25} \\ \text{second blank =3} \\ \text{third blank = 9} \end{gathered}[/tex]

The Max or Min can be found by using the line of symmetry. That line of symmetry can be found by finding the midpoint of the two x-intercepts.Since the line of symmetry is x =-1 Write the function rule to find the coordinate to the minimum of this parabola.[tex]f (x) = (x - 2)(x + 4)[/tex]your answer should be in the form (_,_)

Answers

We know that, for a parabola, the minimum, or the maximum, is given by the vertex of the parabola. The formula for the vertex of the parabola is given by:

[tex]x_v=-\frac{b}{2a},y_v=c-\frac{b^2}{4a}[/tex]

And we have the coordinates for x and y for the vertex.

We can see that the line of symmetry is x = -1, and this is the same value for the value of the vertex for x-coordinate, that is, the x-coordinate is equal to x = -1.

With this value for x, we can find the y-coordinate using the given equation of the parabola:

[tex]f(x)=(x-2)\cdot(x+4)\Rightarrow f(-1)=(-1-2)\cdot(-1+4)\Rightarrow f(-1)=(-3)\cdot(3)[/tex]

We can also expand these two factors, and we will get the same result:

[tex]f(x)=(x-2)\cdot(x+4)=x^2+2x-8=(-1)^2+2\cdot(-1)-8=1-2-8=-1-8=-9[/tex]

Therefore, the value for the y-coordinate (the value for the y-coordinate of the parabola, which is, at the same time, the minimum point for y of the parabola) is:

[tex]f(-1)=(-3)\cdot(3)\Rightarrow f(-1)=-9[/tex]

The minimum point of the parabola is (-1, -9) (answer), and we used the given function (rule) to find the value of the y-coordinate.

We can check these two values using the formula for the vertex of the parabola as follows:

[tex]f(x)=(x-2)\cdot(x+4)=x^2+2x-8[/tex]

Then, a = 1 (it is positive so the parabola has a minimum), b = 2, and c = -8.

Hence, we have (for the value of the x-coordinate, which is, at the same time, the value for the axis of symmetry in this case):

[tex]x_v=-\frac{2}{2\cdot1}\Rightarrow x_v=-1[/tex]

And for the value of the y-coordinate, we have:

[tex]y_v=c-\frac{b^2}{4a}\Rightarrow y_v=-8-\frac{2^2}{4\cdot1}=-8-\frac{4}{4}=-8-1\Rightarrow y_v=-9[/tex]

The composition of rigid motions T (-20,-6) •T (19,23 describes the route of a limousine in a city from its starting position. Describe the route in words. Assume that the positive y-axis points north. First the limousine drives (Type whole numbers.) block(s) east and block(s) north, and then it drives block(s) east and block(s) south.

Answers

You have the following rigid motion:

[tex]T_{<-20,-6>}T_{<19,23>}[/tex]

The previous transformation means that the limousine was translated 20 units to the west and 6 units downward (south), next, the limousine was translated 19 units to the east and 23 units upward (north).

Hence, the limousine drives 20 blocks to the east and 6 blocks to south, and then it drives 19 block to the east and 23 blocks to north.

Graph the function and state the domain and range.g(x)=x^2-2x-15Domain-Range-Graphed function-

Answers

Answer:

The domain: -∞ < x < ∞

The range: g(x) ≥ -16

Explanation:

The given function is:

[tex]g(x)\text{ = x}^2\text{-2x-15}[/tex]

The domain is a set of all the valid inputs that can make the function real

All real values of x will make the function g(x) to be valid

The domain: -∞ < x < ∞

The range is the set of all valid outputs

From the function g(x):

a = 1, b = -2

[tex]\begin{gathered} \frac{b}{2a}=\frac{-2}{2(1)}=-1 \\ g(-1)=(-1)^2-2(-1)-15 \\ g(-1)=1-2-15 \\ g(-1)=-16 \end{gathered}[/tex]

Since a is positive, the graph will open upwards

Therefore, the range of the function g(x) is: g(x) ≥ -16

The graph of the function g(x) = x^2 - 2x - 15 is plotted below

Consider the graph of g(x) shown below. Determine which statements about the graph are true. Select all that apply.

Answers

SOLUTION

From the graph, the root of the equation is the point where the graph touches the x-axis

[tex]x=-4,x=0[/tex]

Hence the equation that models the graph becomes

[tex]\begin{gathered} x+4=0,x-0=0 \\ x(x+4)=0 \\ x^2+4x=0 \\ \text{Hence } \\ g(x)=x^2+4x \end{gathered}[/tex]

Since the solution to the equation are x=-4 and x=0

Hence the equation has two real zeros

The minimum of g(x) is at the point

[tex]\begin{gathered} (-2,-4) \\ \text{Hence minimum is at x=-2} \end{gathered}[/tex]

The minimum of g(x) is at x=-2

The vertex of g(x) is given by

[tex]\begin{gathered} x_v=-\frac{b}{2a} \\ \text{and substistitute into the equation to get } \\ y_v \end{gathered}[/tex][tex]\begin{gathered} a=1,\: b=4,\: c=0 \\ x_v=-\frac{b}{2a}=-\frac{4}{2\times1}=-\frac{4}{2}=-2 \\ y_v=x^2+4x=(-2)^2+4(-2)=4-8=-4 \\ \text{vertex (-2,-4)} \end{gathered}[/tex]

Hence the vertex of g(x) is (-2,-4)

The domain of the function g(x) is the set of input values for which the function g(x) is real or define

Since there is no domain constrain for g(x), the domain of g(x) is

[tex](-\infty,\infty)[/tex]

hence the domain of g(x) is (-∞,∞)

The decreasing function the y-value decreases as the x-value increases: For a function y=f(x): when x1 < x2 then f(x1) ≥ f(x2)

Hence g(x) decreasing over the interval (-∞,-2)

Therefore for the graph above the following apply

g(x) has two real zeros (option 2)

The minimum of g(x) is at x= - 2(option 3)

the domain of g(x) is (-∞,∞) (option 4)

g(x) decreasing over the interval (-∞,-2)(option 4)

Make the following conversions. Round to 2 decimal places, where necessary.8 feet 9 inches toa. Inches: in.b. Feet: ft

Answers

Given the measurement

[tex]8feet\text{ 9inches}[/tex]

a) To convert to inches,

Where

[tex]1ft=12in[/tex][tex]8ft\text{ to inches}=8\times12=96[/tex]

8 feet 9 inches in inches is

[tex]\begin{gathered} 8ft\text{ 9in}=8ft+9in=96+9=105in \\ 8ft\text{ 9in}=105in \end{gathered}[/tex]

Hence, 8 feet 9 inches in inches is 105in

b) To convert to feet,

Where

[tex]1in=\frac{1}{12}ft[/tex][tex]9in\text{ to f}eet=9\times\frac{1}{12}=\frac{9}{12}=0.75ft[/tex]

8 feet 9 inches in feet is

[tex]8ft\text{ 9in}=8ft+9in=8+0.75=8.75ft[/tex]

Hence, 8 feet 9 inches in feet is 8.75ft

Solve the system of two equations in two variables.6x - 7y = 282x + 4y = -16

Answers

Answer:

Explanation:

Given the system of equations

[tex]\begin{gathered} 6x-7y=28 \\ 2x+4y=-16 \end{gathered}[/tex]

We intend to use the elimination method to solve it.

• Multiply the first equation by 2

,

• Multiply the second equation by 6

This gives us:

[tex]\begin{gathered} 12x-14y=56 \\ 12x+24y=-96 \end{gathered}[/tex]

We eliminate x by subtracting.

[tex]undefined[/tex]

Find the value of x that makes ADEF ~AXYZ..yE1052x – 114D11FX5x + 2Zх=

Answers

Given that the triangles are similar, we can express a proportion between their sides. DE and XY are corresponding sides. EF and YZ are corresponding sides. Let's define the following proportion.

[tex]\begin{gathered} \frac{XY}{DE}=\frac{YZ}{EF} \\ \frac{10}{5}=\frac{14}{2x-1} \end{gathered}[/tex]

Now, we solve for x

[tex]\begin{gathered} 2=\frac{14}{2x-1} \\ 2x-1=\frac{14}{2} \\ 2x=7+1 \\ x=\frac{8}{2} \\ x=4 \end{gathered}[/tex]Hence, the answer is x = 4.

which point lies on the line with the slope of m=7 that passes through the point (2,3)

Answers

Answer:

B. Monkey Man

Step-by-step explanation:

M+o+n+k+e+y

When you start your career, you decide to set aside $500 every quarter to deposit into an investment account. The investment firm claims that historically their accounts have earned an annual interest rate of 10.0% compounded quarterly. Assuming this to be true, how much money will your account be worth after 25 years of depositing and investing? Round your answer to the nearest cent. Do not include labels or units. Just enter the numerical value.

Answers

Given:

The principal amount = $500

Interest rate = 10% quarterly

Required:

Find the deposing amount after 25 years.

Explanation:

The amount formula when the interest is compounded quarterly is given as:

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Where r = interest rate

t = time period

n = The number of compounded times

The amount after 25 years is:

[tex]\begin{gathered} A=500(1+\frac{0.1}{4})^{4\times25} \\ A=500(1+.025)^{100} \\ A=500(1.025)^{100} \end{gathered}[/tex][tex]\begin{gathered} A=500\times11.81371 \\ A=5906.8581 \end{gathered}[/tex]

Final Answer:

The amount after 25 years will be &5906.85

Need Help Asaaaappp look at scrrenshot

Answers

PR = 32

Equation:

Perimeter = PR + RQ + QP

67 units = (4x) + (x + 2) + (3x + 1)

67 = 8x + 3

64 = 8x

x = 8 units

Substitute x:

PR = (4x) = 4 * 8 = 32 units

RQ = (x + 2) = 8 + 2 = 10 units

QP = (3x + 1) = 3 * 8 + 1 = 25 units

PR = 32

Equation:

Perimeter = PR + RQ + QP

67 units = (4x) + (x + 2) + (3x + 1)

67 = 8x + 3

64 = 8x

x = 8 units

Substitute x:

PR = (4x) = 4 * 8 = 32 units

RQ = (x + 2) = 8 + 2 = 10 units

QP = (3x + 1) = 3 * 8 + 1 = 25 units

A chef is going to use a mixture of two brands of italian dressing. the first brand contains 7% vinegar and the second brand contains 12% vinegar. the chef wants to make 280 milliliters of a dressing that is 9% vinegar. how much of each brand should she use

Answers

We know that

• The first brand contains 7% vinegar.

,

• The second brand contains 12% vinegar.

,

• The chef wants 280 milliliters with 9% vinegar.

Using the given information, we can express the following equation.

[tex]0.07x+0.12(280-x)=0.09(280)[/tex]

Notice that 0.07x represents the first brand, 0.12(280-x) represents the second brand, and 0.08(280) represents the final product the chef wants to make.

Let's solve for x.

[tex]\begin{gathered} 0.07x+33.6-0.12x=25.2 \\ -0.05x=25.2-33.6 \\ -0.05x=-8.4 \\ x=\frac{-8.4}{-0.05} \\ x=168 \end{gathered}[/tex]Therefore, the chef needs 168 of the first brand and 112 of the second brand.

Notice that 280-168 = 112.

It takes a hose 3 minutes to fill a rectangular aquarium 8 inches long, 10 inches wide, and 14 inchestall. How long will it take the same hose to fill an aquarium measuring 23 inches by 25 inches by 26inches?minutesEnter an integer or decimal number [more..]Round your answer to the nearest minuteSubmit

Answers

Answer:

[tex]40\text{ minutes}[/tex]

Explanation:

Firstly, we have to calculate the rate at which the hose works

We can get that by dividing the volume of the first aquarium by the time taken to fill it

The volume of the first aquarium can be calculated using the formula:

[tex]V\text{ = L}\times B\times H[/tex]

Where:

L is the length of the aquarium

B is its width

H is its height

The volume of the first aquarium is thus:

[tex]V\text{ = 8}\times10\times14\text{ = 1120 in}^3[/tex]

We have the filling rate as:

[tex]\frac{1120}{3}\text{ in}^3\text{ per minute}[/tex]

Now, let us get the volume of the second aquarium

We use the same formula as the first

We have the volume as:

[tex]23\times25\times26\text{ = 14,950 in}^3[/tex]

Now, to get the time taken, we divide the volume of the second aquarium by the rate of the first

Mathematically, we have that as:

[tex]14950\text{ }\times\frac{3}{1120}\text{ = 40 minutes approximately}[/tex]

Other Questions
In general, how should you shuffle the mass in a rotating object to decrease its overall moment of inertia?. WATER DEPTH An echo sounder is a device used to determine the depth of water by measuring the time it takes a sound produced just below the water surface to return, or echo, from the bottom of the body of water. The accuracy of an echo sounder is the positive difference between the depth of water reading on the echo sounder and the actual depth of water w. Write two absolute value expressions equivalent to the accuracy of an echo sounder. English homework!!Ayuda en la seccion B, no estoy segura si se puede repetir Which is equal to 2 over 5? A. 2%B. 2.5%C. 20%D. 25%E. 40% Does lymph can direct through the arteries Write an equation that represents a reflection in the y-axis of the graph of g(x)=|x|.h(x)= ? 13. Of the following, cholesterol is found only ina. plant foods.b. soft drinks.c. meats.habodga Which social study skill is important because it allows historians to sequence event? PLEASE HELP ME ASAP :,) The revenue function R in terms of the number of units sold, a, is given as R = 300x - 0.4x^2where R is the total revenue in dollars. Find the number of units sold a that produces a maximum revenue?Your answer is x =What is the maximum revenue? 3 According to the graph, in which country have women's beliefs about justification fordomestic violence changed the least?A MozambiqueB ZimbabweC HaitiD Peru* 3 points Triangle LMN is drawn with vertices at L(2, 1), M(2, 1), N(2, 3). Determine the image vertices of LMN if the preimage is rotated 90 clockwise. L(1, 2), M(1, 2), N(3, 2) L(1, 2), M(1, 2), N(3, 2) L(1, 2), M(1, 2), N(3, 2) L(2, 1), M(2, 1), N(2, 3) PLS HELP ME I NEED HELP ASAP!!!!! That's for PE not for english fitness is a measure of reproductive success. if an individual with genotype (bb) produces 6 offspring, and a heterozygous individual (bb) produces 10 offspring, and a third individual with genotype (bb) produces 5 offspring, what is the fitness value for the individual with (bb) genotype? Mutations can occur randomly during DNA replication. Suppose DNA replication is occurring in a cell. If DNA replication occurscorrectly, the following strand will be produced.If a point mutation occurs during DNA replication, which of these could represent the mutated strand produced instead?OA.ATG GAC CAT TGG CATG GAC CAA CTT TCG GCATG CGT CAT TTC GGCATG GAC CTT TTC GGCB.(C.ATG GAC CAT TTC GGCOD. Literary AnalysisConduct and write a literary analysis about any work you have read in this unit.Reread the work you select, making note of any particular literary element that stands out. Choose the literary element and aspect of the text that you will examine in your analysis. Follow the procedure outlined below to write your literary analysis. Your paper should be approximately two to three pages in length. It should include a logical introduction, body, and conclusion that develops and supports your thesis. Include a works cited page as well as in-text citations in MLA format to document your sources, including the literary text you selected to analyze. There is no purposeful arrangement to the letters as they are presented in the NewTestament. Find the minimum or maximum value of the function f(x)=8x2+x5. Give your answer as a fraction. Early in the story, what flaw in the front of the house does the narrator observe?