Find the points on the curve y = 20x closest to the point (0,1). ) and

Answers

Answer 1

We want to minimize the distance formula d.substituting the equation of the curve y = 20x into the distance formula, we have:

d = √((x - 0)² + (20x - 1)²)  = √(x² + (20x - 1)²).

to find the points on the curve y = 20x that are closest to the point (0, 1), we can use the distance formula between two points in the coordinate plane.

the distance formula is given by:

d = √((x2 - x1)² + (y2 - y1)²).

we want to minimize the distance between the points on the curve and the point (0, 1). to find the minimum distance, we can minimize the function f(x) = x² + (20x - 1)². taking the derivative of f(x) with respect to x and setting it equal to zero, we can find the critical points:

f'(x) = 2x + 2(20x - 1)(20)

      = 2x + 800x - 40

      = 802x - 40.

setting f'(x) = 0:

802x - 40 = 0,802x = 40,

x = 40/802,x = 0.0499 (approximately).

to determine if this critical point gives a minimum distance, we can check the second derivative of f(x):

f''(x) = 802.

since the second derivative is positive (802 > 0), we can conclude that the critical point x = 0.0499 corresponds to the minimum distance.

now, to find the y-coordinate of the point on the curve that is closest to (0, 1), we substitute x = 0.0499 into the equation y = 20x:

y = 20(0.0499)

 = 0.998 (approximately).

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11


Related Questions

What is the difference between two samples that are dependent and two samples that are independent? Give an example of each.

Answers

The difference between two samples that dependent and two samples that are independent is that their is relationship between the dependent samples while there is none for the independent samples.

What is dependent sample?

Dependent samples are paired measurements for one set of items.

Examples of dependent samples include;

A training program assessment takes pretest and posttest scores from the same group of people.A paint durability study applies different types of paint to portions of the same wooden boards.

An independent samples are measurements made on two different sets of items.

Examples of independent samples include;

if the men's group and the women's group are asked about their incomeif group of boys and girls are asked their ages.

Learn more about dependent and independent samples here: https://brainly.com/question/12054496

#SPJ4

Match each of the following with the correct statement. A. The series is absolutely convergent C. The series converges, but is not absolutely convergent D. The series diverges. (-7)" 2 ) (-1) (2+ ms WE WEWE (n+1)" 4.(-1)"In(+2) 4-1)n 5. () 2-5 (n+1)" 5 (1 point) Match each of the following with the correct statement. A. The series is absolutely convergent. C. The series converges, but is not absolutely convergent. D. The series diverges. in in (n+3)! 1. n=1 n!2" n1 (-1)^+1 2. n=1 5n+7 (-3)" 3. Σ n5 sin(2n) 4. Σ n5 (1+n)5" 5. M-1(-1)^+1 (n2)32n n=1 n=1 ~ n=1

Answers

Based on the given series, the correct match would be:

Σ(n+3)! - D. The series diverges.

Σ5n+7 - C. The series converges, but is not absolutely convergent.

Σn^5 sin(2n) - D. The series diverges.

Σ(1+n)^5 - A. The series is absolutely convergent.

Σ(-1)^(n+1) (n^2)/(32n) - C. The series converges, but is not absolutely convergent.

Σ(n+3)!:

This series represents the sum of the factorials of (n+3) starting from n=1. The factorial function grows very rapidly, and since we are summing it indefinitely, the series diverges. As the terms in the series get larger and larger, the sum becomes unbounded.

Σ5n+7:

This series represents the sum of the expression 5n+7 as n ranges from 1 to infinity. The terms in this series increase linearly with n. Although the series does not grow as rapidly as the factorial series, it still diverges. The series converges to infinity since the terms continue to increase indefinitely.

Σn^5 sin(2n):

This series involves the product of n^5 and sin(2n). The sine function oscillates between -1 and 1, while n^5 grows without bound as n increases. The product of these two functions results in a series that oscillates between positive and negative values, without showing any clear pattern of convergence or divergence. Therefore, this series diverges.

Σ(1+n)^5:

This series represents the sum of the fifth powers of (1+n) as n ranges from 1 to infinity. The terms in this series grow, but they grow at a slower rate than exponential or factorial functions. The series is absolutely convergent because the terms are raised to a fixed power and do not oscillate. The sum of the terms will converge to a finite value.

Σ(-1)^(n+1) (n^2)/(32n):

This series involves alternating signs (-1)^(n+1) multiplied by the expression (n^2)/(32n). The alternating signs cause the series to oscillate between positive and negative terms. However, the overall behavior of the series still converges. The series is not absolutely convergent because the individual terms do not decrease to zero as n increases, but the alternating nature of the terms ensures convergence.

To learn more about converging series visit : https://brainly.com/question/15415793

#SPJ11

√√√¹ + ² + y² d.S, where S is the surface parametrized by V Evaluate r(u, v) = (u cos v, u sin v, v), 0 ≤ u≤ 3, 0≤v≤ 2π 25T 2 152T 3 12π No correct answer choice present. 24T

Answers

A surface integral over the given parameter domain ∫[0,2π] ∫[0,3] √√√(u² + ² + v²) * sqrt(1 + u²) du dv.

To evaluate the given expression √√√¹ + ² + y² dS, where S is the surface parametrized by r(u, v) = (u cos v, u sin v, v) with 0 ≤ u ≤ 3 and 0 ≤ v ≤ 2π,  to calculate the surface integral over S.

The surface integral of a scalar-valued function f(x, y, z) over a surface S parametrized by r(u, v) is given by:

∫∫ f(r(u, v)) ||r_u × r_v|| du dv

where r_u and r_v are the partial derivatives of the vector function r(u, v) with respect to u and v, respectively, and ||r_u × r_v|| is the magnitude of their cross product.

The vector function r(u, v) = (u cos v, u sin v, v), so calculate its partial derivatives as follows:

r_u = (cos v, sin v, 0)

r_v = (-u sin v, u cos v, 1)

calculate the cross product of r_u and r_v:

r_u × r_v = (sin v, -cos v, u)

The magnitude of r_u × r_v is:

||r_u × r_v|| = √(sin²v + cos²v + u²) = sqrt(1 + u²)

substitute these values into the surface integral formula:

∫∫ √√√¹ + ² + y² dS = ∫∫ √√√(u² + ² + v²) * ||r_u × r_v|| du dv

= ∫∫ √√√(u² + ² + v²) ×√(1 + u²) du dv

To know more about domain here

https://brainly.com/question/30133157

#SPJ4

Given f(x,y) = x^3 - 3x + xy + y^2, the saddle point is (_____,_____) and the local minimum is (_____,_____). Round your answer to 4 decimal places​​​​​​​

Answers

To find the saddle point and local minimum of the function[tex]f(x, y) = x^3 - 3x + xy + y^2[/tex], .we have the saddle point at (-0.4270, 0.2135) and the local minimum at (0.7102, -0.3551).

Taking the partial derivative with respect to x:

[tex]∂f/∂x = 3x^2 - 3 + y.[/tex]

Taking the partial derivative with respect to y:

[tex]∂f/∂y = x + 2y.[/tex]

Setting both partial derivatives equal to zero, we have the following equations:

[tex]3x^2 - 3 + y = 0 ...(1)[/tex]

x + 2y = 0 ...(2)

From equation (2), we can solve for x in terms of y:

x = -2y.

Substituting this into equation (1), we have:

[tex]3(-2y)^2 - 3 + y = 0,[/tex]

[tex]12y^2 - 3 + y = 0,[/tex]

[tex]12y^2 + y - 3 = 0.[/tex]

Solving this quadratic equation, we find two values for y:

y = 0.2135 or y = -0.3551.

Substituting these values back into equation (2), we can find the corresponding x-values:

For y = 0.2135, x = -2(0.2135) = -0.4270.

For y = -0.3551, x = -2(-0.3551) = 0.7102.

To know more about function click the link below:

brainly.com/question/31399853

#SPJ11

The rectangular coordinates of a point are given. Plot the point. (-7√2.-7√2) 15 10 10 15 -15 -10 O -5 55 -15 -10 -5 -15 -10 -5 10 15 -15 -10 -15 Find two sets of polar coordinates for the point for 0 ≤ 0 < 2. (smaller r-value) (r, 0) = (larger r-value) -5 -10 -15 15 10 X -10 -5 15t 10 5 -5 -10 15 151 10 5 -5 -10 -15 5 10 15 10 15

Answers

The polar coordinates are also shown in the graph with r = 14 and θ = (3π/4).

The given rectangular coordinate of a point is (-7√2, -7√2).

The point is to be plotted on the graph in order to find two sets of polar coordinates for the point for 0 ≤ 0 < 2.

It is given that the point lies in the third quadrant so, the polar coordinates will be between π and (3/2)π.

We have, r = √((-7√2)² + (-7√2)²) = √(98 + 98) = √196 = 14

The angle can be found as below:`

tan θ = y/x``θ = tan-1 (y/x)`θ = tan⁻¹(-7√2/-7√2) = 135°

Since the point lies in the third quadrant and it is to be measured in the anticlockwise direction from the positive x-axis, the angle in radians will be;

θ = (135° * π) / 180° = (3π/4)

Two sets of polar coordinates for the point for 0 ≤ 0 < 2 are:

r = 14 and θ = (3π/4) or (11π/4)r = -14 and θ = (-π/4) or (7π/4)

The point with rectangular coordinates of (-7√2, -7√2) is shown below:

The polar coordinates are also shown in the graph with r = 14 and θ = (3π/4).

Learn more about polar coordinates :

https://brainly.com/question/31904915

#SPJ11

slovt this Q step by step
Q.6 Evaluate the iterated integral. 4 2 1 Ja (x + y)2 dy dx 31 [ 2 Marks ]

Answers

To evaluate the iterated integral ∫∫(x + y)^2 dy dx over the given limits, we need to integrate with respect to y first and then with respect to x.

The limits of integration for y are from x to 1, and the limits of integration for x are from 3 to 4. Let's calculate the integral step by step: ∫∫(x + y)^2 dy dx = ∫[3 to 4] ∫[x to 1] (x + y)^2 dy dx. Step 1: Integrate with respect to y:

∫[x to 1] (x + y)^2 dy = [(x + y)^3 / 3] evaluated from x to 1

= [(x + 1)^3 / 3] - [(x + x)^3 / 3]

= [(x + 1)^3 / 3] - [8x^3 / 3]. Step 2: Integrate with respect to x: ∫[3 to 4] [(x + 1)^3 / 3 - 8x^3 / 3] dx= [∫[(x + 1)^3 / 3] dx - ∫[8x^3 / 3] dx] from 3 to 4

To simplify the calculation, let's expand (x + 1)^3 = x^3 + 3x^2 + 3x + 1:

= ∫[(x^3 + 3x^2 + 3x + 1) / 3] dx - ∫[8x^3 / 3] dx

= [∫[x^3 / 3] + ∫[x^2] + ∫[x / 3] + ∫[1 / 3] - ∫[8x^3 / 3] dx] from 3 to 4

= [x^4 / 12 + x^3 / 3 + x^2 / 6 + x / 3 - 2x^4 / 3] evaluated from 3 to 4

= [(4^4 / 12 + 4^3 / 3 + 4^2 / 6 + 4 / 3 - 2 * 4^4 / 3) - (3^4 / 12 + 3^3 / 3 + 3^2 / 6 + 3 / 3 - 2 * 3^4 / 3)]

= [(64 / 12 + 64 / 3 + 16 / 6 + 4 / 3 - 128 / 3) - (81 / 12 + 27 / 3 + 9 / 6 + 1 / 3 - 54 / 3)].Now, simplify the expression to find the final value. Please note that the final value will be a numerical approximation.

Learn more about integrate here : brainly.com/question/31744185

#SPJ11

Determine whether the graph of the function is symmetric about the y-axis or the origin Indicate whether the function is even, odd, or neither f(x) = (x+4)2 Is the graph of the function symmetric about the y-axis or the origin? O A. origin B. y-axis OC. neither Is the function even, odd, or neither? O A. neither OB. even OC. odd

Answers

The graph of the function f(x) = (x+4)^2 is symmetric about the y-axis and is neither even nor odd.

To determine if the graph of the function is symmetric about the y-axis, we need to check if replacing x with -x in the function results in the same expression. In this case, substituting -x for x in f(x) gives f(-x) = (-x+4)^2, which simplifies to (x-4)^2. Since this is not equivalent to f(x), the graph is not symmetric about the y-axis.

To determine if the function is even or odd, we can check if f(x) = f(-x) for even functions (even symmetry) or if f(x) = -f(-x) for odd functions (odd symmetry). In this case, substituting -x for x in f(x) gives f(-x) = (-x+4)^2, which is not equal to f(x). Therefore, the function is neither even nor odd.

In conclusion, the graph of the function f(x) = (x+4)^2 is symmetric about the y-axis but is neither even nor odd.

Learn more about symmetric here:

https://brainly.com/question/31184447

#SPJ11

DETAILS LARAPCALC10 5.2.002. MY NOTES du Identify u and dx for the integral du dx dx. fun ( | 14 - 3x2}{-6x) dx U du dx Need Help? Read Watch It 2. (-/1 Points] DETAILS LARAPCALC10 5.2.008. MY NOTES Identify w and du dx for the integral du dx dx. for ( / (3- vx)} ( 2 ) x dx U du dx

Answers

In the given problem, we are asked to identify the variables and differentials for two integrals.  We take the derivative of w with respect to x. Therefore, du/dx = -3/√x + 1.

For the first integral, let's identify "u" and "dx." We have ∫(14 - 3x^2)/(-6x) dx. Here, we can rewrite the integrand as (-1/2) * (14 - 3x^2)/x dx. Now, we can see that the expression (14 - 3x^2)/x can be simplified by factoring out an x from the numerator. It becomes (14/x) - 3x. Now, we can let u = 14/x - 3x. To find dx, we take the derivative of u with respect to x. Therefore, du/dx = (-14/x^2) - 3. Rearranging this equation, we get dx = -du / (3 + 14/x^2).

Moving on to the second integral, we need to identify "w" and "du/dx." The integral is ∫(3 - √x)^2 x dx. To simplify the integrand, we expand the square term: (3 - √x)^2 = 9 - 6√x + x. Now, we can rewrite the integral as ∫(9 - 6√x + x)x dx. Here, we can let w = 9 - 6√x + x. To find du/dx, we take the derivative of w with respect to x. Therefore, du/dx = -3/√x + 1.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

2 1. Let f(x, y, z) = xyz + x+y+z+1. Find the gradient ∇f and divergence div(∇f), and then calculate curl(∇f) at point (1,1,1).

Answers

The gradient of f(x, y, z) is ∇f = (yz + 1, xz + 1, xy + 1), the divergence of ∇f is div(∇f) = 2, and the curl of ∇f at the point (1, 1, 1) is (0, 0, 0).

The gradient of a scalar function f(x, y, z) is given by ∇f = (∂f/∂x, ∂f/∂y, ∂f/∂z), where ∂f/∂x, ∂f/∂y, and ∂f/∂z are the partial derivatives of f with respect to x, y, and z, respectively.

In this case, we have f(x, y, z) = xyz + x + y + z + 1. Taking the partial derivatives, we get:

∂f/∂x = yz + 1

∂f/∂y = xz + 1

∂f/∂z = xy + 1

Therefore, the gradient of f(x, y, z) is ∇f = (yz + 1, xz + 1, xy + 1).

The divergence of a vector field F = (F₁, F₂, F₃) is given by div(F) = ∂F₁/∂x + ∂F₂/∂y + ∂F₃/∂z.

Taking the partial derivatives of ∇f = (yz + 1, xz + 1, xy + 1), we have:

∂(yz + 1)/∂x = 0

∂(xz + 1)/∂y = 0

∂(xy + 1)/∂z = 0

Therefore, the divergence of ∇f is div(∇f) = 0 + 0 + 0 = 0.

Finally, the curl of a vector field is defined as the cross product of the del operator (∇) with the vector field. Since ∇f is a gradient, its curl is always zero. Therefore, the curl of ∇f at any point, including (1, 1, 1), is (0, 0, 0).

Hence, the gradient of f is ∇f = (yz + 1, xz + 1, xy + 1), the divergence of ∇f is div(∇f) = 0, and the curl of ∇f at point (1, 1, 1) is (0, 0, 0).

Learn more about cross product here:

https://brainly.com/question/29097076

#SPJ11

Find the area of the surface generated by revolving the curve about each given axis. x = 5t, y = 5t, 0 st≤ 5 (a) x-axis 673.1π X (b) y-axis 1346.3 x The rectangular coordinates of a point are given. Plot the point. (-7√2,-7√2) 15 10 10 15 -15 -10 -5 O -15 -5 O SE -56 -10 -155 y 15 10 5 5 X -15 -10 -5 -10 10 15 -15 -10 -15 Find two sets of polar coordinates for the point for 0 ≤ 0 < 2. (r, 8) = (smaller r-value) (r, 8) = (larger r-value) -10 -5 15 10 -5 -10 -15 15 10 5 -5 -10 -15 10 15 5 10 15 X X

Answers

The area of the surface generated by revolving the curve x = 5t, y = 5t, 0 ≤ t ≤ 5 about the x-axis is 673.1π square units. When revolving the same curve about the y-axis, the surface area is 1346.3π square units. The point (-7√2, -7√2) is plotted on the coordinate plane. For this point, two sets of polar coordinates are (10√2, -45°) and (10√2, 315°).

To find the surface area generated by revolving the curve x = 5t, y = 5t, 0 ≤ t ≤ 5 about the x-axis, we can use the formula for the surface area of revolution: A = ∫2πy√(1 + (dy/dx)²) dx.

In this case, dy/dx = 1, so the integral simplifies to ∫2πy dx.

Substituting the given curve equations, we have ∫2π(5t) dx = 10π∫t dx = 10π∫dt = 10π[t] from 0 to 5 = 50π.

Evaluating this gives 50π ≈ 157.1 square units.

Multiplying by 4 to account for all quadrants, we get the final surface area of 200π ≈ 673.1π square units when revolving about the x-axis.

When revolving the same curve about the y-axis, the formula for surface area becomes A = ∫2πx√(1 + (dx/dy)²) dy. Here, dx/dy = 1, so the integral simplifies to ∫2πx dy.

Substituting the curve equations, we have ∫2π(5t) dy = 10π∫t dy = 10π∫dt = 10π[t] from 0 to 5 = 50π.

Evaluating this gives 50π ≈ 157.1 square units.

Multiplying by 4, we get the final surface area of 200π ≈ 673.1π square units when revolving about the y-axis.

The point (-7√2, -7√2) is plotted on the coordinate plane. The x-coordinate represents the radial distance (r) and the y-coordinate represents the angle (θ) in polar coordinates.

Using the distance formula, we find r = √((-7√2)² + (-7√2)²) = 10√2. The angle θ can be determined using the inverse tangent function: θ = atan(-7√2 / -7√2) = atan(1) = -45°.

Since this point lies in the fourth quadrant, the angle can also be expressed as 315°. Thus, the two sets of polar coordinates for the point (-7√2, -7√2) are (10√2, -45°) and (10√2, 315°).

Learn more about area of a surface generated by revolving a curve:

https://brainly.com/question/30786118

#SPJ11

What is the value of sin k? Round to 3 decimal places.
105
K
E
88
137
F
20

Answers

From the triangle the value of sink is 0.64.

KEF is a right angled triangle.

Given that from figure KE is 105, KF is 137 and EF is 88.

We have to find the value of sinK:

We know that sine function is a ratio of opposite side and hypotenuse.

The opposite side of vertex K is EF which is 88.

The hypotenuse is 137.

SinK=opposite side/hypotenuse

=88/137

=0.64

Hence, the value of sink is 0.64 from the triangle.

To learn more on Triangles click:

https://brainly.com/question/2773823

#SPJ1

3. Evaluate the flux F ascross the positively oriented (outward) surface S STE و ) F.ds, where F =< x3 +1, 43 + 2, z3 +3 > and S is the boundary of x2 + y2 + z2 = 4,2 > 0. = 2

Answers

The flux F across the surface S is 0. Explanation: The given vector field F = <x^3 + 1, y^3 + 2, 2^3 + 3> does not depend on the surface S.

The surface S is the boundary of the region defined by x^2 + y^2 + z^2 = 4, z > 0. Since the vector field F does not penetrate or leave this region, the flux across the surface S is zero. This means that the net flow of the vector field through the surface is balanced and cancels out.

To evaluate the flux across a surface, we need to calculate the dot product between the vector field and the outward unit normal vector of the surface at each point, and then integrate this dot product over the surface.

In this case, the given vector field F = <x^3 + 1, y^3 + 2, 2^3 + 3> does not depend on the surface S. The surface S is the boundary of the region defined by x^2 + y^2 + z^2 = 4, z > 0, which represents the upper half of a sphere centered at the origin with radius 2.

Since the vector field F does not penetrate or leave this region, it means that the vector field is always tangent to the surface and there is no flow across the surface. Therefore, the dot product between the vector field and the outward unit normal vector is always zero.

Integrating this dot product over the surface will result in zero flux. Thus, the flux across the surface S is 0. This implies that the net flow of the vector field through the surface is balanced and cancels out, leading to no net flux.

Learn more about across here:

https://brainly.com/question/1878266

#SPJ11

demand is modeled with a normal distribution that has a mean of 300 and a standard deviation of 50. what is the probability that demand is 400 or more?

Answers

The area to the right of z = 2 is approximately 0.0228 or 2.28%. So, there is a 2.28% probability that demand is 400 or more.

To answer this question, we need to use the concept of deviation and distribution. In this case, we know that demand is normally distributed with a mean of 300 and a standard deviation of 50.
To find the probability that demand is 400 or more, we need to find the area under the normal curve to the right of 400. We can use a standard normal distribution table or a calculator to find this probability.
Using a calculator, we can standardize the value of 400 as follows:
z = (400 - 300) / 50
z = 2
We then look up the probability of a standard normal distribution being greater than 2, which is approximately 0.0228.
Therefore, the probability that demand is 400 or more is approximately 0.0228 or 2.28%.

To know more about Probability, visit:

https://brainly.com/question/22983072

#SPJ11


1) Pick two (different) polynomials f(x), g(x) of degree 2 and
find lim f(x). x→[infinity] g(x)
2) Find the equation of the tangent line to the curve y + x3 = 1
+ 3xy3 at the point (0, 1).
3) Pick a positi

Answers

After considering all the given data we conclude that the a) the limit of f(x)/g(x) as x approaches infinity is a/d, b) the equation of the tangent line to the curve[tex]y + x^3 = 1 + 3xy^3[/tex]at the point (0, 1) is y = 3x + 1 and c) the function [tex]f(x) = x^{(-a)}[/tex]is a power function with a negative exponent.

To evaluate the limit of [tex]\frac{f(x) }{g(x) }[/tex] as x approaches infinity, we need to apply division for leading the terms of f(x) and g(x) by x².

Let [tex]f(x) = ax^2 + bx + c[/tex]and [tex]g(x) = dx^2 + ex + f[/tex] be two polynomials of degree 2.

Then, the limit of  [tex]f(x)/g(x)[/tex]as x approaches infinity is:

[tex]lim f(x)/g(x) = lim (ax^2/x^2) / (dx^2/x^2) = lim (a/d)[/tex]

Then, the limit of [tex]f(x)/g(x)[/tex] as x approaches infinity is a/d.

To evaluate the equation of the tangent line to the curve [tex]y + x^3 = 1 + 3xy^3[/tex]at the point (0, 1),

we need to calculate the derivative of the curve at that point and apply it to find the slope of the tangent line.

Taking the derivative of the curve with respect to x, we get:

[tex]3x^2 + 3y^3(dy/dx) = 3y^2[/tex]

At the point (0, 1), we have y = 1 and dy/dx = 0. Therefore, the slope of the tangent line is:

[tex]3x^2 + 3y^3(dy/dx) = 3y^2[/tex]

[tex]3(0)^2 + 3(1)^3(0) = 3(1)^2[/tex]

Slope = 3

The point (0, 1) is on the tangent line, so we can apply the point-slope form of the equation of a line to evaluate the equation of the tangent line:

[tex]y - y_1 = m(x - x_1)[/tex]

[tex]y - 1 = 3(x - 0)[/tex]

[tex]y = 3x + 1[/tex]

Therefore, the equation of the tangent line to the curve [tex]y + x^3 = 1 + 3xy^3[/tex]at the point (0, 1) is [tex]y = 3x + 1.[/tex]

For a positive integer a, the function [tex]f(x) = x^{(-a)}[/tex] is a power function with a negative exponent. The domain of f(x) is the set of all positive real numbers, since x cannot be 0 or negative. .

To learn more about tangent

https://brainly.com/question/4470346

#SPJ4

The complete question is

1) Pick two (different) polynomials f(x), g(x) of degree 2 and find lim f(x). x→∞ g(x)

2) Find the equation of the tangent line to the curve y + x3 = 1 + 3xy3 at the point (0, 1).

3) Pick a positive integer a and consider the function f(x) = x−a

Need answered ASAP written as clear as possible

Find the area bounded by the graphs of the indicated equations over the given interval. (Hint: Area is always a positive quantity. y = 2x2 - 8; y = 0; -25X54 The area is (Round to three decimal places

Answers

To find the area bounded by the graphs of the equations y = 2x^2 - 8 and y = 0 over the interval -2 to 4, we need to integrate the positive difference between the two functions over the given interval.

First, we set up the integral:

Area = [tex]∫(2x^2 - 8 - 0) dx from -2 to 4.[/tex]

Simplifying the integrand, we have:

Area = [tex]∫(2x^2 - 8) dx from -2 to 4.[/tex]

Integrating with respect to x, we get:

Area =[tex][2/3x^3 - 8x][/tex] evaluated from -2 to 4.

Plugging in the limits of integration and evaluating the expression, we find:

Area = [tex](2/3(4)^3 - 8(4)) - (2/3(-2)^3 - 8(-2)).[/tex]

After calculating, the area is approximately 33.333 square units, rounded to three decimal places.

Learn more about integration and evaluating here:

https://brainly.com/question/32150772

#SPJ11

Find the volume of the solid generated by revolving the region bounded by y=4√sinx,y=0,x1=π4 and x2=2π3about the x-axis.

Answers

The volume of the solid generated by revolving the region bounded by y = 4√sin(x), y = 0, x = π/4, and x = 2π/3 about the x-axis is (22π)/3 - 8.

To find the volume, we can use the method of cylindrical shells. We integrate the circumference of each shell multiplied by its height over the interval [π/4, 2π/3], and then sum up all the volumes of the shells.

The height of each shell is given by the function y = 4√sin(x), and the circumference is given by 2πx. Therefore, the volume of each shell is 2πx(4√sin(x))dx.

Integrating this expression over the interval [π/4, 2π/3], we get the volume as (22π)/3 - 8.

Hence, the volume of the solid generated is (22π)/3 - 8.

Learn more about cylindrical shells here:

https://brainly.com/question/31259146

#SPJ11

6. (20 %) Differentiate implicitly to find the first partial derivatives of z. (a) tan(x + y) + cos z = 2 (b) xlny + y2z + z2 = 8

Answers

a) The partial derivative of tan(x + y) + cos z = 2 is ∂z/∂y = -sec²(x + y) / (1 - sin z).

b) The partial derivative of xlny + y²z + z² = 8 is  ∂z/∂y = -x / (2yz + y²)

To find the first partial derivatives of z implicitly, we differentiate both sides of the given equations with respect to the variables involved.

(a) For the equation tan(x + y) + cos z = 2:

Differentiating with respect to x:

sec²(x + y) * (1 + ∂z/∂x) - sin z * ∂z/∂x = 0

∂z/∂x = -sec²(x + y) / (1 - sin z)

Differentiating with respect to y:

sec²(x + y) * (1 + ∂z/∂y) - sin z * ∂z/∂y = 0

∂z/∂y = -sec²(x + y) / (1 - sin z)

(b) For the equation xlny + y²z + z² = 8:

Differentiating with respect to x:

ln y + x/y * ∂y/∂x + 2yz * ∂z/∂x = 0

∂z/∂x = -ln y / (2yz + x/y)

Differentiating with respect to y:

x/y + 2yz * ∂z/∂y + y² * ∂z/∂y = 0

∂z/∂y = -x / (2yz + y²)

These are the first partial derivatives of z obtained by differentiating implicitly with respect to the respective variables involved in each equation.

To learn more about partial derivatives click on,

https://brainly.com/question/31745526

#SPJ4

in the conjugate gradient method prove that if v (k) = 0 for some k then ax(k) = b

Answers

In the conjugate gradient method, if v(k) = 0 for some iteration k, then it can be concluded that Ax(k) = b.

The conjugate gradient method is an iterative algorithm used to solve systems of linear equations. At each iteration, it generates a sequence of approximations x(k) that converges to the true solution x*. The algorithm relies on the concept of conjugate directions and minimizes the residual vector v(k) = b - Ax(k), where A is the coefficient matrix and b is the right-hand side vector.

If v(k) = 0, it means that the current approximation x(k) satisfies the equation b - Ax(k) = 0, which implies Ax(k) = b. This proves that x(k) is indeed a solution to the linear system.

The conjugate gradient method aims to find the solution x* in a finite number of iterations. If v(k) becomes zero at some iteration, it indicates that the current approximation has reached the solution. However, it's important to note that in practice, due to numerical errors, v(k) may not be exactly zero, but a very small value close to zero is typically considered as convergence criteria.

Learn more about conjugate gradient here:

https://brainly.com/question/21866024

#SPJ11

The position of an object moving vertically along a line is given by the function s(t) = - 4.97 + 28t + 19. Find the average velocity of the object over the following intervals. a. [0,4] b. [0,5] c. [

Answers

a) The average velocity of the object over the interval [0,4] is 28 units.

b) The average velocity of the object over the interval [0,5] is also 28 units.

To find the average velocity of the object over a given interval, we can use the formula:

Average Velocity = (Change in Position) / (Change in Time)

Let's calculate the average velocities for the given intervals:

a. [0,4]

For the interval [0,4], the initial time (t₁) is 0 and the final time (t₂) is 4.

The change in position (Δs) is given by:

Δs = s(t₂) - s(t₁)

Substituting the values into the position function:

Δs = [-4.97 + 28(4) + 19] - [-4.97 + 28(0) + 19]

= [-4.97 + 112 + 19] - [-4.97 + 0 + 19]

= [126.03] - [14.03]

= 112

The change in time (Δt) is given by:

Δt = t₂ - t₁ = 4 - 0 = 4

Using the formula for average velocity:

Average Velocity = Δs / Δt = 112 / 4 = 28

Therefore, the average velocity of the object over the interval [0,4] is 28 units.

b. [0,5]

For the interval [0,5], the initial time (t₁) is 0 and the final time (t₂) is 5.

Using the same process as above, we find:

Δs = [-4.97 + 28(5) + 19] - [-4.97 + 28(0) + 19]

= [-4.97 + 140 + 19] - [-4.97 + 0 + 19]

= [154.03] - [14.03]

= 140

Δt = t₂ - t₁ = 5 - 0 = 5

Average Velocity = Δs / Δt = 140 / 5 = 28

The average velocity of the object over the interval [0,5] is also 28 units.

Learn more about average velocity:

brainly.com/question/12322912

#SPJ4

Find an nth degree polynomial function with real coefficients satisfying the given conditions. n = 3; -4 and i are zeros; f(-3) = 60 f(x) = -6x³ - 24x² + 6x + 24 f(x) = -6x³ - 24x² - 6

Answers

To find an nth degree polynomial function with real coefficients satisfying the given conditions, we can start by using the zeros to determine the factors of the polynomial.

Since -4 and i are zeros, we know that the factors are (x + 4) and (x - i) = (x + i). Since i is a complex number, its conjugate, -i, is also a zero.

So, the factors of the polynomial are (x + 4), (x + i), and (x - i). To find the polynomial function, we multiply these factors together:

f(x) = (x + 4)(x + i)(x - i)

Expanding this expression gives:

f(x) = (x + 4)(x² - i²)

= (x + 4)(x² + 1)

= x³ + 4x² + x + 4x² + 16 + 4

= x³ + 8x² + x + 20

Therefore, the nth degree polynomial function with real coefficients that satisfies the given conditions is f(x) = x³ + 8x² + x + 20.

To learn more about polynomial functions  click here: brainly.com/question/11298461

#SPJ11.

Once you are satisfied with a model based on historical and _____, you should respecify the model using all the available data. a. fit statistics b. analytical evaluation c. diagnostic statistics d. holdout period evaluations

Answers

Once you are satisfied with a model based on historical data and holdout period evaluations, you should respecify the model using all the available data. The correct option is D.

A model based on historical and diagnostic statistics, you should respecify the model using all the available data. This will help to ensure that the model is reliable and accurate, as it will be based on a larger sample size and will take into account any trends or patterns that may have emerged over time.

It is important to use all available data when respecifying the model, as this will help to minimize the risk of overfitting and ensure that the model is robust enough to be applied to real-world scenarios. While fit statistics and holdout period evaluations can also be useful tools for evaluating model performance, they should be used in conjunction with diagnostic statistics to ensure that the model is accurately capturing the underlying data patterns.

To know more about statistics visit:-

https://brainly.com/question/30218856

#SPJ11

a) Determine whether following series absolutely converges or diverges. Σ n2 + 8 3 + 3n2 n=1 b) Determine whether the following series absolutely converge or diverge by using ratio test. 00 10+1 n=1 n2(43n+3) Σ =1

Answers

a) We need to evaluate whether the series generated by the absolute values converges in order to ascertain whether the series (n2 + 8)/(3 + 3n2) absolutely converges or diverges from n = 1 to infinity.

Take the series |n2 + 8|/(3 + 3n2) into consideration. Taking the absolute value has no impact on the series because the terms in the numerator and denominator are always positive. Therefore, for the sake of simplicity, we can disregard the absolute value signs.Let's simplify the series now: (1 + 8/n2)/(1 + n2) = (n2 + 8)/(3 + 3n2).

The words in the series become 1/1 as n gets closer to b, and the series can be abbreviated as 1/1.

learn more about generated here :

https://brainly.com/question/12841996

#SPJ11

(q2)Find the area of the region bounded by the graphs of x = y2 - 2 and x = y - 2 on the interval [-2, -1].

Answers

The total area of the regions between the curves is 0.17 square units

Calculating the total area of the regions between the curves

From the question, we have the following parameters that can be used in our computation:

x = y² - 2 and x = y - 2

For the intervals, we have

x = -2 and x = -1

Make y the subjects

So, we have

y = √(x + 2) and y = x + 2

So, the area of the regions between the curves is

Area = ∫x + 2 - √(x + 2)

This gives

Area = ∫x + 2 - √(x + 2)

Integrate

Area =  -[4(x + 2)^3/2 - 3x(x + 4)]/6

Recall that x = -2 and x = -1

So, we have

Area = [4(-1 + 2)^3/2 - 3(-1)(-1 + 4)]/6 + [4(-2 + 2)^3/2 - 3(-2)(-2 + 4)]/6

Evaluate

Area =  0.17

Hence, the total area of the regions between the curves is 0.17 square units

Read more about area at

brainly.com/question/15122151

#SPJ1

Margaux borrowed 20,000 php from a lending corporation that charges 15% Interest with an agreement to pay the principal and the interest at the end of a term. If she
pald 45,500 php at the end of a term, for how long did she use the money?
A8.5 years
B5.5 vears
C8.25 years
(D)
10.75 years

Answers

Margaux borrowed 20,000 php from a lending corporation with a 15% interest rate and ended up paying a total of 45,500 php at the end of a term. The question is asking for the duration of time Margaux used the money.

To find the duration of time Margaux used the money, we can set up an equation using the formula for calculating simple interest:

Interest = Principal x Rate x Time

Given that the principal is 20,000 php and the interest rate is 15%, we need to solve for the time. The total amount Margaux paid, which includes the principal and interest, is 45,500 php.

45,500 = 20,000 + (20,000 x 0.15 x Time)

Simplifying the equation:

25,500 = 3,000 x Time

Dividing both sides by 3,000:

Time = 25,500 / 3,000

Time = 8.5 years

Therefore, Margaux used the money for a duration of 8.5 years. Option A, 8.5 years, is the correct answer.

Learn more about simple interest here:

https://brainly.com/question/30964674

#SPJ11

The matrix 78 36] -168 -78 has eigenvalues 11 = 6 and 12 = -6. Find eigenvectors corresponding to these eigenvalues. -1 -3 01 = and v2 2 7 782 +36y - 1683 – 78 satisfying the initial conditions (0) = - 7 and b. Find the solution to the linear system of differential equations sa' y' y(0) = 17 = = = t(t) 110t -110 +e y(t) = 5.25€ -110 - 0.89€ 1101 - 781 +e

Answers

The eigenvectors corresponding to the eigenvalues λ₁ = 6 and λ₂ = -6 for the given matrix are v₁ = [-1, -3]ᵀ and v₂ = [2, 7]ᵀ, respectively. The solution to the linear system of differential equations y' = 110t - 110 + e^t and a' = 5.25e^t - 110 - 0.89e^t with initial conditions y(0) = 17 and a(0) = -7 is y(t) = 110t - 110 + e^t and a(t) = 5.25e^t - 110 - 0.89e^t.

To find the eigenvectors corresponding to the eigenvalues of the matrix, we need to solve the equation (A - λI)v = 0, where A is the given matrix, λ is an eigenvalue, I is the identity matrix, and v is the eigenvector.

For λ₁ = 6, we have the equation:

[(78-6) 36] [x₁] [0]

[-168 (78-6)] [x₂] = [0]

Simplifying, we get:

[72 36] [x₁] [0]

[-168 72] [x₂] = [0]

Solving the system of equations, we find x₁ = -1 and x₂ = -3, so the eigenvector corresponding to λ₁ = 6 is v₁ = [-1, -3]ᵀ.

Similarly, for λ₂ = -6, we have the equation:

[(78+6) 36] [x₁] [0]

[-168 (78+6)] [x₂] = [0]

Simplifying, we get:

[84 36] [x₁] [0]

[-168 84] [x₂] = [0]

Solving the system of equations, we find x₁ = 2 and x₂ = 7, so the eigenvector corresponding to λ₂ = -6 is v₂ = [2, 7]ᵀ.

For the given linear system of differential equations, we can separate the variables and integrate to find the solution. Integrating the equation a' = 5.25e^t - 110 - 0.89e^t yields a(t) = 5.25e^t - 110t - 0.89e^t + C₁, where C₁ is the constant of integration.

Integrating the equation y' = 110t - 110 + e^t yields y(t) = 110t^2/2 - 110t + e^t + C₂, where C₂ is the constant of integration.

Using the initial conditions y(0) = 17 and a(0) = -7, we can solve for the constants C₁ and C₂. Plugging in t = 0, we get C₁ = -110 - 0.89 and C₂ = 17.

Therefore, the solution to the linear system of differential equations is y(t) = 110t^2/2 - 110t + e^t - 110 - 0.89e^t and a(t) = 5.25e^t - 110t - 0.89e^t - 110 - 0.89.

Learn more about eigenvectors here:

https://brainly.com/question/31043286

#SPJ11

use a t-test to test the claim μ < 10 at α = 0.10, given the sample statistics n = 20, x = 9.6, and s = 2.0. round the test statistic to the nearest thousandth.

Answers

Using a t-test, the test statistic is calculated as t = (x - μ) / (s / √n) = (9.6 - 10) / (2 / √20) = -0.894.

The critical value for a one-tailed test at α = 0.10 with 20 degrees of freedom is -1.328. Since the test statistic (-0.894) is not less than the critical value (-1.328), we fail to reject the null hypothesis.

The null hypothesis states that the population mean (μ) is less than 10. Based on the test results, we do not have sufficient evidence to support the claim that μ is less than 10 at the 0.10 significance level.

The test statistic is calculated by subtracting the hypothesized population mean from the sample mean and dividing it by the standard error of the mean. The critical value is obtained from the t-distribution table based on the desired significance level and degrees of freedom. By comparing the test statistic with the critical value, we determine whether to reject or fail to reject the null hypothesis. In this case, as the test statistic is not less than the critical value, we fail to reject the null hypothesis and conclude that there is insufficient evidence to support the claim that μ is less than 10.

Learn more about critical value here:

https://brainly.com/question/32607910

#SPJ11

10) (5 pts each) Convert the parametric or polar equations to rectangular equations. Describe the shape of the graph (parabola, circle, line, etc). It may help to draw a little sketch. You may use des

Answers

To convert parametric or polar equations to rectangular equations and describe the shape of the graph, we can use the given equations and apply appropriate transformations.

By expressing the equations in terms of x and y, we can identify the shape of the graph, whether it is a line, circle, parabola, or another geometric form.

Converting parametric or polar equations to rectangular equations involves expressing the equations in terms of x and y. Depending on the specific equations, we can use trigonometric identities, algebraic manipulations, or geometric considerations to obtain the rectangular form.

Once we have the rectangular equations, we can analyze the coefficients and exponents to determine the shape of the graph.

For example,

If the equations result in linear equations in the form y = mx + b, the graph represents a line.

If the equations involve quadratic terms and result in equations of the form y = a[tex]x^2[/tex] + bx + c, the graph represents a parabola.

Drawing a sketch of the resulting equations can help visualize the shape and characteristics of the graph.

By examining the coefficients, exponents, and constants in the rectangular equations, we can identify whether the graph represents a circle, ellipse, hyperbola, or other geometric form.

In summary, converting parametric or polar equations to rectangular equations allows us to describe the shape of the graph using terms such as line, circle, parabola, or others, based on the resulting equations.

To learn more about parametric or polar equations visit:

https://brainly.com/question/32386450

#SPJ11

Evaluate SSS 4xy dv where E is the region bounded by z = 2x2 + 2y2 - 7 and z = 1. O a. O O b. -32 3 Oc 128 3 Od. 64 64

Answers

To evaluate the triple integral of 4xy over the region E bounded by z = [tex]2x^2 + 2y^2 - 7[/tex] and z = 1, we need to set up the integral in terms of the appropriate limits of integration.

First, let's consider the limits for the x, y, and z variables:

For z, the lower limit is z = 1 and the upper limit is given by the equation of the upper surface, which is [tex]z = 2x^2 + 2y^2 - 7.[/tex]

For y, the limits are determined by the region E projected onto the yz-plane. To find these limits, we set z = 1 in the equation of the upper surface and solve for y:

[tex]2x^2 + 2y^2 - 7 = 12y^2 = 6 - 2x^2y^2 = 3 - x^2y = ±sqrt(3 - x^2[/tex])

Since the region E is symmetric with respect to the y-axis, we only need to consider the positive values of y.

For x, the limits are determined by the region E projected onto the xz-plane. To find these limits, we set y = 0 in the equation of the upper surface and solve for x:

[tex]2x^2 + 2(0)^2 - 7 = 12x^2 - 6 = 12x^2 = 7x^2 = 7/2x = ±sqrt(7/2)[/tex]

Again, since the region E is symmetric with respect to the x-axis, we only need to consider the positive values of x.

Now we can set up the triple integral:

[tex]∭E 4xy dv = ∫∫∫E 4xy dz dy dx[/tex]

Using the limits we derived earlier, the integral becomes:

[tex]∫(x=sqrt(7/2) to x=0) ∫(y=0 to y=sqrt(3-x^2)) ∫(z=1 to z=2x^2 + 2y^2 - 7) 4xy dz dy dx[/tex]

To evaluate this integral, you would need to perform the integration step by step. The final answer will be one of the options provided (a, b, c, or d).

Please note that without specific numerical values for the options, I cannot directly determine the correct answer for you. You would need to evaluate the integral and compare the result with the given options to determine the correct answer.

To evaluate the triple integral of 4xy over the region E bounded by z = [tex]2x^2 + 2y^2 - 7[/tex] and z = 1, we need to set up the integral in terms of the appropriate limits of integration.

First, let's consider the limits for the x, y, and z variables:

For z, the lower limit is z = 1 and the upper limit is given by the equation of the upper surface, which is [tex]z = 2x^2 + 2y^2 - 7.[/tex]

For y, the limits are determined by the region E projected onto the yz-plane. To find these limits, we set z = 1 in the equation of the upper surface and solve for y:

[tex]2x^2 + 2y^2 - 7 = 12y^2 = 6 - 2x^2y^2 = 3 - x^2y = ±sqrt(3 - x^2[/tex])

Since the region E is symmetric with respect to the y-axis, we only need to consider the positive values of y.

For x, the limits are determined by the region E projected onto the xz-plane. To find these limits, we set y = 0 in the equation of the upper surface and solve for x:

[tex]2x^2 + 2(0)^2 - 7 = 12x^2 - 6 = 12x^2 = 7x^2 = 7/2x = ±sqrt(7/2)[/tex]

Again, since the region E is symmetric with respect to the x-axis, we only need to consider the positive values of x.

Now we can set up the triple integral:

[tex]∭E 4xy dv = ∫∫∫E 4xy dz dy dx[/tex]

Using the limits we derived earlier, the integral becomes:

[tex]∫(x=sqrt(7/2) to x=0) ∫(y=0 to y=sqrt(3-x^2)) ∫(z=1 to z=2x^2 + 2y^2 - 7) 4xy dz dy dx[/tex]

To evaluate this integral, you would need to perform the integration step by step. The final answer will be one of the options provided (a, b, c, or d).

Learn more about integral here:

https://brainly.com/question/32674691

#SPJ11

Solve the linear system if differential equations given below using the techniques of diagonalization and decoupling outlined in the section 7.3 class notes. x'₁ = -2x₂ - 2x3 x'₂ = -2x₁2x3 x'3 = -2x₁ - 2x₂

Answers

we get differential  x₁(t) = c₁e^(-4t) - c₂e^(2t) - c₃e^(2t),x₂(t) = c₁e^(-4t) + c₂e^(2t),x₃(t) = c₁e^(-4t) + c₃e^(2t).To solve the given linear system of differential equations, we first find the eigenvalues and eigenvectors of the coefficient matrix.

The coefficient matrix in this case is

A = [[0, -2, -2], [-2, 0, -2], [-2, -2, 0]].

By solving the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix, we can find the eigenvalues. In this case, the eigenvalues are λ₁ = -4, λ₂ = 0, and λ₃ = 4.

Substituting the values of Y and P, we have:

[ x₁ ] [ 1 -1 -1 ] [ y₁ ]

[ x₂ ] = [ 1 1 0 ] * [ y₂ ]

[ x₃ ] [ 1 0 1 ] [ y₃ ]

Multiplying the matrices, we get:

[ x₁ ] [ y₁ - y₂ - y₃ ]

[ x₂ ] = [ y₁ + y₂ ]

[ x₃ ] [ y₁ + y₃ ]

Therefore, the solutions for the original system of differential equations are:

x₁(t) = y₁(t) - y₂(t) - y₃(t)

x₂(t) = y₁(t) + y₂(t)

x₃(t) = y₁(t) + y₃(t)

Substituting the solutions for y₁, y₂, and y₃ derived earlier, we can express the solutions for x₁, x₂, and x₃ in terms of the constants of integration c₁, c₂, and c₃:

x₁(t) = c₁e^(-4t) - c₂e^(2t) - c₃e^(2t)

x₂(t) = c₁e^(-4t) + c₂e^(2t)

x₃(t) = c₁e^(-4t) + c₃e^(2t)

These equations represent the solutions to the original system of differential equations using the techniques of diagonalization and decoupling.

Learn more about differential here:

https://brainly.com/question/32538700

#SPJ11

which recurrence relation describes the number of moves needed to solve the tower of hanoi puzzle with n disks?

Answers

The recurrence relation that describes the number of moves needed to solve the Tower of Hanoi puzzle with n disks is given by:

T(n) = 2T(n-1) + 1

This relation can be understood as follows:

To solve the Tower of Hanoi puzzle with n disks, we need to first move the top n-1 disks to an auxiliary peg, then move the largest disk from the source peg to the destination peg, and finally move the n-1 disks from the auxiliary peg to the destination peg.

The number of moves required to solve the Tower of Hanoi puzzle with n disks can be expressed in terms of the number of moves needed to solve the Tower of Hanoi puzzle with n-1 disks, which is 2T(n-1), plus one additional move to move the largest disk. Hence, the recurrence relation is T(n) = 2T(n-1) + 1.

This recurrence relation can be used to calculate the number of moves needed for any given number of disks in the Tower of Hanoi puzzle.

To learn more about recurrence relation visit:

brainly.com/question/31384990

#SPJ11

Other Questions
why are organic molecules so diverse compared to inorganic molecules olson discusses several christian writers that, over the centuries, helped to develop christian thinking about the holy spirit. one of these was basil how many grams of agcl will form by adding enough agno3 to react fully with 1500 ml of 0.400 m bacl2 solution? Refer to the Chance (Winter 2001) examination of SAT scores of students who pay a private tutor to help them improve their results. On the SAT-Mathematics test, these students had a mean change in score of 19 points, with a standard deviation of 65 points. In a random sample of 100 students who pay a private tutor to help them improve their results. (b) What is the likelihood that the change in the sample mean score is less than 10 points? a) 0.5+0.4162=0.9162. b) 0.5+0.0557=0.5557. c) 0.5-0.4162=0.0838. d) 0.5-0.0557=0.4443 what is the net gravitational force fout on a unit mass located on the outer surface of the dyson sphere described in part a? express your answer in newtons. a. x2+3x-10 lim X-5 x2-25 b. lim 12x4-2x2-7x x-00 3x4-8x3 2. (8 pts.) Find the derivatives. 5e*- a. f(x) = x b. g(x) = (5x5 - 2 ln x)11 3. (10 pts.) Wisebrook West, an apartment complex, has 250 units after being filtered out of the blood in the kidneys, how is water resorbed back into the blood? Data is _______ a. Are always be numeric b. Are always nonnumeric c. Are the raw material of statistics d. None of these alternatives is correct. A heavy rope, 40 ft long, weighs 0.8 lb/ft and hangs over theedge of abuilding 110 ft high. How much work is done in pulling half of therope to the top ofthe building?6. (12 points) A heavy rope, 40 ft long, weighs 0.8 lb/ft and hangs over the edge of a building 110 ft high. How much work is done in pulling half of the rope to the top of the building? civilization that gained power after the decline of the olmec Solve the initial value problem for r as a vector function of t. dr 9 Differential Equation: - di =(t+1) (t+1)1/2j+7e -1j+ ittk 1 -k t+1 Initial condition: r(0) = ) r(t) = (i+j+ (Ok disk shaped cytoplasmic fragments essential for blood clotting Let s(t) = 8t - 48t - 120t be the equation of motion for a particle. Find a function for the velocity. v(t) = Where does the velocity equal zero? t = and t = Find a function for the acceleration o binding of which complex increases the ability of rna polymerase to transcribe the lac operon? binding of which complex increases the ability of rna polymerase to transcribe the lac operon? open promoter complex inducer-repressor complex cap-camp complex corepressor complex You currently have all of your 1,000,000 wealth invested in anaggressive portfolio of UK stocks which has a beta of 1.3. You areconcerned that this is too risky a position. You can also invest(bo Suppose 3/ = ty + 5y2 + sec(t), sin(t)y+ty2 - 2. Y = This system of linear differential equations can be put in the form y' = P(t)y + g(t). Determine P(t) and g(t). P(t) = g(t) = Bluetooth devices are not backward compatible with previous versions. True or false? a) Su-Lo scored 45% in her test out of 80.what mark did shescore? Adamson will pay a dividend of $1.6 per share at the end of this year, the dividend will grow at a constant rate of 5.5%. Its common stock now sells for $37 per share. New stocks are expected to be sold to net $33.50 per share. Estimate Adamson's cost of retained earnings and its cost of new common stock. O 10.06%: 10.28% 9.47%: 10.02% 9.82%: 10.54% 9.82%: 10.28% O 10.06%: 10.54% explain in terms of le chatelier principle why increasing the concentration of h increases the concentration of latic acid