Question:
Solution:
Notice that the angle between the sides of the square is 90 degrees:
Therefore, the angle of the vertex of the triangle measures 45 degrees:
thus, we obtain the following right triangle:
Now, apply the following trigonometric identity:
[tex]\cos \text{ (45) = }\frac{s}{5\sqrt[]{2}}[/tex]solving for s, we get:
[tex]s\text{ = cos(45) . 5 }\sqrt[]{2}\text{ = 5}[/tex]then, we can conclude that the correct answer is:
[tex]s\text{ = 5}[/tex]write an expression for the perimeter of this pentagon. if the perimeter is 157 united find x
The perimeter of the pentagon = the sum of the lengths of the sides
There are two sides of the length (4x-1) and three sides of the length (3x+2)
so,
The perimeter =
[tex]2\cdot(4x-1)+3\cdot(3x+2)[/tex]Given the perimeter = 157
So,
[tex]2\cdot(4x-1)+3\cdot(3x+2)=157[/tex]Solve the equation to find the value of x
[tex]\begin{gathered} 2\cdot(4x-1)+3\cdot(3x+2)=157 \\ 8x-2+9x+6=157 \\ 17x+4=157 \\ 17x=157-4 \\ 17x=153 \\ \\ x=\frac{153}{17}=9 \end{gathered}[/tex]So, the value of x = 9
a) Twice the difference of a number c and forty.b) Four times the sum of a number f and fifty.
a) We have a number X that is twice the difference of a number c and 40.
We can write this as:
[tex]X=2(c-40)[/tex]b) Four times the sum of a number f and fifty.
Then, X is:
[tex]X=4(f+50)[/tex]Shawna is making smoothies. The recipe calls for 2 parts yogurt to 3 parts
blueberries. Shawna wants to make 10 cups of smoothie mix. How many cups of
yogurt and blueberries does Shawna need?
Answer: 4 part yogurt 6 part blueberries
Step-by-step explanation: 2+3=5 5x2=10 3x2=6 2x2=4 6+4=10
Need help answering all these questions for the red bird.Quadratic equation of the red bird: h(x) = -x^2 + 10x - 9King Pig located at the point (11,9) Moustache Pig located at the point (10,4)
The maximum heigh is located at the vertex. The vertex is:
[tex]\begin{gathered} V=(h,k) \\ where: \\ h=-\frac{b}{2a}=-\frac{10}{2(-1)}=5 \\ k=h(h)=-(5^2)+10(5)+9=-25+50-9=16 \end{gathered}[/tex]Therefore, the maximum height is the y-coordinate of the vertex which is 16.
The axis of symetry is located at the x-coordinate of the vertex,so:
The axis of symetry is x = 5.
The distance traveled can be found using the roots:
The roots of the equation are:
[tex]\begin{gathered} -x^2+10x-9=x^2-10x+9=(x-9)(x-1) \\ so \\ x=1 \\ or \\ x=9 \end{gathered}[/tex]So, the distance traveld is:
[tex]\Delta x=x2-x1=9-1=8[/tex]---
The bird will hit the ground on the second root, so:
The point where it hits the grund is (9,0).
The starting point is located at the first root, so the starting point is:
(1,0)
----------------------------------
A bourse named northern dancer won the Kentucky derby by running 1 1/4 miles in exactly 2 minutes. At this constant rate, how long does it take northern dancer to run the 1 1/2 mile Belmont stakes? Use unit rate
It is given that there are
[tex]1\frac{1}{4}=\frac{5}{4}\text{miles}[/tex]run in 2 minutes.
So, we have to determine time required to run
[tex]1\frac{1}{2}=\frac{3}{2}\text{miles}[/tex]Apply the unitary method,
For 5/4 miles required 2 minutes.
So , for 1 miles, time required
[tex]\frac{2}{\frac{5}{4}}=\frac{2\times4}{5}=\frac{8}{5}\min [/tex]Therefore,for 3/2 miles , time required is
[tex]\frac{3}{2}\times\frac{8}{5}=\frac{12}{5}\text{min}=2.4\min [/tex]Hence the time required is 2.4 minutes.
The pro shop at the Hidden Oaks Country Club ordered two brands of golf balls. Swinger balls cost$2.10 each and the Supra balls cost $1.00 each. The total cost of Swinger balls exceeded the total costof the Supra balls by $330.00. If an equal number of each brand was ordered, how many dozens ofeach brand were ordered?AnswerHow to enter your answer (opens in new window)KeypadKeyboard Shortcutdozen
The Solution:
Given that equal number of each brand of golf ball was ordered.
Let the number of each brand ordered be represented with n
Each swinger ball cost $2.10
So, the total cost of the swinger ball ordered is:
[tex]2.10n[/tex]Each Supra ball cost $1.00
So, the total cost of the supra ball ordered is:
[tex]\begin{gathered} 1.00\times n \\ \text{which becomes}\colon \\ n \end{gathered}[/tex]Given that the total cost of the Swinger balls exceeded the total cost of the Supra balls by $330.00. We have the linear equation below:
[tex]2.1n=n+330[/tex]We are required to find the number of dozens of each brand of golf balls that were ordered.
So, we shall solve for n and then divide the value by 12.
[tex]\begin{gathered} 2.1n=n+330 \\ \text{collecting the like terms, we get} \\ 2.1n-n=330 \\ 1.1n=330 \end{gathered}[/tex]Dividing both sides by 1.1, we get
[tex]\begin{gathered} \frac{1.1n}{1.1}=\frac{330}{1.1} \\ \\ n=300\text{ balls} \end{gathered}[/tex]Dividing 300 by 12 (since 1 dozen = 12 balls), we get
[tex]\frac{300}{12}=25\text{ dozens of each brand of golf balls were ordered.}[/tex]Therefore, the correct answer is 25 dozens.
Solve each system of equations please show your work! 3x+y-2z=22 x+5y+z=4 x=-3z
The solution of the system of equations are x = - 6 , y = 44 and z = 2
Given,
The system of equations;
3x + y - 2z = 22
x + 5y + z = 4
x = -3z
We have to solve the given equations;
Substitute x = -3z in both equations;
3x + y - 2z = 22
⇒ 3 × -3z + y - 2z = 22
⇒ - 9z + y - 2z = 22
⇒ - 11z + y = 22
And,
x + 5y + z = 4
⇒ - 3z + 5y + z = 4
⇒ 5y - 2z = 4
Solve the equations - 11z + y = 22 and 5y - 2z = 4
We get,
⇒ y = 44 and z = 2
So, x = - 3z
⇒ x = - 3 × 2
⇒ x = - 6
Thus, The solution of the system of equations are;
⇒ x = - 6 , y = 44 and z = 2
Learn more about solution for system of equations here;
https://brainly.com/question/29040805
#SPJ1
Leah invested $400 in an account paying an interest rate of 1 1/2%compounded annually. Lauren invested $400 in an account paying aninterest rate of 0 7/8% compounded monthly. To the nearest hundredth of ayear, how much longer would it take for Lauren's money to triple than forLeah's money to triple?
Leah investment is:
[tex]M_{\text{Leah}}=400_{}\cdot1.5^y[/tex]Where M is the ammount of money that she has, and y the number of years.
We want to know the number of years that must elapse for her investment to triple, so we want to know the value of y such that:
[tex]\begin{gathered} 3\cdot400=400\cdot(1+\frac{1.5}{100})^y \\ 3=(1.015)^y \\ \ln 3=y\cdot\ln (1.015) \\ y=\frac{\ln (3)}{\ln (1.015)}\cong73.788\cong73.79 \end{gathered}[/tex]It will take 73.79 years to triple her investment.
Lauren investment is:
[tex]M_{\text{Lauren}}=400\cdot(1+\frac{7}{8}\cdot\frac{1}{100})^m=400\cdot(1.00875)^{\frac{y}{12}}[/tex]Where M is the ammount of money that she has, and m the number of months, and y is the number of years.
We want to know the number of years that must elapse for her investment to triple, so we want to know the value of y such that:
[tex]\begin{gathered} 3\cdot400=400\cdot(1.00875)^{\frac{y}{12}} \\ 3=(1.00875)^{\frac{y}{12}} \\ \ln 3=\frac{y}{12}\ln (1.00875) \\ y=12\cdot\frac{\ln 3}{\ln (1.00875)} \\ y=1513.25 \end{gathered}[/tex]Mackenzie drove 68 miles in 1\tfrac{3}{5}1 5 3 hours. On average, how fast did she drive, in miles per hour? Enter your answer as a whole number, proper fraction, or mixed number in simplest form.
By taking the quotient between distance and time, we conclude that her speed is 108.8 miles per hour.
How to find her speed?
Here we will use the next relation:
speed = distance/time.
Here we know that Mackenzie drove 68 miles in (1 + 3/5) hours, then:
distance = 68 mi
time = (1 + 3/5) hours = (8/5) hours.
Then the speed will be:
speed = 68mi/(8/5) hours. = 68*(8/5) mi/h = 108.8 mi/h
Learn more about speed:
https://brainly.com/question/4931057
#SPJ1
the equation of line u is y=2x+8/9. line v includes the point (7,9) and is parallel to line u. what is the equation of.line v
The linear equation parallel to line u that passes through (7,9) is y = 2x - 5
How to find the equation of line V?
Two lines are parallel if have the same slope, we know that line V is parallel to:
y = 2x + 8/9
Then line V will be of the form:
y = 2x + c
To find the value of c, we use the fact that the line passes through (7, 9), replacing these values we get:
9 = 2*7 + c
9 = 14 + c
9 - 14 = c
-5 = c
The linear equation is y = 2x - 5
Learn more about linear equations
https://brainly.com/question/1884491
#SPJ1
A chemist is using 357 milliliters of a solution of acid and water. If 18.6%of the solution is acid, how many milliliters of acid are there? Round your answer to the nearest tenth.
There are 66.4 milliliters of acid in the solution
Explanation:The amount of the solution of acid and water = 357
Percentage composition of acid in the solution = 18.6%
Amount of acid in the solution = (18.6/100) x 357
Amount of acid in the solution = 66.402 milliliters
Amount of acid in the solution = 66.4 milliliters (to the nearest tenth)
There are 66.4 milliliters of acid in the solution
Write the equation of a quadratic in general form, given its solutions.x=4 ; x=-1
The given solutions of the quadratic equation:
x = 4 and x = -1
First we make them factors of the equation:
x= 4 becomes:
[tex]x-4\text{ = 0}[/tex]and x = -1 becomes:
[tex]x\text{ + 1 = 0}[/tex]So (x-4) and (x+1) are the factors.
To get the general quadratic equation, we would expand the factors
[tex]\begin{gathered} (x-4)(x+1)\text{ = 0 } \\ x(x+1)\text{ -4(x+1) = 0} \\ x^2+x\text{ -4x-4 = 0} \end{gathered}[/tex][tex]\begin{gathered} Adding\text{ like terms} \\ x^2-3x-4\text{ = 0} \end{gathered}[/tex]The general quadratic equation:
[tex]x^2\text{ - 3x - 4 = 0}[/tex]The perimeter of a living room is 68 feet.if the length of the living room is 18 feet what is the width of the living room
the perimeter of a cuadrilateral is 2L+2W=68 where L is the length of the room
since L= 18 feet
we will have that
2(18)+2W=68
then
W=(68-36)/2= 32/2=16
Therefore, the width of the living room is 16 feet.Hello, i was in the middle of a tutor explaining and that appt glitched and lost the tutor
The expression is -16 when m = 6
Explanation:Given:
[tex]m^2-9m+2[/tex]When m = 6, we have:
[tex]\begin{gathered} 6^2-9(6)+2 \\ =36-54+2 \\ =-16 \end{gathered}[/tex]An emperor penguin has
76,634 feathers. The penguin has about 27 times as many feathers as a blue jay.
About how many feathers does the blue jay have?
Answer:
2,842 feathers
Step-by-step explanation:
An emperor penguin has 76,634 feathers. The penguin has about 27 times as many feathers as a blue jay. About how many feathers does the blue jay have?
76,634/27 = 2,842 feathers
need help with this question please help
Let:
[tex]k\cdot RT=TU[/tex]Where:
k = Constant of proportionality
[tex]\begin{gathered} k\cdot4=6 \\ solve_{\text{ }}for_{\text{ }}k \\ k=\frac{6}{4} \\ k=\frac{3}{2} \end{gathered}[/tex]So:
[tex]\begin{gathered} k\cdot RS=UV \\ \frac{3}{2}(6)=UV \\ \frac{18}{2}=UV \\ UV=9 \end{gathered}[/tex]Please ANSWER this
The table shows the parts of gelatin and water used to make a dessert.
Boxes of Gelatin Powder (oz) Water (cups)
3 9 6
7
At this rate, how much gelatin and water will Jeff use to make 7 boxes?
Jeff will use 14 oz of powder and 21 cups of water to make 7 boxes of gelatin.
Jeff will use 13 oz of powder and10 cups of water to make 7 boxes of gelatin.
Jeff will use 27 oz of powder and 18 cups of water to make 7 boxes of gelatin.
Jeff will use 21 oz of powder and 14 cups of water to make 7 boxes of gelatin.
Jeff needs 21 oz of gelatin and 14 cups of water to make 7 boxes
How to determine the amount of gelatin and water needed to make 7 boxes?The table of values is given as
Boxes Gelatin Powder (oz) Water (cups)
3 9 6
From the above table, we can see that
Gelatin Powder = 3 * Boxes
Water = 2 * Boxes
When there are 7 boxes, the equations become
Gelatin Powder = 3 * 7
Water = 2 * 7
Evaluate the products in the above equation
So, we have
Gelatin Powder = 21
Water = 14
Hence, the amount of gelatin and water needed to make 7 boxes are 21 oz and 14 cups respectively
Read more about proportions at
https://brainly.com/question/16828793
#SPJ1
Answer: D: jeff will use 21 oz of powder and 14 cups of water
Step-by-step explanation:
the chart says there are
3 boxes of gelatin ) 9 oz of powder ) 6 cups of water
that equals the same as
1 box of gelatin ) 3 oz of power ) 2 cups of water
so for every box of gelatin, there is 3oz of powder and 2 cups of water
if he wants to make 7 boxes.....
7x3oz=21 oz
7x2cups=14 cups
so the Answer is D
find the measure of a triangle if the vertices of triangle EFG are E(-3,3), F(1,-1), and G(-3,-5). then classify the triangle by its sides
EFG is a triangle with vertices
E(-3,3), F(1,-1) and G(-3,-5).
First, let us evaluate the length of each side of the triangle using the distanec formula.
[tex]\begin{gathered} EF=\sqrt[]{(1+3)^2+(-1-3)^2} \\ =\sqrt[]{16+16} \\ =\sqrt[]{32} \\ =4\sqrt[]{2} \\ FG=\sqrt[]{(-3-1)^2+(-5+1)^2} \\ =\sqrt[]{16+16} \\ =4\sqrt[]{2} \\ EG=\sqrt[]{(-3+3)^2+(-5-3)^2} \\ =\sqrt[]{8^2} \\ =8 \end{gathered}[/tex]Since two sides of the triangle are equal, therefore, EFG is an isoscele triangle.
A commercial citrus farm has decided to mechanise the planting operation. A tractor was
purchased that can plant and water seedlings automatically with pneumatic tubes. In order to
ensure the saplings receive the correct amount of water, a maximum variance of 55mm2
is
tolerated when watering. A sample of 31 planting lines were measured and the variance was
found to be 68mm2
. Test at 1% level of significance if the tractor is not operating correctly.
From the checks and calculation the tractor is not operating correctly.
What is standard deviation?Standard deviation refers to by how how much the data varies from the mean
How to determine if the tractor is not operating correctlyGiven data form the question
1% level of significance
variance was found to be 68mm2
A sample of 31 planting lines
a maximum variance of 55mm2
Definition of variables
1% level of significance is equivalent to 99% confidence interval
mean sample, μ = ?
standard deviation, SD = √variance = √68 = 8.246
Z score, Z = 2.576
from z table z score of 99%confidence interval = 2.576sample size, n = 31
maximum variance, X = 55mm2
The formula in term s of Z is
Z = ( X - μ ) / SD
2.576 = (55 - μ) / 8.246
(55 - μ) = 2.576 * 8.246
55 - μ = 21.242
μ = 55 - 21.242
μ = 33.758 mm²
For the tractor to be working correctly the difference between the mean and 2 * SD should not be more than the maximum variance which is 55mm²
55mm² ≥ mean ± 2 * SD
55mm² ≥ 33.758 mm² ± 2 * 8.246
55mm² ≥ 50.25
Since 50.25 is less than the maximum variance the tractor is operating correctly
Learn more about standard deviation at: https://brainly.com/question/26941429
#SPJ1
(G.lla, 1 point) Use the circle shown to answer the question. ♡ If MAC = 64. and m 2 ABC 16) find the value of x. A. 12 B 36 C. 25 D. 24
12
1) In this case, we have two chords within that circle. And since the arc = 64º and the m ∠ABC = 4x -16
2) Applying one Theorem that states that
3) So we can write:
[tex]\begin{gathered} (4x-16)\text{ =}\frac{64}{2} \\ 4x-16\text{ =32} \\ 4x\text{ =32+16} \\ 4x\text{ = 48} \\ x=12 \end{gathered}[/tex]So the value of x = 12
1. The figure shows the regular triangular pyramid SABC. The base of the pyramid has an edge AB = 6 cm and the side wall has an apothem SM = √15 cm. Calculate the pyramid: 1) the base elevation AM; 2) the elevation SO; 3) the area of the base; 4) the area of the side surface; 5) the total surface area; 6) volume.
Given:
• AB = 6 cm
,• SM = √15 cm
Let's solve for the following:
• 1) the base elevation AM.
Given that we have a regular triangular pyramid, the length of the three bases are equal.
AB = BC = AC
BM = BC/2 = 6/2 = 3 cm
To solve for AM, which is the height of the base, apply Pythagorean Theorem:
[tex]\begin{gathered} AM=\sqrt{AB^2-BM^2} \\ \\ AM=\sqrt{6^2-3^2} \\ \\ AM=\sqrt{36-9} \\ \\ AM=\sqrt{27} \\ \\ AM=5.2\text{ cm} \end{gathered}[/tex]The base elevation of the pyramid is 5.2 cm.
• (2)., The elevation SO.
To find the elevation of the pyramid, apply Pythagorean Theorem:
[tex]SO=\sqrt{SM^2-MO^2}[/tex]Where:
SM = √15 cm
MO = AM/2 = 5.2/2 = 2.6 cm
Thus, we have:
[tex]\begin{gathered} SO=\sqrt{(\sqrt{15})^2-2.6^2} \\ \\ SO=\sqrt{15-6.76} \\ \\ SO=2.9\text{ cm} \end{gathered}[/tex]Length of SO = 2.9 cm
• (3). Area of the base:
To find the area of the triangular base, apply the formula:
[tex]A=\frac{1}{2}*BC*AM[/tex]Thus, we have:
[tex]\begin{gathered} A=\frac{1}{2}*6^*5.2 \\ \\ A=15.6\text{ cm}^2 \end{gathered}[/tex]The area of the base is 15.6 square cm.
• (4). Area of the side surface.
Apply the formula:
[tex]SA=\frac{1}{2}*p*h[/tex]Where:
p is the perimeter
h is the slant height, SM = √15 cm
Thus, we have:
[tex]\begin{gathered} A=\frac{1}{2}*(6*3)*\sqrt{15} \\ \\ A=34.86\text{ cm}^2 \end{gathered}[/tex]• (5). Total surface area:
To find the total surface area, apply the formula:
[tex]TSA=base\text{ area + area of side surface}[/tex]Where:
Area of base = 15.6 cm²
Area of side surface = 34.86 cm²
TSA = 15.6 + 34.86 = 50.46 cm²
The total surface area is 50.46 cm²
• (6). Volume:
To find the volume, apply the formula:
[tex]V=\frac{1}{3}*area\text{ of base *height}[/tex]Where:
Area of base = 15.6 cm²
Height, SO = 2.9 cm
Thus, we have:
[tex]\begin{gathered} V=\frac{1}{3}*15.6*2.9 \\ \\ V=15.08\text{ cm}^3 \end{gathered}[/tex]The volume is 15.08 cm³.
ANSWER:
• 1.) 5.2 cm
,• 2.) 2.9 cm
,• 3.) 15.6 cm²
,• 4.) 34.86 cm²
,• (5). 50.46 cm²
,• 6). 15.08 cm³.
complete by using square x^2 + 4x + 1 = 0
Given:
The eqution is given as, x^2 + 4x + 1 = 0.
The objective is to solve the equation by compleing the square.
Consider the middle of the equation.
[tex]2\cdot a\cdot b=4x[/tex]Here, the value of a is x. Then, the value of b can be calculated as,
[tex]\begin{gathered} 2(x)\cdot b=4x \\ b=\frac{4x}{2x} \\ b=2 \end{gathered}[/tex]To complete the equation add +b^2 and -b^2 to the equation.
[tex]\begin{gathered} x^2+4x+2^2-2^2+1=0 \\ x^2+4x+2^2-4+1=0 \\ x^2+4x+2^2-3=0 \\ (x+2)^2-3=0 \\ (x+2)^2=3 \end{gathered}[/tex]Take square root on both sides, to solve the value of x,
[tex]\begin{gathered} \sqrt[]{(x+2)^2}=\sqrt[]{3} \\ x+2=\pm\sqrt[]{3} \\ x=\pm\sqrt[]{3}-2 \\ x=+\sqrt[]{3}-2\text{ and -}\sqrt[]{3}-2 \end{gathered}[/tex]Hence, the value of x are +√3-2 and -√3-2.
Determine whether the following relation is a function. Then state the domain and range of the relation or function.{(7,6), (4,-6), (0,-1), (3,3), (1,1)}Is this relation a function? Choose the correct answer below.A.Yes, because each first component corresponds to exactly one second component.B.No, because each first component corresponds to more than one second component.C.Yes, because each first component corresponds to more than one second component.D.No, because each first component corresponds to exactly one second component.
A function is a relation in which each possible input value leads to exactly one output value. We say “the output is a function of the input.”
The input values make up the domain, and the output values make up the range.
The relation is given to be:
[tex]\mleft\lbrace(7,6\mright),(4,-6),(0,-1),(3,3),(1,1)\}[/tex]To classify a function, get the input and output values. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.
The input values are: {7, 4, 0, 3, 1}
The output values are: {6, -6, -1, 3, 1}
Therefore, the relation is a function.
The correct option is OPTION A: Yes, because each first component corresponds to exactly one second component.
The domain is:
[tex]\mleft\{7,4,0,3,1\mright\}[/tex]The range is:
[tex]\mleft\{6,-6,-1,3,1\mright\}[/tex]Higher Order ThinkingIn 448,244, how is the relationship between the first pair of 4s the same as the relationship between the second pair of 4s?4 grade studentLesson place value relationship
In the number 44,244, we can see two pairs of 4's.
The first pair (to the left) has a higher value than the second pair to the right, but the 4's have something in common: The leftmost 4 is ten times as high as the rightmost 4.
For this reason, we start the number as forty-four thousand and end up with forty-four.
Find the measurement of each subject. Assume that each figure is not drawn to scale.
To obtain the measure of segment AD, add the measurement of segment AC and segment CD.
[tex]AD=AC+CD=2\frac{3}{8}+1\frac{1}{4}[/tex]Rewrite the fraction part as similar fractions. Multiply the numerator and teh denominator of the second fraction by 2 to obtain 8 in the denominator.
[tex]\begin{gathered} AC+CD=2\frac{3}{8}+1\frac{1\cdot2}{4\cdot2} \\ =2\frac{3}{8}+1\frac{2}{8} \end{gathered}[/tex]Add the whole numbers, 2 and 1. Add the numerators, 3 and 2, and then copy the common denominator, which is 8.
[tex]\begin{gathered} AD=2\frac{3}{8}+1\frac{2}{8} \\ =3\frac{5}{8}_{} \end{gathered}[/tex]Therefore, the correct answer is the third option, 3 5/8 in.
The table shows the cost for a clothing store to buy jeans and khakis. The total cost for Saturday's shipment, $1,800, is represented by the equation 15x + 20y = 1,800. Use the x- and y-intercepts to graph the equation. Then interpret the x- and y-intercepts.
The graph of the given function is attached below.
x intercept means if there will be no khakis shipped, then there will be 120 jeans shipped.
Also, y -intercept means if there will be no jeans shipped, then there will be 90 khakis shipped.
Given equation:-
15x + 20y = 1800
Where,
x represents the number of jeans shipped and,
y represents the number of khakis shipped
We have to use the x and y-intercepts to graph the equation.
Putting x = 0 to find the y -intercept, we get,
15(0) + 20y =1800
0 + 20y = 1800
y = 1800/20
y = 90
The coordinates of the point will be (0,90).
Putting y = 0 to find the x -intercept, we get,
15x + 20(0) =1800
15x + 0 = 1800
x = 1800/15
x = 120
The coordinates of the point will be (120,0).
Using the coordinates, we have graphed the graph attached.
Here, x intercept means if there will be no khakis shipped, then there will be 120 jeans shipped.
Also, y -intercept means if there will be no jeans shipped, then there will be 90 khakis shipped.
To learn more about equation, here:-
https://brainly.com/question/10413253
#SPj1
PartBecause his goal is to bike 65 miles over four days, what equation can be used to find the number of miles he should bike on the first day, X? Donot combine like terms.
On the first day, he biked x miles
The next day, he will bike
The area of a picture projected on a wall varies directly at the square of the distance from the projector to the wall if a 10ft distance produces a 16 feet squared (^2) picture, what is the area of the picture produced when the projection unit is moved to a distance 20 ft from the wall?
The new picture is 64 ft squared. Surface area refers to the area of an open surface or the boundary of a three-dimensional object, whereas the area of a plane region or plane area refers to the area of a form or planar lamina.
What is area?The measurement that expresses the size of a region on a plane or curved surface is called area. Surface area refers to the area of an open surface or the boundary of a three-dimensional object, whereas the area of a plane region or plane area refers to the area of a form or planar lamina.
We are given the relation: Area of pic = constant * d^2, where d is distance from projector to wall.
For d = 10, we have A = 16 ft sqrd
Now given d = 20
what is A?
constant = 16/10*10
new A = [16/100] * 20*20 = 16 * 4 = 64 ft sqrd.
The new picture is 64 ft squared.
To learn more about area refer to:
https://brainly.com/question/25292087
#SPJ1
A trampoline park charges $2 plus an hourly rate for each hour. The sign to theright gives the prices for up to 3 hours of parking. Which linear equationrepresents the given information where C is the total cost and h is the number ofhours spent at the park?
Given the following question:
Trampoline park charges $2 plus an hourly rate for each hour (variable h)
Sign gives prices for up to three hours of parking
C = total cost
h = hours
C = total cost
The sign goes up 12 dollars for every hour
The sign goes up to 3 hours
Option A isn't the answer because the sign only goes up to 3 hours
Your answer is option B
Since c represents total cost
2h = 2 +12 which is plus 12 dollars every hour
is this right triangle shown a right triangle? 50 cm2 40mc2 20cm2 Explain your reasoning.
Solution:
Note that :
[tex]2500=50^2\ne\text{ }40^2+20^2=2000[/tex]and If the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle. In this case, this statement is not true. We can conclude that it is not a right triangle.