Find the distance between the points (4,1) and (2,4) using distance formula

Answers

Answer 1

Given:-

[tex](4,1)(2,4)[/tex]

To find the distance.

So the distance formula is,

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Substituting we get,

[tex]\begin{gathered} d=\sqrt{(2-4)^2+(4-1)^2} \\ d=\sqrt{-2^2+3^2} \\ d=\sqrt{4+9} \\ d=\sqrt{13} \end{gathered}[/tex]

So the required distance is root 13.


Related Questions

Be specific with your answer thank you thank you thank you bye-bye

Answers

The y-axis on the graph, that shows us the cost, goes from 2 to 2 units.

To find the cost at option one, the red line, we look in the graph where the line is when x = 80.

For x= 80, y= 58

Now, the same for option 2:

For x = 80, y= 44.

58-44 = 14

Answer: The difference is 14.

suppose that z varies jointly with x and y. When x=2, y=2, z=7 write the equation that models the relationship

Answers

[tex]\begin{gathered} z=\text{ x + y + b} \\ 7\text{ = 2+2+b} \\ 7\text{ = 4+b} \\ 7-4=b \\ b=\text{ 3} \\ z=\text{ x + y +3} \end{gathered}[/tex]

A trapezoid has a height of 16 miles. The lengths of the bases are 20 miles and 35miles. What is the area, in square miles, of the trapezoid?

Answers

Given:

A trapezoid has a height of 16 miles.

The lengths of the bases are 20 miles and 35 miles.

To find:

The area of the trapezoid.

Explanation:

Using the area formula of the trapezoid,

[tex]A=\frac{1}{2}(b_1+b_2)h[/tex]

On substitution we get,

[tex]\begin{gathered} A=\frac{1}{2}(20+35)\times16 \\ =\frac{1}{2}\times55\times16 \\ =440\text{ square miles} \end{gathered}[/tex]

Therefore the area of the trapezoid is 440 square miles.

Final answer:

The area of the trapezoid is 440 square miles.

Assume that each circle shown below represents one unit. Express the sha amount as a single fraction and as a mixed number. One Fraction: Mixed Number:

Answers

The shaded portions for the first three circles are a total of 15 while for the fourth one is 1. As a fraction it is therefore,

[tex]\frac{16}{5}[/tex]

As mixed numbers it is;

[tex]3\frac{1}{5}[/tex]

What are all of the x-intercepts of the continuousfunction in the table?Х-4-20246f(x)02820-20 (0,8)O (4,0)O (4,0), (4,0)O (4,0), (0, 8), (4,0)

Answers

The x-intercepts of any function f(x) occur when f(x)=0.

As a reminder, f(x) corresponds to the y coordinate for any given x.

So, we need to focus on the parts of the table where f(x)=0 and look at the x value, that will give us the coordinates of the x-intercepts.

We can see the first entry in the table has f(x)=0 and x= -4.

The only other entry in the table where f(x)=0 has x=4.

As such, the x-intercepts of the given function are (-4,0) and (4,0), which are the coordinates presented in the third option.

How much of the wall does the mirror cover? Use the π button in your calculations and round your answer to the nearest hundredths. Include units.

Answers

Since the diameter of the mirror is given, calculate the area of the mirror using the formula

[tex]A=\frac{1}{4}\pi\cdot(D)^2[/tex]

replace with the information given

[tex]\begin{gathered} A=\frac{1}{4}\pi\cdot24^2 \\ A=144\pi\approx452.39in^2 \end{gathered}[/tex]

The mirror covers 452.39 square inches.

Imagine you asked students to draw an area model for the expression 5+4x2.
Walking around the room, you see the following three area models.

First, briefly explain the student thinking process you think might be behind each answer.

Answer Describe the thinking process

Which order would you call students A, B and C to present their work to the class and how would you guide the discussion?

Answers

Answer:

area 1

Step-by-step explanation:

I need help creating a tree diagram for this probability scenario

Answers

We need to draw a tree diagram for the information given

The total is 400

120 in finance course

220 in a speech course

55 in both courses

Then we start for a tree for the given number

Then to make the tree for probability we will divide each number by a total 400

Then the probability of finance only is 65/400

The probability of speech only is 165/400

The probability of both is 55/400

The probability of neither is 5/400

The probability of finance or speech is 285/400

Consider the angle shown below that has a radian measure of 2.9. A circle with a radius of 2.6 cm is centered at the angle's vertex, and the terminal point is shown.What is the terminal point's distance to the right of the center of the circle measured in radius lengths? ______radii   What is the terminal point's distance to the right of the center of the circle measured in cm?_______ cm   What is the terminal point's distance above the center of the circle measured in radius lengths?_____ radii   What is the terminal point's distance above the center of the circle measured in cm? _____cm   

Answers

Remember that we can use some trigonometric identities to find relations between distances in a circle when the central angle is provided:

If we measure each distance in radius lengths, it is equivalent to take r=1 on those formulas.

A)

The terminal point's distance to the right of the center of the circle, measured in radius lengths, would be:

[tex]\cos (2.9\text{rad})=-0.9709581651\ldots[/tex]

This distance is signed since it indicates an orientation, but we can ignore the sign if we are only interested on the value of the distance.

Then, such distance would be approximately 0.97 radii,

B)

Multiply the distance measured in radius lengths by the length of the radius to find the distance measured in cm:

[tex]0.97\times2.6cm=2.52\operatorname{cm}[/tex]

C)

The terminal point's distance above the center of the circle can be calculated using the sine function:

[tex]\sin (2.9\text{rad})=0.2392493292\ldots[/tex]

Therefore, such distance is approximately 0.24 radii.

D)

Multiply the distance measured in radius length times the length of the radius to find the distance measured in cm:

[tex]0.24\times2.6\operatorname{cm}=0.62\operatorname{cm}[/tex]

Which of the following is the result of using the remainder theorem to find F(-2) for the polynomial function F(x) = -2x³ + x² + 4x-3?

Answers

Solution

We have the polynomial

[tex]f(x)=-2x^3+x^2+4x-3[/tex]

Usin the remainder theorem, we find f(-2) by substituting x = -2

So we have

[tex]\begin{gathered} f(x)=-2x^{3}+x^{2}+4x-3 \\ \\ f(-2)=-2(-2)^3+(-2)^2+4(-2)-3 \\ \\ f(-2)=-2(-8)+4-8-3 \\ \\ f(-2)=16+4-8-3 \\ \\ f(-2)=20-11 \\ \\ f(-2)=9 \end{gathered}[/tex]

Therefore, the remainder is

[tex]9[/tex]

Anna weighs 132 lb. Determine her mass in kilograms using the conversion 1 kg equal 2.2 lb. Use this mass to answer this question. calculate Anna's weight on Jupiter. (G= 25.9 m/ S2) must include a unit with your answer

Answers

Input data

132 lb

132 lb * 1kg / 2.2lb = 60 kg

Anna's weight on Jupiter

w = 60 kg * 25.9 m/S2

w = 1554 N

Write the first 4 terms of the sequence defined by the given rule. f(1)=7 f(n)=-4xf(n-1)-50

Answers

The first 4 terms of the sequence defined by the rule f(n) = -4 x f(n - 1) - 50 are 7,

Sequence:

A sequence is an enumerated collection of objects in which repetitions are allowed and order matters.

Given,

The rule of the sequence is  f(n) = -4 x f(n - 1) - 50

Value of the first term = f(1) = 7

Now we need to find the other 4 others in the sequence.

To find the value of the sequence we have to apply the value of n.

Here we have to take the value of n as 1, 2, 3, and 4.

We already know that the value of f(1) is 7.

So, now we need to find the value of f(2), that is calculated by apply the value on the given rule,

f(2) = -4 x f(2 - 1) - 50

f(2) = -4 x f(1) - 50

f(2) = -4 x 7 - 50

f(2) = -28 - 50

f(2) = -78

Similarly, the value of n as 3, then the value of f(3) is,

f(3) = -4 x f(3 - 1) - 50

f(3) = -4 x f(2) - 50

f(3) = -4 x - 78 - 50

f(3) = 312 - 50

f(3) =  262

Finally, when we take the value of n as 4 then the value of f(4) is,

f(4) = -4 x f(4 - 1) - 50

f(4) = -4 x f(3) - 50

f(4) = -4 x 262 - 50

f(4) = -1048 - 50

f(4) =  -1099

Therefore, the first 4 sequence are 7, - 78, 262 and -1099.

To know more about Sequence here.

https://brainly.com/question/21961097

#SPJ1

please help me please

Answers

F (x) = (-1/20)x + 13.6

Then

Radmanovics car y -intercept is= 13.6 gallons

Mr Chin's car y-intercept is= 13.2

Then , in consecuence

Radmanovics car has a larger tank, than Mr Chin's car.

Answer is OPTION D)

38. A right rectangular prism has a volume of 5 cubic meters. The length ofthe rectangular prism is 8 meters, and the width of the rectangular prismis a meter.What is the height, in meters, of the prism?Niu4© 30 10

Answers

It's important to know that the volume formula for a rectangular prism is

[tex]V=l\cdot w\cdot h[/tex]

Where V = 5, l = 8, and w = 1. Let's use these values and find h

[tex]\begin{gathered} 5m^3=8m\cdot1m\cdot h \\ h=\frac{5m^3}{8m^2} \\ h=0.625m \end{gathered}[/tex]Hence, the height of the prism is 0.625 meters.

find a slope of the line that passes through (8,8) and (1,9)

Answers

The slope formula is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

we can use this formula by introducing the values of the given points. In our case

[tex]\begin{gathered} (x_1,y_1)=(8,8) \\ (x_2,y_2)=(1,9) \end{gathered}[/tex]

Hence, we have

[tex]m=\frac{9-8}{1-8}[/tex]

It yields,

[tex]m=\frac{1}{-7}[/tex]

hence, the answer is

[tex]m=-\frac{1}{7}[/tex]

Determine which is the better investment 3.99% compounded semi annually Lee 3.8% compounded quarterly round your answer 2 decimal places

Answers

Remember that

The compound interest formula is equal to

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

In the 3.99% compounded semiannually

we have

r=3.99%=0.0399

n=2

substitute

[tex]\begin{gathered} A=P(1+\frac{0.0399}{2})^{2t} \\ \\ A=P(1.01995)^{2t} \end{gathered}[/tex]

and

[tex]\begin{gathered} A=P[(1.01995)^2]^t \\ A=P(1.0403)^t \end{gathered}[/tex]

the rate is r=1.0403-1=0.0403=4.03%

In the 3.8% compounded quarterly

we have

r=3.8%=0.038

n=4

substitute

[tex]\begin{gathered} A=P(1+\frac{0.038}{4})^{2t} \\ A=P(1.0095)^{2t} \\ A=P[(1.0095)^2]^t \\ A=P(1.0191)^t \end{gathered}[/tex]

the rate is r=1.0191-1=0.0191=1.91%

therefore

the 3.99% compounded semiannually is a better investment

"Solve for x. Enter as a decimal not as a fraction. Round to the nearest hundredth if necessary."

Answers

Answer:

x =

5

Explanation

From the given diagram, it can be infered that WY = 2QR

From the diagram

WY = x+9

QR = 2x-3

substitute into the expression

x+9 = 2(2x-3)

x+9 = 4x - 6

Collect the like terms

x-4x = -6-9

-3x = -15

x = -15/-3

x = 5

Hence the value of x is 5

An insurance company offers flood insurance to customers in a certain area. Suppose they charge $500 fora given plan. Based on historical data, there is a 1% probability that a customer with this plan suffers aflood, and in those cases, the average payout from the insurance company to the customer was $10,000.Here is a table that summarizes the possible outcomes from the company's perspective:EventFloodPayout Net gain (X)$10,000 -$9,500$0$500No floodLet X represent the company's net gain from one of these plans.Calculate the expected net gain E(X).E(X) =dollars

Answers

The given is a discrete random variable.

For a discrete random variable, the expected value is calculated by summing the product of the value of the random variable and its associated probability, taken over all of the values of the random variable.

It is given that the probability of a flood is 1%=0.01.

It follows that the probability of no flood is (100-1)%=99%.

Hence, the expected net gain is:

[tex]E(X)=0.01(-9500)+0.99(500)=-95+495=400[/tex]

Hence, the expected net gain is $400.

The expected net gain is E(X) = $400.

Sparkles the Clown makes balloon animals for children at birthday parties. At Bridget's party, she made 5 balloon poodles and 1 balloon giraffe, which used a total of 15 balloons. For Eduardo's party, she used 7 balloons to make 1 balloon poodle and 1 balloon giraffe. How many balloons does each animal require?

Answers

Let p be the number of balloons required to make one balloon poodle and g the number of balloons required to make one balloon giraffe.

Then we have:

I) 5p + g = 15

II) p + g = 7

Subtracting equation II from equation I, we have:

5p - p + g - g = 15 - 7

4p = 8

p = 8/4

p = 2

Replacing p with 2 in equation II we have:

2 + g = 7

g = 7 - 2

g = 5

Answer: Each poodle requires 2 balloons and each giraffe requires 5 balloons.

hello I'm stuck on this question and need help thank you

Answers

Explanation

[tex]\begin{gathered} -2x+3y\ge9 \\ x\ge-5 \\ y<6 \end{gathered}[/tex]

Step 1

graph the inequality (1)

a) isolate y

[tex]\begin{gathered} -2x+3y\geqslant9 \\ add\text{ 2x in both sides} \\ -2x+3y+2x\geqslant9+2x \\ 3y\ge9+2x \\ divide\text{ both sides by 3} \\ \frac{3y}{3}\geqslant\frac{9}{3}+\frac{2x}{3} \\ y\ge\frac{2}{3}x+3 \end{gathered}[/tex]

b) now, change the symbol to make an equality and find 2 points from the line

[tex]\begin{gathered} y=\frac{2}{3}x+3 \\ i)\text{ for x=0} \\ y=\frac{2}{3}(0)+3 \\ \text{sp P1\lparen0,3\rparen} \\ \text{ii\rparen for x=3} \\ y=\frac{2}{3}(3)+3=5 \\ so\text{ P2\lparen3,5\rparen} \end{gathered}[/tex]

now, draw a solid line that passes troguth those point

(0,3) and (3,5)

[tex]y\geqslant\frac{2}{3}x+3\Rightarrow y=\frac{2}{3}x+3\text{\lparen solid line\rparen}[/tex]

as we need the values greater or equatl thatn the function, we need to shade the area over the line

Step 2

graph the inequality (2)

[tex]x\ge-5[/tex]

this inequality represents the numbers greater or equal than -5 ( for x), so to graph the inequality:

a) draw an vertical line at x=-5, and due to we are looking for the values greater or equal than -5 we need to use a solid line and shade the area to the rigth of the line

Step 3

finally, the inequality 3

[tex]y<6[/tex]

this inequality represents all the y values smaller than 6, so we need to draw a horizontal line at y=6 and shade the area below the line

Step 4

finally, the solution is the intersection of the areas

I hope this helps you

cos(alpha + beta) = cos^2 alpha - sin^2 beta

Answers

The trigonometric identity cos(α + β)cos(α - β) = cos²(α) - sin²(β) is verified in this answer.

Verifying the trigonometric identity

The identity is defined as follows:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

The cosine of the sum and the cosine of the subtraction identities are given as follows:

cos(α + β) = cos(α)cos(β) - sin(α)sin(β).cos(α - β) = cos(α)cos(β) + sin(α)sin(β).

Hence, the multiplication of these measures is given as follows:

cos(α + β)cos(α - β) = (cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β))

Applying the subtraction of perfect squares, it is found that:

(cos(α)cos(β) - sin(α)sin(β))(cos(α)cos(β) + sin(α)sin(β)) = cos²(α)cos²(β) - sin²(α)sin²(β)

Then another identity is applied, as follows:

sin²(β) + cos²(β) = 1 -> cos²(β) = 1 - sin²(β).sin²(α) + cos²(α) = 1 -> sin²(α) = 1 - cos²(a).

Then the expression is:

cos²(α)cos²(β) - sin²(α)sin²(β) = cos²(α)(1 - sin²(β)) - (1 - cos²(a))sin²(β)

Applying the distributive property, the simplified expression is:

cos²(α) - sin²(β)

Which proves the identity.

Missing information

The complete identity is:

cos(α + β)cos(α - β) = cos²(α) - sin²(β)

More can be learned about trigonometric identities at https://brainly.com/question/7331447

#SPJ1

5. Graph the system of inequalities. Then, identify a coordinate point in the solution set.2x -y > -3 4x + y < 5

Answers

We have the next inequalities

[tex]\begin{gathered} 2x-y>-3 \\ 4x+y<5​ \end{gathered}[/tex]

as we can see if we graph these inequalities we will obtain the next graph

where the red area is the first inequality and the blue area is the second inequality

and the area in purple is the solution set of the two inequalities

one coordinate point in the solution set could be (0,0)

Given the functions, f(x) = 6x+ 2 and g(x)=x-7, perform the indicated operation. When applicable, state the domain
restriction.

Answers

The domain restriction for (f/g)(x) is x=7

What are the functions in mathematics?

a mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable.

What does a domain math example mean?

The collection of all potential inputs for a function is its domain. For instance, the domain of f(x)=x2 and g(x)=1/x are all real integers with the exception of x=0.

Given,

f(x) = 6x+2

g(x) = x-7

So,

(f/g)(x) = 6x+2/x-7

Remember that the denominator can not be equal to zero

Find the domain restriction

x-7=0

x=7

Therefore, the domain is all real numbers except the number 7

(-∞,7)∪(7,∞)

To know more about functions visit:

https://brainly.com/question/12431044

#SPJ13

4 5 3 7 89 65Each time, you pick one card randomly and then put it back.What is the probability that the number on the card you pickfirst time is odd and the number on the second card you take isa multiple of 2? Keep your answers in simplified improperfraction form.Enter the answer

Answers

We have a total of 8 cards, where 3 of them are a multiple of 2, and 5 is an odd number. Consider that event A represents the probability of picking an odd number and event B is picking a multiple of 2. We know that the events are independent (because we put the cards back), therefore the probability of A and B can be expressed as

[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]

Where

[tex]\begin{gathered} P(A)=\frac{5}{8} \\ \\ P(B)=\frac{3}{8} \end{gathered}[/tex]

Therefore

[tex]P(A\text{ and }B)=\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}[/tex]

The final answer is

[tex]P(A\text{ and }B)=\frac{15}{64}[/tex]

How do we determine the number of hours each family used the sprinklers?

Answers

Given:

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The combined usage of sprinkler is 40 hours. The resulting water output is 1250L.

To find:

The number of hours each family used the sprinkler.

Solution:

Let Martinez family used sprinkler for x hours and Green family used sprinkler for y hours.

Since the combined usage of sprinklers is 40 hours. So,

[tex]x+y=40...\left(i\right)[/tex]

The output rate of Martinez family's sprinkler is 25L per hour and Green family's sprinkler is 35L per hour. The resulting water output is 1250L. So,

[tex]\begin{gathered} 25x+35y=1250 \\ 5x+7y=250...\left(ii\right) \end{gathered}[/tex]

Multiply (i) by 7 and subtract from (ii), to get:

[tex]\begin{gathered} 5x+7y-7\left(x+y\right)=250-7\left(40\right) \\ 5x+7y-7x-7y=250-280 \\ -2x=-30 \\ x=\frac{-30}{-2} \\ x=15 \end{gathered}[/tex]

Now, we get x = 15, Put x = 15 in the equation (i):

[tex]\begin{gathered} 15+y=40 \\ y=40-15 \\ y=25 \end{gathered}[/tex]

Thus, x = 15, y = 25.

0.75 greater than 1/2

Answers

True

0.75 is greater than 0.5

Explanation

Step 1

remember

[tex]\frac{a}{b}=\text{ a divided by b}[/tex]

then

[tex]\frac{1}{2}=\text{ 1 divided by 2 = 0.5}[/tex]

Step 2

compare

0.75 and 0.5

[tex]0.75\text{ is greater than 0.5}[/tex]

I hope this helps you

FOR GREATER THAN WE ADD THE TERMS.

MATHEMATICALLY THIS MEANS

[tex] = 0.75 + \frac{1}{2} \\ = 0.75 + 0.5 \\ = 1.25[/tex]

1.25 is the answer.

An arctic village maintains a circular cross-country ski trail that has a radius of 2.9 kilometers. A skier started skiing from the position (-1.464, 2.503), measured in kilometers, and skied counter-clockwise for 2.61 kilometers, where he paused for a brief rest. (Consider the circle to be centered at the origin). Determine the ordered pair (in both kilometers and radii) on the coordinate axes that identifies the location where the skier rested. (Hint: Start by drawing a diagram to represent this situation.)(x,y)= (  ,  ) radii(x,y)= ( ,  ) kilometers

Answers

The solution to the question is given below.

[tex]\begin{gathered} The\text{ 2.6km is some fraction of the entire Circumference which is: C= 2}\pi r\text{ = 2}\times\text{ }\pi\text{ }\times2.9 \\ \text{ = 5.8}\pi cm \\ \text{ The fraction becomes: }\frac{2.61}{5.8\pi}\text{ = }\frac{0.45}{\pi} \\ \text{The entire circle is: 2 }\pi\text{ radian} \\ \text{ = }\frac{0.45}{\pi}\text{ }\times2\text{ }\times\pi\text{ = 0.9} \\ The\text{ skier has gone 0.9 radian from (-.1.464, 2.503)} \\ \text{The x- cordinate become: =-1.}464\text{ cos}(0.9)\text{ = -1.4625} \\ while\text{ the Y-cordinate becomes: =-1.}464\text{ sin}(0.9)\text{ = -}0.0229 \\ \text{The skier rested at: (-1.4625, -0.0229)} \\ \end{gathered}[/tex]

For 5 years, Gavin has had a checking account at Truth Bank. He uses a bank ATM 2 times per month and a nonbank ATM once a month. He checks his account statement online. How much money would Gavin save per month if he switched to Old River Bank?

Answers

EXPLANATION

Let's see the facts:

Number of years: 5

Account period = 2 times/month

Nonbank ATM -------> once/ month

If he switch the account to Old River Bank he would save:

$6 - $4.95 = $1.05

Transaction cost_Trust Bank = $1/transaction * 2 = $2

Nonbank_Trust Bank = $2/transaction = $2

Trust Bank Cost = 2 + 2 + 6 = $10

The account in the Old River Bank would be:

Account Services = $4.95

Bank ATM Cost = $0.00

Nonbank ATM Cost = $2.5/transactions * 1 = $2.5

----------------------

$7.45

The total cost at Old River would be = $7.45

The difference between Truth Bank and Old River would be $10-$7.45 = $2.55

Gavin would save $2.55 per month.

Find the value of x that makes ADEF ~AXYZ..yE1052x – 114D11FX5x + 2Zх=

Answers

Given that the triangles are similar, we can express a proportion between their sides. DE and XY are corresponding sides. EF and YZ are corresponding sides. Let's define the following proportion.

[tex]\begin{gathered} \frac{XY}{DE}=\frac{YZ}{EF} \\ \frac{10}{5}=\frac{14}{2x-1} \end{gathered}[/tex]

Now, we solve for x

[tex]\begin{gathered} 2=\frac{14}{2x-1} \\ 2x-1=\frac{14}{2} \\ 2x=7+1 \\ x=\frac{8}{2} \\ x=4 \end{gathered}[/tex]Hence, the answer is x = 4.

Find equation of a parallel line and the given points. Write the equation in slope-intercept form Line y=3x+4 point (2,5)

Answers

Given the equation:

y = 3x + 4

Given the point:

(x, y ) ==> (2, 5)

Let's find the equation of a line parallel to the given equation and which passes through the point.

Apply the slope-intercept form:

y = mx + b

Where m is the slope and b is the y-intercept.

Hence, the slope of the given equation is:

m = 3

Parallel lines have equal slopes.

Therefore, the slope of the paralle line is = 3

To find the y-intercept of the parallel line, substitute 3 for m, then input the values of the point for x and y.

We have:

y = mx + b

5 = 3(2) + b

5 = 6 + b

Substitute 6 from both sides:

5 - 6 = 6 - 6 + b

-1 = b

b = -1

Therefore, the y-intercept of the parallel line is -1.

Hence, the equation of the parallel line in slope-intercept form is:

y = 3x - 1

ANSWER:

[tex]y=3x-1[/tex]

Other Questions
Math for Liberal Arts Lecture Class, Fall 2021 = Homework: Ch... Question 2, 1.1.3 Part 2 of 3 HW Score: Points: An election is held to choose the chair of a department at a university. The candidates are Professors Arg for short). The following table gives the preference schedule for the election. Use the table to complete pa Number of Voters 7 9 2 5 3 6 1st choice A B D A 2nd choice B D D E E 3rd choice D B E C B B 4th choice E C A B C D 5th choice C E C D A C (a) How many people voted in this election? ... 32 voters (Type a whole number.) (b) How many first-place votes are needed for a majority? down home furnishings reports inventory using the lower of cost and net realizable value (nrv). below is information related to its year-end inventory. inventory quantity unit cost unit nrv furniture 260 $91 $106 electronics 56 460 400 required: 1. calculate the total recorded cost of ending inventory before any adjustments. 2. calculate ending inventory using the lower of cost and net realizable value. 3. record any necessary adjusting entry for inventory. 4. determine the impact of the adjusting entry in the financial statements. the entity book includes paperback, hardcover, and digital books. the attribute chaptercount applies to both paperback and hardcover but not digital. digital has a texttospeech attribute. which entity type is digital? A rental car company charges $76.50 per day to rent a car and $0.06 for every mile driven. Hunter wants to rent a car, knowing that:He plans to drive 400 miles.He has at most $330 to spend.Use the drop-down menu below to write an inequality representing d, the total number of days Hunter can rent the car while staying within his budget. determine values of the variables that will make the following equation true, if possible. if not, state not possible If the total income of people in the US increases, 1. Equilibrium price would increase & equilibrium quantity would decrease 2. Equilibrium price would decrease & equilibrium quantity would decrease 3. Equilibrium price would increase & equilibrium quantity would increase 4. Equilibrium price would be indeterminate & equilibrium quantity would decrease A power company transmits current through a 240,000 V transmission line. This voltage is stepped down at an area substation to 40,000 V by a transformer that has 940 turns on the primary coil. How many turns are on the secondary of the transformer? _________turns Mrs. Velazco gave her students four options to choose from for the class project. Which option received 30% of the votes? what was not a factor that encouraged settlement of the west in the late 1800s? responses growth of railroads growth of railroads free or cheap land free or cheap land discoveries of gold, silver, and copper discoveries of gold, silver, and copper peace with native americans Examples of figurative language in the monkeys paw Solve: What work is done when 3.0 C is moved through an electric potential difference of 1.5 V?1) 0.5 J2) 2.0 J3) 4.0 J4) 4.5 J The stock market experienced massive growth following President Trump's election in 2016, surgingnearly 38%. Explain how or if this specific event affected Aggregate Demand. AnimalPossible Locations Relativeto Ocean's Surface25. Reasoning Suppose you plot the locations ofthe animals on a number line. Which animalwould be represented by the point farthest fromO on the number line? Explain. MP2Bloodbelly comb jellyDeep sea anglerfish-0.8 km- km- 2 kmFanfin anglerfishGulper eel-1.1 km26. Which animal is closest to a depth of -0.7 km?Pacific blackdragon- o kmSlender snipe eel-0.6 km What is 16m + 24n? (P.S, this is about factoring expressions.) Given a DC battery of voltage, V = 4.00 V connected to a resistor R with a current I = 3.00 A through the resistor. What power is in this circuit? 15.5 W 12.0 W 39.4 W 45.5 W 8.88 W A person can have hundreds of different type of cells because:different cells result from genetic variation in meiosis.different cell types have different genes.different cell types all have the same genes but have different genes active.None of these choices is correct. An engine has a piston with a surface area of 12.56 in2 and can travel 3.48 inches. What is the potential change in volume of the cylinder, given that V = area length? Use the following results from a test for marijuana use, which is provided by a certain drug testing company. Among 143 subjects with positive test results, there are 24false positive results; among 150 negative results, there are 5 false negative results. If one of the test subjects is randomly selected, find the probability that the subjecttested negative or did not use marijuana. (Hint: Construct a table.)The probability that a randomly selected subject tested negative or did not use marijuana is.(Do not round until the final answer. Then round to three decimal places as needed.) Given the matrices A and B shown below, find 4B A.3A=( 1215B5 project management is best defined as: a. a sequence of tasks with a beginning and an end. b. the most important task in the performance of the managerial functions of planning, organizing, leading, and controlling. c. project conceptualization, project planning, project execution, and project termination. d. a carefully planned and organized activity, designed to accomplish a specific objective that is usually a one-time effort with a beginning and an end, involving conceptualization, planning, execution, and termination phases.