The area of the shaded region is 9198.11 in³ - 112.5 in².
We have,
Sphere:
Diameter = 26 in
Radius = 26/2 = 13 in
Volume.
= 4/3 πr³
= 4/3 x 3.14 x 13 x 13 x 13
= 9198.11 in³
Now,
The unshaded region is a trapezium.
Height = 5 in
Parallel sides = 19 in and 26 in
Area = 1/2 x height x (sum of the parallel sides)
= 1/2 x 5 x (19 + 26)
= 1/2 x 5 x 45
= 1/2 x 225
= 112.5 in²
Now,
The area of the shaded region.
= Volume of the sphere - Area of the trapezium
= 9198.11 in³ - 112.5 in²
Thus,
The area of the shaded region is 9198.11 in³ - 112.5 in².
Learn more about Sphere here:
https://brainly.com/question/12390313
#SPJ1
Kareem is married with 1 child and files taxes jointly with his wife. Their adjusted gross income is 92,600. Find their taxable income. The standard deduction is 12,600, and the amount of a personal exemption is 4,050.
A: 80,000
B: 67,850
C: 63,800
D: 76,400
Answer:
First, we need to calculate the total exemptions for Kareem, his wife, and their child:
Total exemptions = 3 x 4,050 = 12,150
Next, we subtract the standard deduction and exemptions from their adjusted gross income to find their taxable income:
Taxable income = 92,600 - 12,600 - 12,150 = 67,850
Therefore, the correct answer is (B) 67,850.
Step-by-step explanation:
Branliest please
Please help, Thank youGCD 5. Find Multiplicative inverse of 47x = 1 mod 64 6. Using Inverse GCD to find 50x = 63 mod 71.
The Multiplicative inverse of 47x = 1 mod 64 is 47 x 15 = 1 (mod 64) . Using Inverse GCD 50x = 63 mod 71 is 50 x 27 = 63 (mod 71).
The reciprocal of a particular integer is referred to as the multiplicative inverse. It is employed to make mathematical expressions simpler. The word "inverse" denotes an opposing or opposed action, arrangement, position, or direction. A number becomes 1 when it is multiplied by its multiplicative inverse.
When a number is multiplied by the original number, the result is 1, that number is said to be the multiplicative inverse of that number. A-1 or 1/a is used to represent the multiplicative inverse of the constant 'a'. In other terms, two integers are said to be multiplicative inverses of one another when their product is 1. The division of 1 by a number yields the multiplicative inverse of that number.
a) The Multiplicative inverse of 47x = 1 mod 64 is
x = 47⁻¹ mod 64
Mow,
Let (47)⁻¹ = y(mod64)
Then, 47y + 64k = 1
Now,
64 = 47 x 1 + 17
47 = 17 x 2 +13
17 = 13 x 1 + 4
13 = 4 x 3 + 1
Comparing with equation we get,
y = 15 and k = -11
Hence, 47 x 15 = 1 (mod 64)
b) The Multiplicative inverse of 50x = 63 mod 71 is
x = 50⁻¹ 63(mod 71)
Mow,
Let (50)⁻¹ = y(mod71)
Then, 50y + 71k = 1
Now,
71 = 50 x 1 + 21
50 = 21 x 2 + 8
21 = 8 x 2 + 5
8 = 5 x 1 + 3
5 = 3 x 1 + 2
3 = 2 x 1 + 1
Comparing with equation we get,
y = 27 and k = -19
Hence, 50 x 27 = 63 (mod 71)
Learn more about Multiplicative inverse:
https://brainly.com/question/30340483
#SPJ4
5. The multiplicative inverse of 47x = 1 mod 64 is 47 x 15 = 1 (mod 64)
6. The value of 50x = 63 mod 71 using inverse GCD is 50 x 27 = 63 (mod 71).
5. How to calculate the multiplicative inverseGiven that
47x = 1 mod 64
Divide both sides of the equation by 47
So, we have
47/47x = 1/47 mod 64
Evaluate the quotient
x = 47⁻¹ mod 64
Let (47)⁻¹ = y(mod64)
So, we have
47y + 64k = 1
Expand 64
64 = 47 x 1 + 17
Expand 47
47 = 17 x 2 +13
Expand 17
17 = 13 x 1 + 4
Expand 13
13 = 4 x 3 + 1
When the equations are compared, we have
y = 15 and k = -11
This means that, the multiplicative inverse is 47 x 15 = 1 (mod 64)
6. Using Inverse GCDHere, we have
50x = 63 mod 71
Divide
50x/50 = 63/50 mod 71
So, we have
x = 50⁻¹ 63(mod 71)
Let (50)⁻¹ = y(mod71)
So, we have
50y + 71k = 1
Expand 71
71 = 50 x 1 + 21
Expand 50
50 = 21 x 2 + 8
Expand 21
21 = 8 x 2 + 5
Expand 8
8 = 5 x 1 + 3
Expand 5
5 = 3 x 1 + 2
Expand 3
3 = 2 x 1 + 1
When the equations are compared, we have
y = 27 and k = -19
This means that 50 x 27 = 63 (mod 71)
Read more about multiplicative inverse at:
https://brainly.com/question/21973802
#SPJ4
What is the volume of a triangular prism 4m 7m 9m
Answer:
Volume formal= L × W × H
Volume formal = 4 × 7 × 9
Answer = 4 × 7 × 9 =252
PLEASE ANSWER QUICK!!!!! 25 POINTS
Find the probability of exactly one successes in five trials of a binomial experiment in which the probability of success is 5%
round to the nearest tenth
The probability of exactly one successes in five trials is 0.20
Finding the probability of exactly one successes in five trialsFrom the question, we have the following parameters that can be used in our computation:
Binomial experiment Probability of success is 5%Number of trials = 5The probability is calculated as
P(x) = nCx * p^x * (1 - p)^(n -x)
Where
n = 5
p = 5%
x = 1
Substitute the known values in the above equation, so, we have the following representation
P(1) = 5C1 * (5%)^1 * (1 - 5%)^(5 -1)
Evaluate
P(1) = 0.20
HEnce, the probability value is 0.20
Read more about probability at
https://brainly.com/question/24756209
#SPJ1
use cylindrical or spherical coordinates, whichever seems more appropriate. find the volume v of the solid e that lies above the cone z
To find the volume of the solid e that lies above the cone z, we will use spherical coordinates.
First, we need to define the cone z. We know that it is a cone, so it has a circular base with radius r and height h. We can write the equation of the cone as:
z = h - √(x^2 + y^2)
Next, we need to find the limits of integration for the spherical coordinates. We know that the solid e lies above the cone z, so the limits for the radial coordinate will be r = 0 to r = h. For the polar coordinate, we can choose any angle since the solid is symmetric about the z-axis. Let's choose θ = 0 to θ = 2π. For the azimuthal angle, we need to find the limits based on the cone z. We know that the cone intersects the sphere at the point (0, 0, h), so the azimuthal angle will go from 0 to the angle Φ such that z = 0:
0 = h - √(r^2 sin^2 Φ)
r^2 sin^2 Φ = h^2
sin^2 Φ = h^2/r^2
Φ = arcsin(h/r)
Therefore, the limits for the azimuthal angle will be Φ to π/2.
Now, we can set up the integral for the volume V:
V = ∫∫∫ r^2 sin Φ dr dΦ dθ
V = ∫0^h ∫Φ^π/2 ∫0^2π r^2 sin Φ dr dΦ dθ
Evaluating this integral gives:
V = (1/3)πh^3
Therefore, the volume of the solid e that lies above the cone z is (1/3)πh^3, which is the volume of a cone with height h and base radius h.
To learn more about azimuthal angle : brainly.com/question/28544932
#SPJ11
A square with sides measuring 8 millimeters each is drawn within the figure shown. A point within the figure is randomly selected.
What is the approximate probability that the randomly selected point will lie inside the square?
Responses
5.4%
8.5%
21.6%
34.0%
The approximate probability that the randomly selected point will lie inside the square is,
≈ 13.3%
Since, Area of square with side of 5 mm is:
A = a² = (5 mm)² = 25 mm²
Now, Find total area of the figure:
A(total) = A(trapezoid) + A(triangle)
A(total) = (b₁ + b₂)h/2 + bh/2
A(total) = (14 + 18)(17 - 12)/2 + 18 x 12/2
= 80 + 108 = 188
Hence, Find the percent value of the ratio of areas of the square and full figure, which determines the probability we are looking for:
= 25/188 x 100%
= 13.2978723404 %
≈ 13.3%
Thus, the approximate probability that the randomly selected point will lie inside the square is,
≈ 13.3%
Learn more about the probability visit:
https://brainly.com/question/13604758
#SPJ1
Determine the distance between the points (−3, −2) and (0, 2).
2 units
4 units
5 units
10 units
Answer:
5 units
Step-by-step explanation:
To determine the distance between the points (-3, -2) and (0, 2), we can use the distance formula.
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Distance Formula}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\\\where:\\ \phantom{ww}$\bullet$ $d$ is the distance between two points. \\\phantom{ww}$\bullet$ $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}[/tex]
Let (x₁, y₁) = (-3, -2)
Let (x₂, y₂) = (0, 2)
Substitute the values into the formula and solve for d:
[tex]\begin{aligned}\implies d&=\sqrt{(0-(-3))^2+(2-(-2))^2}\\&=\sqrt{(0+3)^2+(2+2)^2}\\&=\sqrt{(3)^2+(4)^2}\\&=\sqrt{9+16}\\&=\sqrt{25}\\&=5\; \rm units \end{aligned}[/tex]
Therefore, the distance between the given points (-3, -2) and (0, 2) is 5 units.
Answer:is 5
Step-by-step explanation: cuz I read other answer
Daniel is planning to rent a car for an upcoming four-day business trip. The car rental agency charges a flat fee of $29 per day, plus $0. 12 per mile driven. Daniel plans to drive 140 miles on day 1 of his trip, 15 miles on day 2, 15 miles on day 3, and 140 miles on day 4. What are daniel's total fixed costs for the car rental?
For Daniel's four-day business trip, the total fixed costs for the car rental from car rental agency is equals the $153.2.
We have, Daniel plans to rent a car for an upcoming four-day business trip.
Flat fee charges for rent a car from car rental agency = $29 per day
Charges for driven = $0.12 per mile
Total distance travelled by him on first day = 140 miles
Cost of driven charges on first day = 140× 0.12 = $16.8
Total distance travelled by him on secon day = 15 miles
Cost of driven charges on first day = 15× 0.12 = $1.8
Total distance travelled by him on third day = 15 miles
Cost of driven charges on first day = 15× 0.12 = $1.8
Total distance travelled by him on fourth day = 140 miles
Cost of driven charges on first day = 140 × 0.12 = $16.8
Total cost of driven charges on four-day business trip = $16.8 + $16.8 + $1.8 + $1.8
= $37.2
Now, total fixed cost for rent a car are calculated by sum of driven charges and flat fee for rent = $37.2 + 4×$29
= $153.2
Hence required value is $153.2.
For more information about total cost , refer:
https://brainly.com/question/25109150
#SPJ4
Throw n balls into m bins, where m and n are positive integers. Let X be the number of bins with exactly one ball. Compute varX.
By using the formula for variance
[tex]varX= m*(n*(m-1)/m^n)(1 - n(m-1)/(m^n-1))[/tex]
To compute varX:
we first need to find the expected value of X, denoted as E(X).
We can approach this by using the linearity of expectation, which states that the expected value of the sum of random variables is equal to the sum of their individual expected values.
Let's define a random variable Xi as the number of bins with exactly one ball. Then, we have:
[tex]X = X1 + X2 + ... + Xm[/tex]
where m is the total number of bins.
By the definition of Xi, we know that Xi can only take on values between 0 and 1, since a bin can either have exactly one ball (Xi = 1) or not (Xi = 0).
To find E(Xi), we can use the probability of Xi being 1. The probability that a specific bin has exactly one ball is given by:
[tex]P(Xi = 1) = (n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]
The first term (n choose 1) represents the number of ways to choose one ball out of n balls to put into the bin. The second term ((m-1) choose (n-1)) represents the number of ways to choose (n-1) balls out of the remaining (m-1) bins. Dividing by (m choose n) gives us the probability that exactly one bin has one ball.
Therefore, we have:
E(Xi) = P(Xi = 1) * 1 + P(Xi = 0) * 0
= P(Xi = 1)=[tex](n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]
Using the linearity of expectation, we can find E(X) as:
E(X) = E(X1) + E(X2) + ... + E(Xm)
= [tex]m * (n choose 1) * ((m-1) choose (n-1)) / (m choose n)[/tex]
Now, to find varX, we need to find the variance of Xi and use the formula for variance of a sum of random variables.
The variance of Xi can be found as:
Var(Xi) = E(Xi^2) - (E(Xi))^2
Since Xi can only take on values 0 or 1, we have:
E(Xi^2) =[tex]0^2 * P(Xi = 0) + 1^2 * P(Xi = 1) = P(Xi = 1)[/tex]
Therefore, we have:
Var(Xi) = P(Xi = 1) - (E(Xi))^2
= [tex]m*(n*(m-1)/m^n) + m*(m-1)(n(m-1)/m^n)^2 - (mn(m-1)/m^n)^2[/tex]
Using the formula for variance of a sum of random variables, we have:
varX = Var(X1 + X2 + ... + Xm)
= Var(X1) + Var(X2) + ... + Var(Xm) (since Xi's are independent)
= [tex]m*(n*(m-1)/m^n)(1 - n(m-1)/(m^n-1))[/tex]
To know more about Formula of Variance:
https://brainly.com/question/20066860
#SPJ11
Can you please help me with these three problems? I’m really confused about this unit.
Answer: x=67 x=70 x=61
Step-by-step explanation:
see image for explanaton
1(c) [3 pts] for the smokestack with the filter installed, find the probability that the amount of pollutant in a given sample will exceed 1/2.
To find the probability that the amount of pollutant in a given sample will exceed 1/2 for the smokestack with the filter installed, you need to determine the distribution of the pollutant levels and then calculate the probability based on that distribution.
To find the probability that the amount of pollutant in a given sample will exceed 1/2 when a filter is installed in the smokestack, we need to use the information provided in the question. However, we do not have any specific information on the distribution of the pollutant levels, so we cannot calculate the exact probability.
Instead, we can make some assumptions based on the purpose of the filter. Filters are typically installed to reduce the amount of pollutants emitted into the air, so it is reasonable to assume that the filter will decrease the amount of pollutant in each sample. Therefore, we can expect the probability of the pollutant level exceeding 1/2 to decrease when a filter is installed.
Without more information, we cannot give an exact probability, but we can say that it is likely lower than the probability without a filter. We would need to know more about the specific characteristics of the filter and the pollutant to make a more accurate estimate.
To learn more about probability, click here:
brainly.com/question/30034780
#SPJ11
CDEF is a rhombus. Find measure FED
The measure of angle FED is 5x + 1°.
Let's use the angle DFE to solve for the measure of angle FED. We know that angle DFE measures (8x - 20)°. Since the diagonals of a rhombus bisect each other, we can use the fact that angle DFE is divided into two equal parts by diagonal DE.
Each of these two equal parts has measure (1/2)(8x - 20)° = 4x - 10°. Let's denote the measure of angle CDE as "y". Since angles DCE and CDE are complementary (they add up to 90°), we know that angle CDE has measure (90 - y)°.
Now, we can use the fact that the diagonals of a rhombus are perpendicular bisectors of each other. This means that angle CFD (which has measure (5x + 1)°) is equal to angle CDE (which has measure (90 - y)°).
Setting these two expressions equal to each other, we get:
5x + 1 = 90 - y
Solving for y, we get:
y = 89 - 5x
Now we can use the fact that angles DCE and CDE are complementary to find the measure of angle FED. Angle FED is equal to (90 - y)°, which is:
(90 - (89 - 5x))° = 5x + 1°
To know more about rhombus here
https://brainly.com/question/27870968
#SPJ1
Which equation represents the length of the completed tunnel based on the number of days since TBM was introduced?
Answer: Y = 45x + 140
Step-by-step explanation:
which equation represents the length of the completed tunnel based on the number of days since tbm was introduced? the answer is y = 45x + 140
Write the equation of the line perpendicular to the tangent line through (2,3)
Note that the equation of the line perpendicular to the tangent to the curve y = x³ − 3x+1 is y = (-1/9)x + 7/3.
Why is this so ?To find the equation of the line perpendicular to the tangent of the curve at the point (2, 3):
Get the slop of the tangent at that point.
To do this, we take derivative of the function y = x³ - 3x + 1 and evaluating it at x = 2:
y' = 3x² - 3
y '(2) = 3 (2) ² - 3 = 9
So the slope of (2, 3) = 9.
Since the line we are looking for is perpendicular to this tangent, its slope will be the negative reciprocal of 9, which is -1/ 9.
Next, use the point-slope form of a line to write the equation of the line
y - 3 = (-1/9) ( x - 2)
⇒ y = (-1/9)x + 7/3
So the equation of the lie perpendicular to the tangent to the curve at the point (2,3) is y = (-1/9)x + 7/3.
Learn more about tangent at:
https://brainly.com/question/19064965
#SPJ1
Full Question:
Although part of your question is missing, you might be referring to this full question:
Find equation to the line perpendicular to the tangent to the curve y=x³−3x+1 , at the point (2,3)
.
Arun is going to invest $7,700 and leave it in an account for 20 years. Assuming the
interest is compounded continuously, what interest rate, to the nearest hundredth of
a percent, would be required in order for Arun to end
end up with $13,100?
Arun is going to invest $7,700 and leave it in an account for 20 years. Assuming theinterest is compounded continuously, what interest rate, to the nearest hundredth ofa percent, would be required in order for Arun to endend up with $13,100?
So first you do 13,100 minus 7700 equals 5400. Now you have 5400 you want to divide it by 20 which equals 270. So over the course of 20 years it went up to 13100. Which means every year it had to go up by $270 but that’s not a percent so… we have to divide 13100 by 5400 which equals 2.43 (Hope this helps)
Compute ∫c xe^y dx + x^2 y dy along the line segment x = 4
0≤y≤4
The computed value of a line integral, [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex] is equals to the 32
The line integrals form that we can work with the involvement of rewriting in terms of a single variable. During the integrating over a path where one of the variables is constant, then that variable is not actually variable at all, and there is no need to do more. We have a line
integral is [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex]
We have to determine its value along line segment x = 4
Now, the line segment is x = 4 that means, dx = 0 and 0≤y≤4. So, substitute all known values in above integral, [tex]I = \int_C ( x \: e^y dx + x² y) dy [/tex]
[tex]= \int_{ 0}^{2} x² y dy + 0[/tex]
[tex]= [ x² \frac{ y²}{2}]_{0}^{2}[/tex]
[tex]= [ x² \frac{ 2²}{2} - 0][/tex]
[tex]= 2x²[/tex]
= 2× 4² = 32
Hence, required value is 32.
For more information about line integral, visit:
https://brainly.com/question/28381095
#SPJ4
Monique works h hours as a lifeguard this week, earning $12 per hour. she also earns $20 for dog sitting. Which expression represents how much money Monique will make this week?
Answer:
The expression that represents how much money Monique will make this week is:
12h + 20
Where 12h represents the money she earns as a lifeguard (h hours at $12 per hour) and 20 represents the money she earns for dog sitting.
At how many values does the following function is not differentiable? f(3) = |2c| + |2C — 2| + |2x - 3| + |2C – 4| = - a. Four b. Three c. One d. Two
The function is not differentiable at two points, C=1 and C=2, making the answer (d) two.
The given function involves four absolute value terms. To determine the points where the function is not differentiable, we need to check where the absolute value terms change their behavior.
The term |2c| is differentiable everywhere since it always yields a non-negative value, irrespective of the value of c.
The term |2C-2| changes its behavior at C=1, where it changes from decreasing to increasing. The function is not differentiable at C=1. The term |2x-3| is differentiable everywhere.
The term |2C-4| changes its behavior at C=2, where it changes from decreasing to increasing. The function is not differentiable at C=2.
The function is not differentiable at the points where the absolute value terms change from decreasing to increasing or vice versa, which results in a sharp corner or a cusp in the graph of the function.
Learn more about differentiable here:
https://brainly.com/question/24898810
#SPJ4
Which of the following is the distance between the two points shown?
A graph with the x-axis starting at negative 4, with tick marks every one-half unit up to 4. The y-axis starts at negative 4, with tick marks every one-half unit up to 4. A point is plotted at negative 2.5, 0 and at 1.5, 0.
−4 units
−1.5 units
1.5 units
4 units
Determine the value of the arbitrary constant of the antriderivative of F(x) = x2ln(x) given the initial value x = 7.15 and y = 2.21 . (Use 2 decimal places) = Add your answer
The value of the arbitrary constant is approximately -1.08.
To determine the value of the arbitrary constant of the antiderivative of F(x) = x^2 * ln(x) given the initial value x = 7.15 and y = 2.21, follow these steps:
Step 1: Find the antiderivative of F(x) = x^2 * ln(x).
The antiderivative can be found using integration by parts. Let u = ln(x) and dv = x^2 * dx.
Then, du = (1/x) * dx and v = (x^3)/3.
Using integration by parts formula: ∫u dv = u * v - ∫v du
∫(x^2 * ln(x)) dx = (x^3 * ln(x))/3 - ∫(x^3 * (1/x)) dx/3
Now integrate the second term:
= (x^3 * ln(x))/3 - (1/3) * ∫x^2 dx
= (x^3 * ln(x))/3 - (1/3) * (x^3/3)
Step 2: Add the arbitrary constant 'C' to the antiderivative.
y(x) = (x^3 * ln(x))/3 - (x^3/9) + C
Step 3: Use the initial values x = 7.15 and y = 2.21 to find the value of 'C'.
2.21 = (7.15^3 * ln(7.15))/3 - (7.15^3/9) + C
Step 4: Solve for 'C'.
C ≈ -1.08 (rounded to 2 decimal places)
The value of the arbitrary constant is approximately -1.08.
Learn more about integration: https://brainly.com/question/18125359
#SPJ11
Compute the coefficient of a^10b^2 in (a − 2b)^12.How many functions are there from A = {1, 2, 3} to B = {a, b, c,d}? Briefly explain your answer.
The coefficient of a¹⁰ b² in the given binomial expression is 264
and number of functions from A to B will be 64.
What is binomial expansion?
A binomial is nothing but an algebraic expression with two terms. For example, c + g, u - v, etc. are binomials. We have a set of algebraic identities to find the expansion when the indices is 2 and 3. For example, (a - b)² = a² + 2ab + b². But if the exponents are bigger numbers then It is hard to find the expansion manually. Then here the binomial expansion formula eases this process.
1st part:
By binomial theorem, the (r+1 )th term [tex]T_{r+1}[/tex] in an binomial expression
(a+ b)ⁿ can be expressed as,
[tex]T_{r+1}[/tex] = [tex]nC_{r} a^{n-r} b^{r}[/tex]
Let us assume that a¹⁰ b² occurs in the (r+1 )th term of the expression
(a-2b)¹²
Then we have,
[tex]T_{r+1}[/tex] = [tex]12C_{r} a^{12-r} (-2b)^{r}[/tex]
Now comparing the indices of a¹⁰ b² we get, r= 2
Thus the coefficient of a¹⁰ b² is
[tex]12C_{2} (-2)^{2} a^{10} b^{2}[/tex]
The value of [tex]12C_{2}[/tex] = (12!)/(10!×2!)
= 66
Now 66×4= 264
The coefficient of a¹⁰ b² is 264
2nd part:
A = {1, 2, 3} to B = {a, b, c, d}
n(A)= 3 and n(B)= 4
So number of functions from A to B will be 4³= 64.
Hence, the coefficient of a¹⁰ b² is 264
and number of functions from A to B will be 4³= 64.
To know more about binomial expansion
https://brainly.com/question/13602562
#SPJ4
Valeria practices the piano 910 minutes in 5 weeks. Assuming she practices the same amount every week, how many minutes would she practice in 4 weeks?
Answer:
To find out how many minutes Valeria would practice in 4 weeks, we need to first find out how many minutes she practices per week.
Divide the total number of minutes she practices by the number of weeks she practices:
910 minutes ÷ 5 weeks = 182 minutes per week
Valeria practices 182 minutes per week.
To find out how many minutes she would practice in 4 weeks, we can multiply the minutes per week by the number of weeks:
182 minutes/week x 4 weeks = 728 minutes in 4 weeks
Valeria would practice 728 minutes in 4 weeks.
In the right triangle ABC with right angle C,
A. Find AC if BC = 9 and AB = 9√2
B. Find sin A
In the triangle, the values are:
PART A: AC = 9 units
PART B: Sin A = 1/√2
How to find the value of BC in the triangle?Trigonometry deals with the relationship between the ratios of the sides of a right-angled triangle with its angles.
Check the attached image for the sketch of triangle ABC.
From the sketch:
AC = √(AB² - BC²) (Pythagoras theorem)
AC = √(162 - 81)
AC = √(81)
AC = 9 units
PART B:
Sin A = BC/AB (opposite/hypotenuse)
Sin A = 9/(9√2)
Sin A = 1/√2
Learn more about Trigonometry on:
brainly.com/question/11967894
#SPJ1
I need help its literally due today. And i dont know how to do my brothers homework. Please help.
A sample of 33 blue-collar employees at a production plant was taken. Each employee was asked to assess his or her own job satisfaction (x) on a scale of 1 to 10. In addition, the numbers of days absent (y) from work during the last year were found for these employees. The sample regression line Y; = = 10.7 – – 0.2 x; was estimated by least squares for these data. Also found were T=Σ x = 7.0 Σ(x, -x = 50.0 SSE= 70.0 a. Test, at the 5% significance level against the appropriate one-sided alternative, the null hypothesis that job satisfaction has no linear effect on absenteeism. b. A particular employee has job satisfaction level 8. Find a 99% prediction interval for the number of days this employee would be absent from work in a year. 33 2 -X)=
Answer:
Step-by-step explanation :
I suggest you ask an expert
Algibra 1 unit 1 easy stuff please help
Answer:
[D] 29 inches
Step-by-step explanation:
Times (Minutes) Depth(Inches)
0 36
5 29
10 22
15 15
20 8
Based on the table, we can see that it's given the depth of the water in the pool 5 minutes after Samantha started draining the pool.
As a result, the answer is [D] 29 inches
RevyBreeze
QUESTION 6 dạy dy The equation of motion of a body is given byd2y/dt2 +4dy/dt +13y = e2t cost, where y is the distance dt and t is the time. Determine a general solution for y in terms of t. [12] dt2
The general solution to the differential equation is:
y(t) = y_h(t) + y_p(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t)) - (1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)
We have the differential equation:
d^2y/dt^2 + 4 dy/dt + 13y = e^(2t)cos(t)
The characteristic equation is:
r^2 + 4r + 13 = 0
Using the quadratic formula, we get:
r = (-4 ± sqrt(4^2 - 4(13)))/(2) = -2 ± 3i
So the general solution to the homogeneous equation is:
y_h(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t))
To find a particular solution to the non-homogeneous equation, we can use the method of undetermined coefficients. Since e^(2t)cos(t) is of the form:
e^(at)cos(bt)
We guess a particular solution of the form:
y_p(t) = A e^(2t)cos(t) + B e^(2t)sin(t)
Taking the first and second derivatives, we get:
y'_p(t) = 2A e^(2t)cos(t) - A e^(2t)sin(t) + 2B e^(2t)sin(t) + B e^(2t)cos(t)
y''_p(t) = 4A e^(2t)cos(t) - 4A e^(2t)sin(t) + 4B e^(2t)sin(t) + 4B e^(2t)cos(t) + 2A e^(2t)sin(t) + 2B e^(2t)cos(t)
Substituting these back into the original equation, we get:
(4A + 2B) e^(2t)cos(t) + (4B - 2A) e^(2t)sin(t) + 13(A e^(2t)cos(t) + B e^(2t)sin(t)) = e^(2t)cos(t)
We can equate coefficients of like terms on both sides to get a system of equations:
4A + 2B + 13A = 1
4B - 2A + 13B = 0
Solving for A and B, we get:
A = -1/170
B = 3/170
So a particular solution to the non-homogeneous equation is:
y_p(t) = (-1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)
Therefore, the general solution to the differential equation is:
y(t) = y_h(t) + y_p(t) = e^(-2t)(c1 cos(3t) + c2 sin(3t)) - (1/170) e^(2t)cos(t) + (3/170) e^(2t)sin(t)
To learn more about undetermined visit:
https://brainly.com/question/31392685
#SPJ11
Sum of Left Leaves in a Binary Tree Given a non-empty binary tree, return the sum of all left leaves. Example: Input: 3 9 20 15 7 Output: 24 Explanations summing up every Left leaf in the tree gives us: 9 + 15 = 24 -1 -2 -3 -4 class TreeNode: def __init__(self, x): self. Val = x self. Left = self. Right = None 5 def sum_of_left_leaves (root): -6 7 18 19 50 51 2 13 Write your code here :type root: TreeNode :rtype: int 11 001 84 15 > root = input_binary_tree() -
To find the sum of all left leaves in a binary tree, Python programming language is used and code is written in Phyton.
Here's the Python code to find the sum of all left leaves in a binary tree:
Class TreeNode:
def __init__(self, x):
self.val = x
self. left = none
self.right = None
def sum_of_left_leaves(root):
If not root:
return 0
# If the left child of the root node is a leaf node, add its value to the total
If root. left is root.left.left and not root. left.right :
returns root. left.val + sum_of_left_leaves(root.right)
# Recursively go left and right subtrees and add their left leaves to the sum
returns sum_of_left_leaves(root. left) + sum_of_left_leaves(root. right)
This code first checks to see if the root node is None. If so, return 0 as there are no leaves left to add.
Then check if the left child of the root node is a leaf node. If so, add that value to the total and recursively traverse only the correct subtree.
If the left child of the root node is not a leaf node, recursively traverse the left and right subtrees and add the left leaves of both subtrees to the total.
Finally, it returns the sum of the leaves on the left side of the entire binary tree.
To utilize this work, make a double tree utilizing the TreeNode lesson and call the sum_of_left_leaves to work, passing the root of the twofold tree as a contention.
Here is an example of using the function:
# build a binary tree
root = tree node (3)
root. left = tree node (9)
root. right = tree node (20)
root. right.left = TreeNode(15)
root. right.right = TreeNode(7)
# compute the sum of the leaves on the left
sum = sum_of_left_leaves(root)
# print result
print(sum) # output:
twenty-four
learn more about Phyton
brainly.com/question/19070317
#SPJ4
Which additional fact would prove that quadrilateral WXYZ is a parallelogram?
A. XY = YZ
B. M∠X + m∠Y = 180°
C. YZ = WX
D. M∠Y ≅ m∠W
The additional fact would prove that quadrilateral WXYZ is a parallelogram is M∠Y ≅ m∠W . The option D is correct.
To prove that quadrilateral WXYZ is a parallelogram, we need to show that both pairs of opposite sides are parallel.
Option A, which states that XY=YZ, does not provide information about the parallelism of the sides, and it is not sufficient to prove that WXYZ is a parallelogram. Option B, which states that the sum of angles X and Y is 180 degrees, suggests that WXYZ may be a straight line, but it does not necessarily mean that the opposite sides are parallel.
Option C, which states that YZ=WX, suggests that the opposite sides may be equal in length, but again, it does not necessarily mean that they are parallel. Option D, which states that angle Y is congruent to angle W, provides information about the opposite angles of the quadrilateral, and this is enough to prove that the opposite sides are parallel. This is because in a parallelogram, opposite angles are congruent, and therefore, the fact that M∠Y ≅ m∠W proves that WXYZ is a parallelogram. Option D is the correct answer as it provides sufficient information to prove that WXYZ is a parallelogram.
Learn more about quadrilateral here:
https://brainly.com/question/29934440
#SPJ4
QUESTION 1: Find the eigenvalues and eigenvectors of the matrix A = 1 1 3
1 5 1
3 1 1
QUESTION 2: Find a matrix P which transforms the matrix A= 1 1 3
1 5 1
3 1 1
to diagonal form. Hence calculate A⁴
We first calculate D⁴:
D⁴ = |1⁴ 0 0 |
|0 2⁴ 0 |
|0 0 4⁴|
Substituting into the formula, we get:
A⁴ =
Question 1:
To find the eigenvalues and eigenvectors of matrix A, we solve the characteristic equation:
|A - λI| = 0
where I is the identity matrix and λ is the eigenvalue.
Substituting A, we get:
|1-λ 1 3 |
|1 5-λ 1 | = 0
|3 1 1-λ|
Expanding the determinant, we get:
(1-λ) [(5-λ)(1-λ) - 1] - (1)[(1)(1-λ) - (3)(1)] + (3)[(1)(1) - (5-λ)(3)] = 0
Simplifying, we get:
-λ³ + 7λ² - 14λ + 8 = 0
This equation can be factored as:
-(λ-1)(λ-2)(λ-4) = 0
Therefore, the eigenvalues of A are λ1 = 1, λ2 = 2, and λ3 = 4.
To find the eigenvectors, we solve the equation (A-λI)x = 0 for each eigenvalue.
For λ1 = 1, we get:
|0 1 3 | |x1| |0|
|1 4 1 | |x2| = |0|
|3 1 -0 | |x3| |0|
Simplifying, we get the system of equations:
x2 + 3x3 = 0
x1 + 4x2 + x3 = 0
3x1 + x2 = 0
Solving this system, we get:
x1 = -3x3
x2 = x3
x3 = x3
So, the eigenvector corresponding to λ1 = 1 is:
v1 = (-3, 1, 1)
Similarly, for λ2 = 2, we get:
v2 = (-1, 1, -1)
And for λ3 = 4, we get:
v3 = (1, 1, -3)
Therefore, the eigenvalues of A are 1, 2, and 4, and the corresponding eigenvectors are (-3, 1, 1), (-1, 1, -1), and (1, 1, -3).
Question 2:
To find the matrix P that transforms A to diagonal form, we need to find the eigenvectors of A and use them as columns of P. That is:
P = [v1 v2 v3]
where v1, v2, and v3 are the eigenvectors of A.
From Question 1, we have:
v1 = (-3, 1, 1)
v2 = (-1, 1, -1)
v3 = (1, 1, -3)
So, the matrix P is:
P = |-3 -1 1|
| 1 1 1|
| 1 -1 -3|
To calculate A⁴, we use the formula:
Aⁿ = PDⁿP⁻¹
where Dⁿ is the diagonal matrix with the eigenvalues raised to the nth power.
So, we first calculate D⁴:
D⁴ = |1⁴ 0 0 |
|0 2⁴ 0 |
|0 0 4⁴|
Substituting into the formula, we get:
A⁴ =
To learn more about eigenvector visit:
https://brainly.com/question/31391960
#SPJ11