The value of sin(2x), cos (2x) and tan (2x) is 24/25, -7/25 and -24/7 respectively.
What is the value of the trig ratios?The value of the sin2x, cos2x, and tan2x is calculated by applying trig ratios as follows;
Apply trigonometry identity as follows;
sin(2x) = 2sin(x)cos(x)
cos(2x) = cos²(x) - sin²(x)
tan(2x) = (2tan(x))/(1 - tan²(x))
If tan x = 4/3
then opposite side = 4
adjacent side = 3
The hypotenuse side = 5 (based on Pythagoras triple)
sin x = 4/5 and cos x = 3/5
The value of sin(2x), cos (2x) and tan (2x) is calculated as;
sin (2x) = 2sin(x)cos(x) = 2(4/5)(3/5) = 24/25
cos (2x) = cos²(x) - sin²(x) = (3/5)² - (4/5)² = -7/25
tan (2x) = (2tan(x))/(1 - tan²(x)) = (2 x 4/3) / (1 - (4/3)²) = (8/3) / (-7/9)
= -24/7
Learn more about trig ratios here: https://brainly.com/question/10417664
#SPJ4
An array of numbers in (m) rows and (n) columns is called an n x 1 matrix Select one: O True O False (B + A)T = AT + BT = + Select one: True O False To obtain the transpose of any matrix, it must
(a) False. An array of numbers in (m) rows and (n) columns is called an m x n matrix. The first number represents the number of rows, and the second number represents the number of columns. An n x 1 matrix would have n rows and 1 column, forming a column vector.
(b) True. The statement (B + A)T = AT + BT is true. It represents the transpose of the sum of two matrices being equal to the sum of their transposes. When you transpose a matrix, you interchange its rows with columns. The addition of matrices is performed element-wise, so the order of addition does not affect the transposition operation.
To obtain the transpose of any matrix, you indeed interchange its rows with columns. Each element in the original matrix is placed in the corresponding position in the transposed matrix. The resulting matrix will have its rows and columns swapped.
To learn more about matrices click here:
brainly.com/question/30646566
#SPJ11
CALCULUS I FINAL FALL 2022 ) 1) Pick two (different) polynomials (1), g(x) of degrec 2 and find lim 2) Find the equation of the tangent line to the curve y + x3 = 1 + at the point (0.1). 3) Pick a
Post of performing a series of calculations we reach the conclusion that the a) the limit of f(x)/g(x) as x approaches infinity is a/d, b) the equation of the tangent line to the curve [tex]y + x^3 = 1 + 3xy^3[/tex]at the point (0, 1) is y = 3x + 1 and c) the function [tex]f(x) = x^{(-a)}[/tex]is a power function with a negative exponent.
To figure out the limit of [tex]f(x)/g(x)[/tex] as x approaches infinity, we need to apply division for leading the terms of f(x) and g(x) by x².
Let [tex]f(x) = ax^2 + bx + c and g(x) = dx^2 + ex + f[/tex] be two polynomials of degree 2.
Then, the limit of [tex]f(x)/g(x)[/tex] as x reaches infinity is:
[tex]lim f(x)/g(x) = lim (ax^2/x^2) / (dx^2/x^2) = lim (a/d)[/tex]
Then, the limit of f(x)/g(x) as x approaches infinity is a/d.
To calculate the equation of the tangent line to the curve y + x^3 = 1 + 3xy^3 at the point (0, 1),
we need to calculate the derivative of the curve at that point and utilize it to find the slope of the tangent line.
Taking the derivative of the curve with respect to x, we get:
[tex]3x^2 + 3y^3(dy/dx) = 3y^2[/tex]
At the point (0, 1), we have y = 1 and dy/dx = 0. Therefore, the slope of the tangent line is:
[tex]3x^2 + 3y^3(dy/dx) = 3y^2[/tex]
[tex]3(0)^2 + 3(1)^3(0) = 3(1)^2[/tex]
Slope = 3
The point (0, 1) is on the tangent line, so we can apply the point-slope form of the equation of a line to evaluate the equation of the tangent line:
[tex]y - y_1 = m(x - x_1)[/tex]
y - 1 = 3(x - 0)
y = 3x + 1
Henceforth , the equation of the tangent line to the curve [tex]y + x^3 = 1 + 3xy^3[/tex]at the point (0, 1) is y = 3x + 1.
For a positive integer a, the function [tex]f(x) = x^{(-a)}[/tex] is a power function with a negative exponent. The domain of f(x) is the set of all positive real numbers, since x cannot be 0 or negative. .
To learn more about tangent
https://brainly.com/question/4470346
#SPJ4
The complete question is
1) Pick two (different) polynomials f(x), g(x) of degree 2 and find lim f(x). x→∞ g(x)
2) Find the equation of the tangent line to the curve y + x3 = 1 + 3xy3 at the point (0, 1).
3) Pick a positive integer a and consider the function f(x) = x−a
Need answered ASAP written as clear as possible
Verify the identity, sin-X) - cos(-X) (sin x + cos x) Use the properties of sine and cosine to rewrite the left-hand side with positive arguments. sin)-CCX) COS(X) (sin x+cos x)
By using the properties of sine and cosine, the given expression sin(-X) - cos(-X) (sin(X) + cos(X)) can be rewritten as -sin(X) - cos(X) (sin(X) + cos(X)) to have positive arguments.
To rewrite the left-hand side of the expression with positive arguments, we can apply the following properties of sine and cosine:
1. sin(-X) = -sin(X): This property states that the sine of a negative angle is equal to the negative of the sine of the positive angle.
2. cos(-X) = cos(X): This property states that the cosine of a negative angle is equal to the cosine of the positive angle.
Applying these properties to the given expression:
sin(-X) - cos(-X) (sin(X) + cos(X))
= -sin(X) - cos(X) (sin(X) + cos(X))
Therefore, we can rewrite the left-hand side as -sin(X) - cos(X) (sin(X) + cos(X)), which has positive arguments.
In summary, the original expression sin(-X) - cos(-X) (sin(X) + cos(X)) can be rewritten as -sin(X) - cos(X) (sin(X) + cos(X)) by utilizing the properties of sine and cosine to ensure positive arguments.
To learn more about positive angle click here
brainly.com/question/28462810
#SPJ11
Find the volume generated by rotating the area bounded by the graph of the following set of equations around the x-axis. y= 3x², x=0, x= 1 The volume of the solid is cubic units. (Type an exact answer.
The volume generated by rotating the area bounded by the graph is determined as (3π/2) cubic units.
What is the volume generated by rotating the area?The volume generated by rotating the area bounded by the graph is calculated as follows;
V = ∫[a,b] 2πx f(x)dx,
where
[a, b] is the limits of the integrationSubstitute the given values;
V = ∫[0,1] 2πx (3x²)dx
Integrate as follows;
V = 2π ∫[0,1] 3x³ dx
= 2π [3/4 x⁴] [0,1]
= 2π (3/4)
= 3π/2
Learn more about Volume generated here: https://brainly.com/question/31013488
#SPJ1
please answer through a-b clearly
2. (15 points) S(x,y) = x - 7? - 2xy + y2 +1 (a) Find all points (x,y) where f(x,y) has a possible relative maxi- mum or minimum. (b) Use the second-derivative test to determine the nature of S(, y) a
(a) The points where S(x, y) may have a relative maximum or minimum are the critical points obtained by setting the partial derivatives equal to zero.
(b) The nature of S(x, y) at the critical points can be determined using the second-derivative test, evaluating the determinant of the Hessian matrix.
How do we determine the critical points of S(x, y) to find the points where it may have a relative maximum or minimum?To find the points where S(x, y) may have a relative maximum or minimum, we set the partial derivatives (∂S/∂x and ∂S/∂y) equal to zero. This is because critical points occur where the rate of change of the function with respect to each variable is zero. By solving the system of equations formed by equating the partial derivatives to zero, we can identify these critical points, which are potential candidates for relative extrema.
How does the second-derivative test allow us to determine the nature of S(x, y) at the critical points?The second-derivative test allows us to determine the nature of S(x, y) at the critical points found in part (a). By calculating the second partial derivatives (∂²S/∂x², ∂²S/∂y², and ∂²S/∂x∂y) and evaluating the determinant of the Hessian matrix, denoted by Δ, we can determine whether the critical points represent relative maxima, relative minima, or saddle points.
If Δ is positive and ∂²S/∂x² is also positive, the critical point corresponds to a relative minimum. If Δ is negative, the critical point represents a relative maximum. However, if Δ is zero, the test is inconclusive, and further analysis is needed to determine the nature of the critical point.
Learn more about Partial derivatives
brainly.com/question/6732578
#SPJ11
Find equations of the normal plane and osculating plane of the curve at the given point. x = sin 2t, y = -cos 2t, z= 4t, (0, 1, 2π)
The equation of the osculating plane at the point (0, 1, 2π) is x = 01) Equation of the normal plane: y = 1. 2) Equation of the osculating plane:
To find the equations of the normal plane and osculating plane of the curve at the given point (0, 1, 2π), we need to determine the normal vector and tangent vector at that point.
Given the parametric equations x = sin(2t), y = -cos(2t), z = 4t, we can find the tangent vector by taking the derivative with respect to t:
r'(t) = (dx/dt, dy/dt, dz/dt)
= (2cos(2t), 2sin(2t), 4).
Evaluating r'(t) at t = 2π, we get:
r'(2π) = (2cos(4π), 2sin(4π), 4)
= (2, 0, 4).
Thus, the tangent vector at the point (0, 1, 2π) is T = (2, 0, 4).
To find the normal vector, we take the second derivative with respect to t:
r''(t) = (-4sin(2t), 4cos(2t), 0).
Evaluating r''(t) at t = 2π, we have:
r''(2π) = (-4sin(4π), 4cos(4π), 0)
= (0, 4, 0).
Therefore, the normal vector at the point (0, 1, 2π) is N = (0, 4, 0).
Now we can use the point-normal form of a plane to find the equations of the normal plane and osculating plane.
1) Normal Plane:
The equation of the normal plane is given by:
N · (P - P0) = 0,
where N is the normal vector, P0 is the given point (0, 1, 2π), and P = (x, y, z) represents a point on the plane.
Substituting the values, we have:
(0, 4, 0) · (x - 0, y - 1, z - 2π) = 0.
Simplifying, we get:
4(y - 1) = 0,
y - 1 = 0,
y = 1.
Therefore, the equation of the normal plane at the point (0, 1, 2π) is y = 1.
2) Osculating Plane:
The equation of the osculating plane is given by:
(T × N) · (P - P0) = 0,
where T is the tangent vector, N is the normal vector, P0 is the given point (0, 1, 2π), and P = (x, y, z) represents a point on the plane.
Taking the cross product of T and N, we have:
T × N = (2, 0, 4) × (0, 4, 0)
= (-16, 0, 0).
Substituting the values into the equation of the osculating plane, we get:
(-16, 0, 0) · (x - 0, y - 1, z - 2π) = 0.
Simplifying, we have:
-16(x - 0) = 0,
-16x = 0,
x = 0.
To learn more about plane click here:
brainly.com/question/30781925
#SPJ11
Calculate the arc length of y = 32 – 13x over the interval [1, 3). (Use symbolic notation and fractions where needed.) Arc length =
2√170 is the the arc length of y = 32 – 13x over the interval [1, 3).
The arc length of y = 32 – 13x over the interval [1, 3) can be calculated as follows:
Formula for arc length, L = ∫[a,b] √(1+[f′(x)]²) dx,
where a=1 and b=3 in this case, and f(x)=32 – 13x.
Substituting these values into the formula, we get:
L = ∫[1,3] √(1+[f′(x)]²) dx
L = ∫[1,3] √(1+[(-13)]²) dx
L = ∫[1,3] √(1+169) dx
L = ∫[1,3] √(170) dx
L = √170 ∫[1,3] dx
L = √170 [x]₁³= √170 (3-1) = √170 (2)= 2√170
Therefore, the arc length of y = 32 – 13x over the interval [1, 3) is 2√170.
To learn more about arc, refer below:
https://brainly.com/question/31612770
#SPJ11
show work
Find the critical point(s) for f(x,y) = 4x² + 2y²-8x-8y-1. For each point determine whether it is a local maximum, a local minimum, a saddle point, or none of these. Use the methods of this class.
The function f(x, y) = 4x² + 2y² - 8x - 8y - 1 has a critical point at (1, 1), which is a local minimum.
To find the critical points, we need to calculate the partial derivatives of f(x, y) with respect to x and y and set them equal to zero. Taking the partial derivative with respect to x, we have:
∂f/∂x = 8x - 8
Setting this equal to zero, we find:
8x - 8 = 0
8x = 8
x = 1
Taking the partial derivative with respect to y, we have:
∂f/∂y = 4y - 8
Setting this equal to zero, we find:
4y - 8 = 0
4y = 8
y = 2
So, the critical point is (1, 2). Now, to determine the nature of this critical point, we need to calculate the second partial derivatives. The second partial derivatives are:
∂²f/∂x² = 8
∂²f/∂y² = 4
The determinant of the Hessian matrix is:
D = (∂²f/∂x²)(∂²f/∂y²) - (∂²f/∂x∂y)² = (8)(4) - 0 = 32
Since D > 0 and (∂²f/∂x²) > 0, the critical point (1, 2) is a local minimum.
Therefore, the critical point (1, 2) is a local minimum for the function f(x, y) = 4x² + 2y² - 8x - 8y - 1.
Learn more about local minimum here:
https://brainly.com/question/29184828
#SPJ11
Analytically determine the extrema of f(x) = -(x-2)³ on [-1,4] Analytically determine: a) the extrema of f(x) = x(x - 2)² b) the intervals on which the function is increasing or decreasing. Give an example function (and sketch of the function you choose) that has a critical point that is NOT an extreme value. 4. Find the values of 'c' that satisfy the Mean Value Theorem for Derivatives for f(x) = 2x³ - 2x the interval [1, 3].
The extrema of the function f(x) = -(x-2)³ on the interval [-1, 4] are a) maximum at x = 4, and b) minimum at x = 2.
Which values of x yield maximum and minimum extrema for f(x) = -(x-2)³ on the interval [-1, 4]?In this problem, we are asked to find the extrema and intervals of increase or decrease for the function f(x) = -(x-2)³ on the interval [-1, 4]. To determine the extrema, we need to find the critical points of the function, which occur when the derivative is equal to zero or undefined.
Taking the derivative of f(x), we get f'(x) = -3(x-2)². Setting f'(x) equal to zero, we find the critical point at x = 2. To determine the nature of this critical point, we can evaluate the second derivative.
Taking the second derivative, f''(x) = -6(x-2). Since f''(2) = 0, the second derivative test is inconclusive, and we need to check the function values at the critical point and endpoints of the interval. Evaluating f(2) = 0 and f(-1) = -27, we find that f(2) is the minimum at x = 2 and f(-1) is the maximum at x = -1.
The function f(x) = x(x - 2)² is a different function, but we can still determine its extrema using a similar approach. Taking the derivative of f(x), we have f'(x) = 3x² - 8x + 4. Setting f'(x) equal to zero and solving, we find critical points at x = 1 and x = 2.
Evaluating f(1) = 1 and f(2) = 0, we see that f(1) is the minimum at x = 1, and x = 2 is not an extreme value since the function crosses the x-axis at this point.
To find the intervals of increase or decrease for f(x) = -(x-2)³, we can examine the sign of the derivative. Since f'(x) = -3(x-2)², the derivative is negative for x < 2 and positive for x > 2.
Therefore, the function is decreasing on the interval [-1, 2) and increases on the interval (2, 4].
Learn more about critical points, extrema, and the intervals of increase or decrease in calculus.
brainly.com/question/17330794
#SPJ11
est hundr 7. Determine the exact value for the expression sin 5/4pi - cot 11/6 pi
To determine the exact value of the expression sin(5/4π) - cot(11/6π), we can use trigonometric identities and properties to simplify and evaluate the expression.
First, let's evaluate sin(5/4π). The angle 5/4π is equivalent to 225 degrees in degrees. Using the unit circle, we find that sin(225 degrees) is -√2/2.
Next, let's evaluate cot(11/6π). The angle 11/6π is equivalent to 330 degrees in degrees. The cotangent of 330 degrees is equal to the reciprocal of the tangent of 330 degrees. The tangent of 330 degrees is -√3, so the cotangent is -1/√3.
Substituting the values, we have -√2/2 - (-1/√3). Simplifying further, we can rewrite -1/√3 as -√3/3.
Combining the terms, we have -√2/2 + √3/3. To simplify further, we need to find a common denominator. The common denominator is 6, so we have (-3√2 + 2√3)/6.
After combining and simplifying the terms, the exact value of the expression sin(5/4π) - cot(11/6π) is (-3√2 + 2√3)/6.
Learn more about expression here : brainly.com/question/28170201
#SPJ11
Write the following in terms of sine, using the confunction
relationship
The cofunction relationship states that the sine of an angle is equal to the cosine of its complementary angle, and vice versa.
What is angle?
An angle is a geometric figure formed by two rays or line segments that share a common endpoint called the vertex.
The cofunction relationship relates the trigonometric functions sine (sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot) of complementary angles. Complementary angles are two angles whose sum is 90 degrees (π/2 radians).
The cofunction relationship states that the sine of an angle is equal to the cosine of its complementary angle, and vice versa.
Using the cofunction relationship, we can express trigonometric functions in terms of sine. Here are some examples:
Cosine (cos): cos(x) = sin(π/2 - x)
The cosine of an angle is equal to the sine of its complementary angle.
Tangent (tan): tan(x) = 1/sin(x)
The tangent of an angle is equal to the reciprocal of the sine of the angle.
Cosecant (csc): csc(x) = 1/sin(x)
The cosecant of an angle is equal to the reciprocal of the sine of the angle.
Secant (sec): sec(x) = 1/cos(x) = csc(π/2 - x)
The secant of an angle is equal to the reciprocal of the cosine of the angle, which is also equal to the cosecant of the complementary angle.
Cotangent (cot): cot(x) = 1/tan(x) = sin(x)/cos(x)
The cotangent of an angle is equal to the reciprocal of the tangent of the angle, which is also equal to the sine of the angle divided by the cosine of the angle.
These relationships allow us to express other trigonometric functions in terms of sine, utilizing the cofunction property.
To learn more about angle visit:
https://brainly.com/question/1309590
#SPJ4
If f(x) = Σασία) - Σ 2a" and g(1) nx", find the power series of f(x)g(x). = 0 Σ n=0
[tex](f(x)g(x)) = \sum (c_n * x^{(k+\sigma+\alpha)} - 2c_n * x^{(k+n)})[/tex].
This represents the power series representation of f(x)g(x).
What is series?
In mathematics, a series is an infinite sum of terms that are added together according to a specific pattern.
To find the power series representation of the function f(x)g(x), we can use the concept of multiplying power series. Let's break down the steps:
Given:
f(x) = Σ ασία
g(1) = [tex]nx^k[/tex] (assuming you meant g(x) = [tex]nx^k[/tex])
Step 1: Determine the power series representation of f(x)
The power series representation of f(x) can be expressed as:
f(x) = Σ ασία - Σ [tex]2a^n[/tex]
Step 2: Determine the power series representation of g(x)
The power series representation of g(x) can be expressed as:
[tex]g(x) = nx^k[/tex]
Step 3: Multiply the power series
To find the power series representation of f(x)g(x), we multiply the power series representations of f(x) and g(x) term by term:
[tex](f(x)g(x)) = (\sum \sigma+\alpha - \sum 2a^n) * (nx^k)[/tex]
Expanding the multiplication, we get:
[tex](f(x)g(x)) = \sum (\sigma+\alpha * nx^k) - \sum (2a^n * nx^k)[/tex]
Step 4: Simplify the expression
We can simplify the expression by combining like terms and adjusting the indices. Let's denote the coefficients of the resulting power series as c_n and rewrite the expression:
[tex](f(x)g(x)) = \sum (c_n * x^{(k+\alpha+\sigma)}) - \sum (2c_n * x^{(k+n)})[/tex]
Step 5: Determine the power series representation
By collecting the terms with the same powers of x, we can express the power series representation of f(x)g(x):
[tex](f(x)g(x)) = \sum (c_n * x^{(k+\sigma+\alpha)} - 2c_n * x^{(k+n)})[/tex]
This represents the power series representation of f(x)g(x).
To learn more about series visit:
https://brainly.com/question/26263191
#SPJ4
6. For the function f(x) = 3x4 – 24x?, = (a) [5] find all critical numbers. (b) [7] determine the intervals of increase or decrease. = (c) [6] find the absolute maximum and absolute minimum values on the interval [-3, 3]
A) The critical numbers of the function are x = 0, x = -2, and x = 2.
B) The function f(x) is decreasing on the intervals (-∞, -2) and (0, 2), and increasing on the intervals (-2, 0) and (2, ∞).
C) The absolute maximum value on the interval [-3, 3] is 96, which occurs at x = 2. The absolute minimum value is -48, which occurs at x = -2.
(a) To find the critical numbers of the function f(x) = 3x^4 - 24x^2, we need to determine where the derivative of the function is equal to zero or undefined. Let's find the derivative first: f'(x) = 12x^3 - 48x.
Setting f'(x) equal to zero and solving for x:
12x^3 - 48x = 0.
Factoring out the common factor of 12x:
12x(x^2 - 4) = 0.
This equation is satisfied when either 12x = 0 or x^2 - 4 = 0.
Solving 12x = 0, we find x = 0.
Solving x^2 - 4 = 0, we find x = ±2.
Therefore, the critical numbers of the function are x = 0, x = -2, and x = 2.
(b) To determine the intervals of increase or decrease, we need to examine the sign of the derivative in different intervals. We can create a sign chart:
x < -2 -2 < x < 0 0 < x < 2 x > 2
f'(x) | - + - + |
From the sign chart, we can see that f'(x) is negative on the interval (-∞, -2) and (0, 2), and positive on the interval (-2, 0) and (2, ∞).
Therefore, the function f(x) is decreasing on the intervals (-∞, -2) and (0, 2), and increasing on the intervals (-2, 0) and (2, ∞).
(c) To find the absolute maximum and absolute minimum values on the interval [-3, 3], we need to evaluate the function at the critical numbers and endpoints of the interval.
Evaluate f(x) at x = -3, -2, 0, 2, and 3:
f(-3) = 3(-3)^4 - 24(-3)^2 = 243 - 216 = 27,
f(-2) = 3(-2)^4 - 24(-2)^2 = 48 - 96 = -48,
f(0) = 3(0)^4 - 24(0)^2 = 0,
f(2) = 3(2)^4 - 24(2)^2 = 192 - 96 = 96,
f(3) = 3(3)^4 - 24(3)^2 = 243 - 216 = 27.
The absolute maximum value on the interval [-3, 3] is 96, which occurs at x = 2. The absolute minimum value is -48, which occurs at x = -2.
To learn more about absolute maximum
https://brainly.com/question/17438358
#SPJ11
Find the derivative of the function, f) (x) = In(Vx2 – 8)
The derivative of the function f(x) = ln(Vx^2 - 8) is given by f'(x) = (2x)/(x^2 - 8).
To find the derivative of the function f(x) = ln(Vx^2 - 8), we can use the chain rule. Let's denote the inner function as u(x) = Vx^2 - 8. Applying the chain rule, the derivative of f(x) with respect to x is given by f'(x) = (1/u(x)) * du(x)/dx.
Now, let's find du(x)/dx. Differentiating u(x) = Vx^2 - 8 with respect to x using the power rule, we get du(x)/dx = 2Vx. Substituting this back into the chain rule formula, we have f'(x) = (1/u(x)) * (2Vx).
Finally, we substitute u(x) = Vx^2 - 8 back into the equation to obtain f'(x) = (2x)/(x^2 - 8). Thus, the derivative of f(x) = ln(Vx^2 - 8) is f'(x) = (2x)/(x^2 - 8).
Learn more about derivative here:
https://brainly.com/question/25324584
#SPJ11
an experiment consists of spinning the spinner below and flipping a coin.what is the probability of the spinner landing on 9 or 11 and getting tails on the coin?
The probability of the spinner landing on 9 or 11 is 2/10 or 1/5. This is because there are a total of 10 sections on the spinner and only 2 of them are labeled 9 or 11.
As for the coin, the probability of getting tails is 1/2, since there are only two possible outcomes - heads or tails. To find the probability of both events happening, we need to multiply the probabilities together. So the probability of the spinner landing on 9 or 11 and getting tails on the coin is (1/5) x (1/2) = 1/10 or 0.1. In other words, there is a 10% chance of both events happening together. It is important to note that the outcome of the spinner and the coin flip are independent events, which means that the outcome of one does not affect the outcome of the other.
To learn more about probability, visit:
https://brainly.com/question/14950837
#SPJ11
Write out the form of the partial fraction decomposition of the function (as in this example). Do not determine the numerical values of the coefficients. x = 30 x2 + x - 30 (b) 1 + x х
We first factor the denominator to determine the partial fraction decomposition of the function (1 + x)/(x2 + x - 30):
The partial fraction decomposition takes the following form thanks to the denominator's factors:Here, we need to figure out the constants A and B. By multiplying both sides of the We first factor the denominator to determine the partial fraction decomposition of the function (1 + x)/(x2 + x - 30The partial fraction decomposition takes the following form thanks to the denominator's factors:
learn more about denominator here:
https://brainly.com/question/8962904
#SPJ11
The Packers Pro Shop sells Aaron Rodgers jerseys for $80, and the average weekly sales are 100 jerseys. The manager reduces the price by $4 and finds the average weekly sales increases by 10 jerseys. Assuming that for each further $4 reduction the average sales would rise by 10 jerseys, find the number of $4 reductions that would result in the maximum revenue. A manufacturer estimates that the profit from producing x refrigerators per day is P(x)=-8x2 + 320x dollars. What is the largest possible daily profit?
The number of $4 reductions that would result in the maximum revenue is 3, and the largest possible daily profit for the refrigerator manufacturer is $3200.
To find the number of $4 reductions that would result in the maximum revenue, we need to analyze the relationship between the price reduction and the number of jerseys sold. Let's denote the number of $4 reductions as n.
We know that for each $4 reduction, the average weekly sales increase by 10 jerseys. So, if we reduce the price by n * $4, the average weekly sales will increase by n * 10 jerseys.
Let's calculate the number of jerseys sold when the price is reduced by n * $4. The original average weekly sales are 100 jerseys, and for each $4 reduction, the average sales increase by 10 jerseys. Therefore, the number of jerseys sold when the price is reduced by n * $4 would be:
100 + n * 10
Now, we can calculate the revenue for each price reduction. The revenue is given by the product of the price per jersey and the number of jerseys sold. The price per jersey after n $4 reductions would be $80 - n * $4, and the number of jerseys sold would be 100 + n * 10. Therefore, the revenue can be calculated as:
Revenue = (80 - n * 4) * (100 + n * 10)
To find the number of $4 reductions that would result in the maximum revenue, we need to maximize the revenue function. We can do this by finding the value of n that maximizes the revenue.
One approach is to analyze the revenue function and find its maximum point. We can take the derivative of the revenue function with respect to n and set it equal to zero to find the critical points. However, the revenue function in this case is a quadratic function, and its maximum will occur at the vertex of the parabola.
The revenue function is given by:
Revenue = (80 - n * 4) * (100 + n * 10)
= -4n² + 20n + 8000
To find the maximum revenue, we need to find the vertex of the parabola. The x-coordinate of the vertex can be found using the formula x = -b / (2a), where a = -4 and b = 20. Substituting the values, we have:
x = -20 / (2 * (-4))
= -20 / (-8)
= 2.5
Therefore, the number of $4 reductions that would result in the maximum revenue is 2.5. However, since we cannot have a fractional number of reductions, we would round this value to the nearest whole number. In this case, rounding to the nearest whole number would give us 3 $4 reductions.
Now, let's consider the second part of the question regarding the largest possible daily profit for a refrigerator manufacturer. The profit function is given by:
P(x) = -8x² + 320x
To find the largest possible daily profit, we need to find the maximum point of the profit function. Similar to the previous question, we can find the vertex of the parabola representing the profit function.
The x-coordinate of the vertex can be found using the formula x = -b / (2a), where a = -8 and b = 320. Substituting the values, we have:
x = -320 / (2 * (-8))
= -320 / (-16)
= 20
Therefore, the largest possible daily profit occurs when the manufacturer produces 20 refrigerators per day. Substituting this value into the profit function, we can calculate the largest possible daily profit:
P(20) = -8(20)² + 320(20)
= -8(400) + 6400
= -3200 + 6400
= 3200
Therefore, the largest possible daily profit is $3200.
Learn more about revenue at: brainly.com/question/32455692
#SPJ11
9:40 .LTE Student Q3 (10 points) Find the first and second partial derivatives of the following functions. (Each part should have six answers.) (a) f(x, y) = x² - xy² + y - 1 (b) g(x, y) = ln(x² + y²) (c) h(x, y) = sin(ex+y) + Drag and drop an image or PDF file or click to browse... app.crowdmark.com - Private Tima taft. Chr
a. First partial derivatives: ∂f/∂y = -2xy + 1
Second partial derivatives: ∂²f/∂x∂y = -2y
b. First partial derivatives: ∂g/∂y = (2y) / (x² + y²)
Second partial derivatives: ∂²g/∂x∂y = (-4xy) / (x² + y²)²
c. First partial derivatives: ∂h/∂y = (ex+y) cos(ex+y)
Second partial derivatives: ∂²h/∂x∂y = 0
What is Partial Derivatives?
In mathematics, the partial derivative of any function that has several variables is its derivative with respect to one of those variables, the others being constant. The partial derivative of the function f with respect to different x is variously denoted f'x,fx, ∂xf or ∂f/∂x.
the first and second partial derivatives of the given functions:
(a) f(x, y) = x² - xy² + y - 1
First partial derivatives:
∂f/∂x = 2x - y²
∂f/∂y = -2xy + 1
Second partial derivatives:
∂²f/∂x² = 2
∂²f/∂y² = -2x
∂²f/∂x∂y = -2y
(b) g(x, y) = ln(x² + y²)
First partial derivatives:
∂g/∂x = (2x) / (x² + y²)
∂g/∂y = (2y) / (x² + y²)
Second partial derivatives:
∂²g/∂x² = (2(x² + y²) - (2x)(2x)) / (x² + y²)² = (2y² - 2x²) / (x² + y²)²
∂²g/∂y² = (2(x² + y²) - (2y)(2y)) / (x² + y²)² = (2x² - 2y²) / (x² + y²)²
∂²g/∂x∂y = (-4xy) / (x² + y²)²
(c) h(x, y) = sin(ex+y)
First partial derivatives:
∂h/∂x = (ex+y) cos(ex+y)
∂h/∂y = (ex+y) cos(ex+y)
Second partial derivatives:
∂²h/∂x² = [(ex+y)² - (ex+y)(ex+y)] cos(ex+y) = (ex+y)² cos(ex+y) - (ex+y)²
∂²h/∂y² = [(ex+y)² - (ex+y)(ex+y)] cos(ex+y) = (ex+y)² cos(ex+y) - (ex+y)²
∂²h/∂x∂y = [(ex+y)(ex+y) - (ex+y)(ex+y)] cos(ex+y) = 0
Please note that the second partial derivative ∂²h/∂x∂y is 0 for function h(x, y).
These are the first and second partial derivatives for the given functions.
To learn more about Partial Derivatives from the given link
https://brainly.com/question/28751547
#SPJ4
Prove that two disjoint compact subsets of a Hausdorff space always possess disjoint neighbourhoods.
In a Hausdorff space, two disjoint compact subsets always have disjoint neighborhoods. This property is a consequence of the separation axiom and the compactness of the subsets.
Let A and B be two disjoint compact subsets in a Hausdorff space. Since the space is Hausdorff, for every pair of distinct points a ∈ A and b ∈ B, there exist disjoint open neighborhoods U(a) and V(b) containing a and b, respectively.
Since A and B are compact subsets, we can cover them with finitely many open sets, denoted by {U(a₁), U(a₂), ..., U(aₙ)} and {V(b₁), V(b₂), ..., V(bₘ)}, respectively.
Now, consider the finite collection of sets {U(a₁), U(a₂), ..., U(aₙ), V(b₁), V(b₂), ..., V(bₘ)}. Since this is a finite collection of open sets, their intersection is also an open set. Let's denote this intersection by W.
Since W is an open set and A and B are compact, there exist finitely many sets from the original coverings of A and B that cover W. Let's denote these sets by {U(a₁), U(a₂), ..., U(aₖ)} and {V(b₁), V(b₂), ..., V(bₗ)}.
Since W is the intersection of these sets, it follows that the neighborhoods U(a₁), U(a₂), ..., U(aₖ) are disjoint from the neighborhoods V(b₁), V(b₂), ..., V(bₗ). Therefore, A and B possess disjoint neighborhoods.
This result holds for any two disjoint compact subsets in a Hausdorff space, demonstrating that disjointness of compact subsets implies the existence of disjoint neighborhoods.
Learn more about Hausdorff space here:
https://brainly.com/question/13258846
#SPJ11
find both the opposite, or additive inverse, and the reciprocal, or the multiplicative inverse, of the following number: 25
The opposite, or additive inverse, of 25 is -25, and the reciprocal, or multiplicative inverse, of 25 is 1/25.
The opposite, or additive inverse, of a number is the value that, when added to the original number, gives a sum of zero. In this case, the opposite of 25 is -25 because 25 + (-25) equals zero. The opposite of a number is the number with the same magnitude but opposite sign.
The reciprocal, or multiplicative inverse, of a number is the value that, when multiplied by the original number, gives a product of 1. The reciprocal of 25 is 1/25 because 25 * (1/25) equals 1. The reciprocal of a number is the number that, when multiplied by the original number, results in the multiplicative identity, which is 1.
In summary, the opposite, or additive inverse, of 25 is -25, and the reciprocal, or multiplicative inverse, of 25 is 1/25. The opposite of a number is the value with the same magnitude but opposite sign, while the reciprocal of a number is the value that, when multiplied by the original number, yields a product of 1.
Learn more about additive inverse here:
https://brainly.com/question/29067788
#SPJ11
The f (x,y) =x4- y4+ 4xy + 5, has O A. only saddle point at (0,0). B. only local maximum at (0,0). C. local minimum at (1,1), (-1, -1) and saddle point at (0,0). D. local minimum at (1,1), local maximum at (- 1, -1) and saddle point (0,0).
The f (x,y) =x4- y4+ 4xy + 5 has local minimum at (1,1), local maximum at (- 1, -1) and saddle point (0,0). solved using Hessian matrix. The critical points of f(x,y) can be found using the partial derivatives.
To determine the critical points of f(x,y), we need to find the partial derivatives of f with respect to x and y and then set them equal to zero:
∂f/∂x = 4x^3 + 4y
∂f/∂y = -4y^3 + 4x
Setting these equal to zero, we get:
4x^3 + 4y = 0
-4y^3 + 4x = 0
Simplifying, we can rewrite these equations as:
y = -x^3
y^3 = x
Substituting the first equation into the second, we get:
(-x^3)^3 = x
Solving for x, we get:
x = 0, ±1
Substituting these values back into the first equation, we get:
when (x,y)=(0,0), f(x,y)=5;
when (x,y)=(1, -1), f(x,y)=-1;
when (x,y)=(-1,1), f(x,y)=-1.
Therefore, we have three critical points: (0,0), (1,-1), and (-1,1).
To determine the nature of these critical points, we need to find the second partial derivatives of f:
∂^2f/∂x^2 = 12x^2
∂^2f/∂y^2 = -12y^2
∂^2f/∂x∂y = 4
At (0,0), we have:
∂^2f/∂x^2 = 0
∂^2f/∂y^2 = 0
∂^2f/∂x∂y = 4
The determinant of the Hessian matrix is:
∂^2f/∂x^2 * ∂^2f/∂y^2 - (∂^2f/∂x∂y)^2 = 0 - 16 = -16, which is negative.
Therefore, (0,0) is a saddle point.
At (1,-1), we have:
∂^2f/∂x^2 = 12
∂^2f/∂y^2 = 12
∂^2f/∂x∂y = 4
The determinant of the Hessian matrix is:
∂^2f/∂x^2 * ∂^2f/∂y^2 - (∂^2f/∂x∂y)^2 = 144 - 16 = 128, which is positive.
Therefore, (1,-1) is a local minimum.
Similarly, at (-1,1), we have:
∂^2f/∂x^2 = 12
∂^2f/∂y^2 = 12
∂^2f/∂x∂y = 4
The determinant of the Hessian matrix is:
∂^2f/∂x^2 * ∂^2f/∂y^2 - (∂^2f/∂x∂y)^2 = 144 - 16 = 128, which is positive.
Therefore, (-1,1) is also a local minimum.
Therefore, the correct answer is D.
To know more about Hessian matrix rrefer here:
https://brainly.com/question/32250866#
#SPJ11
fraction numerator 6 square root of 27 plus 12 square root of 15 over denominator 3 square root of 3 end fraction equals x square root of y plus w square root of z
The values of the variables x, y, and z obtained from the simplifying the square root indicates that we get;
w = 4, x = 6, y = 1, and z = 5
How can a square root be simplified?A square root can be simplified by making the values under the square radical as small as possible, such that the value remains a whole number.
The expression can be presented as follows;
(6·√(27) + 12·√(15))/(3·√(3)) = x·√y + w·√z
[tex]\frac{6\cdot \sqrt{27} + 12 \cdot \sqrt{15} }{3\cdot \sqrt{3} } = \frac{6\cdot \sqrt{9}\cdot \sqrt{3} + 12\cdot \sqrt{15} }{3\cdot \sqrt{3} } = \frac{18\cdot \sqrt{3} + 12\cdot \sqrt{15} }{3\cdot \sqrt{3} } = 6 + 4\cdot \sqrt{5}[/tex]
Therefore, we get;
6 + 4·√5 = x·√y + w·√z
Comparison indicates;
6 = x·√y and 4·√5 = w·√z
Which indicates;
x = 6
√y = 1, therefore; y = 1
w = 4
√z = √5, therefore; z = 5
Learn more on the simplification of square root expressions (surds) here: https://brainly.com/question/30583721
#SPJ1
help me please i don't have enough time
Let A and B be two matrices of size 4 x 4 such that det(A) = 3. If B is a singular matrix then det(2A-2B7) + 2 = -1 2 None of the mentioned 1
The value of det(2A-2B7) + 2 is 50.
To determine the value of the expression det(2A-2B7) + 2, we need to consider the properties of determinants and the given information.
Determinant of a Scalar Multiple:
For any matrix A and a scalar k, the determinant of the scalar multiple kA is given by det(kA) = k^n * det(A), where n is the size of the matrix. In this case, A is a 4x4 matrix, so det(2A) = (2^4) * det(A) = 16 * 3 = 48.
Determinant of a Sum/Difference:
The determinant of the sum or difference of two matrices is the sum or difference of their determinants. Therefore, det(2A-2B7) = det(2A) - det(2B7) = 48 - det(2B7).
Singular Matrix:
A singular matrix is a square matrix whose determinant is zero. In this case, B is given as a singular matrix. Therefore, det(B) = 0.
Now, let's analyze the expression det(2A-2B7) + 2:
det(2A-2B7) + 2 = 48 - det(2B7) + 2
Since B is a singular matrix, det(B) = 0, so:
det(2A-2B7) + 2 = 48 - det(2B7) + 2 = 48 - (2^4) * det(B7) + 2
= 48 - 16 * 0 + 2 = 48 + 2 = 50.
Therefore, the value of det(2A-2B7) + 2 is 50.
To know more about matrices, visit the link : https://brainly.com/question/11989522
#SPJ11
1. (10 points) Find the value of the constant m for which the area between the parabolas y=2x² and y=-x² + 6mx is 12/13
The value of the constant m is -∛(3/13).
What is area of a parabola?
The area under a parabolic curve can be found using definite integration. Let's consider a parabola defined by the equation y = f(x), where f(x) is a function representing the parabolic curve.
To find the value of the constant m for which the area between the parabolas y = 2x² and y = -x² + 6mx is [tex]\frac{12}{13}[/tex], we need to set up the integral and solve for m.
The area between two curves can be found by taking the definite integral of the difference between the two functions over the interval where they intersect.
First, let's find the x-values where the two parabolas intersect. Set the two equations equal to each other:
2x² = -x² + 6mx
Rearrange the equation to obtain:
3x² - 6mx = 0
Factor out x:
x(3x - 6m) = 0
This equation will be satisfied if either x = 0 or 3x - 6m = 0.
If x = 0, then we have one intersection point at the origin (0,0).
If 3x - 6m = 0, then x = 2m.
So, the two parabolas intersect at x = 0 and x = 2m.
To find the area between the two parabolas, we integrate the difference between the upper and lower curves over the interval [0, 2m]:
Area = [tex]\int\limits^{2m}_0 (2x^2 - (-x^2 + 6mx)) dx[/tex]
Simplifying the integral:
Area = [tex]\int\limits^{2m}_0 (3x^2 -6mx)dx[/tex]
Using the power rule of integration, we integrate term by term:
Area =[tex][x^3 - 3mx^2]^{2m}_0[/tex]
Area = (2m)³ - 3m(2m)² - (0³ - 3m(0)²)
Area = 8m³ - 12m³
Area = -4m³
Since we want the area to be[tex]\frac{12}{13}[/tex], we set -4m³ equal to [tex]\frac{12}{13}[/tex]:
-4m³ =[tex]\frac{12}{13}[/tex]
Solving for m:
m³ = -3/13
Taking the cube root of both sides:
m = -∛(3/13)
Therefore, the value of the constant m for which the area between the two parabolas is 12/13 is m = -∛(3/13).
To learn more about area of a parabola from the given link
brainly.com/question/64712
#SPJ4
Given points A(3;2), B(-2;3),
C(2;1). Find the general equation of a straight line passing…
Given points A(3:2), B(-2;3), C(2:1). Find the general equation of a straight line passing... 1. ...through the point A perpendicularly to vector AB 2. ...through the point B parallel to vector AC 3.
The general equation of the straight line passing through point A perpendicularly to vector AB is y - 2 = 5(x - 3), and the general equation of the straight line passing through point B parallel to vector AC is y - 3 = -1/2(x - (-2)).
To find the equation of a straight line passing through point A perpendicularly to vector AB, we first need to determine the slope of vector AB. The slope is given by (change in y)/(change in x). So, slope of AB = (3 - 2)/(-2 - 3) = 1/(-5) = -1/5. The negative reciprocal of -1/5 is 5, which is the slope of a line perpendicular to AB. Using point-slope form, the equation of the line passing through A can be written as y - y₁ = m(x - x₁), where (x₁, y₁) is point A and m is the slope. Plugging in the values, we get the equation of the line passing through A perpendicular to AB as y - 2 = 5(x - 3).
To find the equation of a straight line passing through point B parallel to vector AC, we can directly use point-slope form. The equation will have the same slope as AC, which is (1 - 3)/(2 - (-2)) = -2/4 = -1/2. Using point-slope form, the equation of the line passing through B can be written as y - y₁ = m(x - x₁), where (x₁, y₁) is point B and m is the slope. Plugging in the values, we get the equation of the line passing through B parallel to AC as y - 3 = -1/2(x - (-2)).
Learn more about point-slope form here: brainly.com/question/29503162
#SPJ11
9. Find the radius and interval of convergence of the power series n³(z-7)". n=1
To find the radius and interval of convergence of the power series Σ(n³(z-7)^n) as n goes from 1 to infinity, we can use the ratio test.
The ratio test states that if the limit of the absolute value of the ratio of consecutive terms in a power series is less than 1, then the series converges. If the limit is greater than 1, the series diverges. If the limit is exactly 1, the test is inconclusive, and we need to examine the endpoints of the interval separately.
Let's apply the ratio test to the given series:
lim(n→∞) |(n+1)³(z-7)^(n+1)| / |n³(z-7)^n|
= lim(n→∞) |(n+1)³(z-7)/(n³(z-7))|
= lim(n→∞) |(n+1)³/n³| * |(z-7)/(z-7)|
= lim(n→∞) (n+1)³/n³
= lim(n→∞) (1 + 1/n)³
= 1
The limit is 1, which means the ratio test is inconclusive. Therefore, we need to examine the endpoints of the interval separately.
Let's consider the endpoints:
For z = 7, the series becomes Σ(n³(0)^n) = Σ(0) = 0, which converges.
Learn more about radius here;
https://brainly.com/question/13449316
#SPJ11
If a tank holds 4500 gallons of water, which drains from the bottom of the tank in 50 minutes, then Toricell's Law gives the volume of water remaining in the tank after minutes as V=4500 1- osts 50. F
The given problem describes the draining of a tank that initially holds 4500 gallons of water. According to Torricelli's Law, the volume of water remaining in the tank after t minutes can be represented by the equation V = 4500(1 - t/50).
In this equation, t represents the time elapsed in minutes, and V represents the volume of water remaining in the tank. As time progresses, the value of t increases, and the term t/50 represents the fraction of time that has passed relative to the 50-minute draining period. Subtracting this fraction from 1 gives the fraction of water remaining in the tank. By multiplying this fraction by the initial volume of the tank (4500 gallons), we can determine the volume of water remaining at any given time.
Learn more about Torricelli's Law here: brainly.com/question/16970143
#SPJ11
The number N of US cellular phone subscribers (in millions) is shown in the table. (Midyear estimates are given: ) 1996 1998 2000 2002 2004 2006 N 44 69 109 141 182 233 (a) Find the average rate of cell phone growth (i) from 2002 to 2006 (ii) from 2002 to 2004 (iii) from 2000 to 2002 In each case, include the units. (6) Estimate the instantaneous rate of growth in 2002 by taking the average of two average rates of change. What are its units? (c) Estimate the instantaneous rate of growth in 2002 by mea- suring the slope of a tangent
a(i). The average rate of cellphone growth per year is 23 million subscriber per year.
a(ii). The average rate of growth is 20.5 million subscribers
a(iii). The average rate of growth is 16 million subscribers.
b. The instantaneous rate of growth is 21.75 million subscribers
c. The instantaneous rate of growth is 23 million subscribers
What is the average rate of cell phone growth?(a) The average rate of cell phone growth is calculated by dividing the change in the number of subscribers by the change in time.
(i) From 2002 to 2006, the number of subscribers increased from 141 million to 233 million. This is a change of 92 million subscribers in 4 years. The average rate of growth is therefore 92/4 = 23 million subscribers per year.
(ii) From 2002 to 2004, the number of subscribers increased from 141 million to 182 million. This is a change of 41 million subscribers in 2 years. The average rate of growth is therefore 41/2 = 20.5 million subscribers per year.
(iii) From 2000 to 2002, the number of subscribers increased from 109 million to 141 million. This is a change of 32 million subscribers in 2 years. The average rate of growth is therefore 32/2 = 16 million subscribers per year.
(b) The instantaneous rate of growth in 2002 is estimated by taking the average of the average rates of change from 2002 to 2004 and from 2002 to 2006. This is equal to (20.5 + 23)/2 = 21.75 million subscribers per year.
(c) The instantaneous rate of growth in 2002 is estimated by measuring the slope of the tangent to the graph of the number of subscribers against time at 2002. The slope of the tangent is equal to the change in the number of subscribers divided by the change in time. The change in the number of subscribers is 92 million and the change in time is 4 years. The slope of the tangent is therefore 92/4 = 23 million subscribers per year.
learn more on average rate here;
https://brainly.com/question/8728504
#SPJ1
6 by a Taylor polynomial with degree n = n x+1 Approximate f(x) = O a. f(x) = 6+6x+6x²+6x³ ○ b² ƒ(x) = 1 − 1⁄x + 1x² - 1 x ³ O c. f(x) = 1 ○ d. ƒ(x) = x − — x³ O O e. f(x)=6-6x+6x�
Among the given options, the Taylor polynomial of degree n = 3 that best approximates f(x) = 6 + 6x + 6x² + 6x³ is option (a): f(x) = 6 + 6x + 6x² + 6x³.
A Taylor polynomial is an approximation of a function using a polynomial of a certain degree. To find the best approximation for f(x) = 6 + 6x + 6x² + 6x³, we compare it with the given options.
Option (a) f(x) = 6 + 6x + 6x² + 6x³ matches the function exactly up to the third-degree term. Therefore, it is the best approximation among the given options for this specific function.
Option (b) f(x) = 1 - 1/x + x² - 1/x³ and option (d) f(x) = x - x³ are not good approximations for f(x) = 6 + 6x + 6x² + 6x³ as they do not capture the higher-order terms and have different terms altogether.
Option (c) f(x) = 1 is a constant function and does not capture the behavior of f(x) = 6 + 6x + 6x² + 6x³.
Option (e) f(x) = 6 - 6x + 6x³ is a different function altogether and does not match the terms of f(x) = 6 + 6x + 6x² + 6x³ accurately.
Learn more about polynomial here:
https://brainly.com/question/11536910
#SPJ11
Question 5 Test the series below for convergence using the Root Test. 5n + 2 3n + 5 n=1 The limit of the root test simplifies to lim f(n) where 1200 f(n) = The limit is: (enter oo for infinity if need
To test the convergence of the series using the Root Test, we consider the series sum of (5n + 2)/(3n + 5) from n=1 onwards.
The limit of the root test simplifies to the limit of f(n), where f(n) = (5n + 2)/(3n + 5). We need to find the limit of f(n) as n approaches infinity .To determine the limit of f(n), we divide the numerator and denominator by n and simplify the expression:
f(n) = (5n + 2)/(3n + 5) = (5 + 2/n)/(3 + 5/n).
As n approaches infinity, the terms involving 2/n and 5/n become negligible since n dominates the expression. Hence, we can ignore them, and the limit of f(n) simplifies to:
lim (n→∞) f(n) = 5/3.
Therefore, the limit of the root test for the given series is 5/3.
Learn more about Root Test: brainly.in/question/966661
#SPJ11