Find 2 given that =
−4/5 and < < 3/2
we know that
sin(2x) = 2 sin(x) cos(x)
so
step 1
Find the value of cos(x)
Remember that
[tex]\sin ^2(x)+\cos ^2(x)=1^{}[/tex]we have
sin(x)=-4/5
The angle x lies on III quadrant
that means
cos(x) is negative
substitute the value of sin(x)
[tex]\begin{gathered} (-\frac{4}{5})^2+\cos ^2(x)=1^{} \\ \\ \frac{16}{25}+\cos ^2(x)=1^{} \\ \\ \cos ^2(x)=1-\frac{16}{25} \\ \cos ^2(x)=\frac{9}{25} \\ \cos (x)=-\frac{3}{5} \end{gathered}[/tex]step 2
Find the value of sin(2x)
sin(2x) = 2 sin(x) cos(x)
we have
sin(x)=-4/5
cos(x)=-3/5
substitute
sin(2x)=2(-4/5)(-3/5)
sin(2x)=24/25(0,1), (2,4), (4,7) (9.1)}Domain:Range:
The domain of an ordered pair are its first elements and its range are all the second elements of the ordered pair.
So, the domain ={0,2,4,9}
Range={1,4,7,1}
Janelle is conducting an experiment to determine whether a new medication is effective in reducing sneezing. She finds 1,000 volunteers with sneezing issues and divides them into two groups. The control group does not receive any medication; the treatment group receives the medication. The patients in the treatment group show reduced signs of sneezing. What can Janelle conclude from this experiment?
Answer:
Step-by-step explanation:
What is the standard form of the complex number that point A represents?
Answer
-3 + 4i
Explanation
The standard form for a complex number is given by:
[tex]\begin{gathered} Z=a+bi \\ \text{Where:} \\ a\text{ is the real part,} \\ b\text{ is the imaginary part} \end{gathered}[/tex]From the graph, the coordinates of A corresponding to the real axis and imaginary axis is traced in blue color in the graph below:
Hence, the standard form of the complex number that a represents is: -3 + 4i
A psychologist has designed a questionnaire to measure individuals' aggressiveness. Suppose that the scores on the questionnaire are normally distributed with
a standard deviation of 90. Suppose also that exactly 10% of the scores exceed 700. Find the mean of the distribution of scores. Carry your intermediate
computations to at least four decimal places. Round your answer to at least one decimal place.
μ = 782.02 is the mean of the distribution of scores by standard deviation.
What is standard deviation in math?
A statistical measurement called standard deviation examines how far away from the mean a set of statistics is. Standard deviation, to put it simply, gauges the degree of dispersion between numbers in a data collection. The variance's square root is used to generate this metric.we have from standard normal table that
P(Z > 1.282) = 0.1
Therefore the given Z score of a score of 700 is given thus 1.282.
the z score is given:
x - μ / α = 1.282
700 - μ / 90 = 1.282
Therefore μ = (700 - 90)*1.282 = 782.02
So we have that μ = 782.02
Learn more about standard deviation
brainly.com/question/13905583
#SPJ13
2.3 I can apply the Pythagorean Theorem and Triangle Inequality.Which of the following could be lengths for a triangle?Show your work on a separate piece of paper.(Select all that apply.)5, 6, 9D 4,8, 127, 8, 17Are any of the selected triangles above right triangles?How do you know?Suami
For the triangle with sides 5, 6 and 9, you have:
5 + 6 > 9
5 + 9 > 6
9 + 6 > 9
9² ≠ 5² + 6²
≠ 25 + 36
≠ 61
Then, it is not a right triangle
For the triangle with sides 4, 8 and 12:
4 + 8 ≥ 12
in this case the triangle inequality is not present
12² ≠ 4² + 8²
Then, it is not a right triangle
For the triangle with sides 7, 8 and 17:
7 + 8 < 17
in this case the triangle inequality is not present
17² ≠ 8² + 7²
Then, it is not a right triangle
Lawn20 meters-WalkwayGazeboRHQ15 metersA bag of grass seed costs $64.26. If agardener wants to calculate the costofgrass seed required to plant the lawn,what additional information wouldhe need to know?A the location of the walkwayBthe perimeter of the lawnс the weight of one bag of grass seedD the area that can be covered byone bag of seed
He needs option D. Because the perimeter is not the total area (it is only the distance in meters/centimeters that surround the lawn, we need to know how much area a bag of grass seeds covers, for us to know how many to buy. Also, we need the area of the walkway, since it is not covered by grass
The area of a triangle is:
[tex]Area\text{ = }\frac{b(h)}{2}[/tex]But, since there is a walkway that isn't covered in grass, we need to subtract the circle area from the triangle area
Area of circle:
[tex]Area\text{ = }\pi r^2[/tex]Then the total area of the lawn :
[tex]Area\text{ Lawn = }\frac{b(h)}{2}\text{ - \lparen}\pi r^2)[/tex]3 2 — · — = _____ 8 5 2 9· — = _____ 3 7 8 — · — = _____ 8 7 x — · y = _____ y a b —— · — = _____ 2b c m n2 —- · —— = _____ 3n mGive the product in simplest form: 1 2 · 2— = _____ 2Give the product in simplest form: 1 2 — · 3 = _____ 4 Give the product in simplest form: 1 1 1— · 1— = _____ 2 2 Give the product in simplest form: 1 2 3— · 2— = _____ 4 3
Given:
[tex]\frac{3}{8}\cdot\frac{2}{5}[/tex]Required:
We need to multiply the given rational numbers.
Explanation:
Cancel out the common terms.
[tex]\frac{3}{8}\cdot\frac{2}{5}=\frac{3}{4}\cdot\frac{1}{5}[/tex][tex]Use\text{ }\frac{a}{b}\cdot\frac{c}{d}=\frac{a\cdot c}{b\cdot d}.[/tex][tex]\frac{3}{8}\cdot\frac{2}{5}=\frac{3}{20}[/tex]Consider the number.
[tex]\frac{7}{8}\cdot\frac{8}{7}=\frac{1}{1}\cdot\frac{1}{1}[/tex]Cancel out the common multiples
[tex]9\cdot\frac{2}{3}[/tex][tex]9\cdot\frac{2}{3}=3\cdot2=6[/tex]Consider the number
[tex]\frac{7}{8}\cdot\frac{8}{7}[/tex]Cancel out the common multiples.
[tex]\frac{7}{8}\cdot\frac{8}{7}=\frac{1}{1}\cdot\frac{1}{1}[/tex][tex]\frac{7}{8}\cdot\frac{8}{7}=1[/tex]Consider the number
[tex]\frac{x}{y}\cdot y=x[/tex][tex]\frac{a}{2b}\cdot\frac{b}{c}=\frac{a}{2}\cdot\frac{1}{c}=\frac{a}{2c}[/tex][tex]\frac{m}{3n}\cdot\frac{n^2}{m}=\frac{1}{3}\cdot\frac{n}{m}=\frac{n}{3m}[/tex]Final answer:
[tex]\frac{3}{8}\cdot\frac{2}{5}=\frac{3}{20}[/tex][tex]9\cdot\frac{2}{3}=6[/tex][tex]\frac{7}{8}\cdot\frac{8}{7}=1[/tex][tex]\frac{x}{y}\cdot y=x[/tex][tex]\frac{a}{2b}\cdot\frac{b}{c}=\frac{a}{2c}[/tex][tex]\frac{m}{3n}\cdot\frac{n^2}{m}=\frac{n}{3m}[/tex]5. 8.G.1.5 Right triangle ABC and right triangle ACD overlap as shown below. Angle DAC measures 20° and angle BCA measures 30°. B D to 20- A 30° C not drawn to scale What are the values of and y?
In any triangle, the sum of the internal angle is always up to 180º.
Then, for triangle ABC:
[tex]90º+30º+(x+20º)=180º[/tex]Use it to solve x:
[tex]\begin{gathered} 90º+30º+x+20º=180º \\ x=180º-90º-30º-20º \\ x=40º \end{gathered}[/tex]In the triangle ACD:
[tex]90º+20º+(y+30º)=180º[/tex]Use it to solve y:
[tex]\begin{gathered} 90º+20º+y+30º=180º \\ y=180º-90º-20º-30º \\ y=40º \end{gathered}[/tex]Then, the value for x is 40º and the value for y is also 40ºI need this done in 20 minutes please and thank you
An isosceles triangle in the one that has 2 equal sides, means that it also has two equal angles
this means that:
[tex]\begin{gathered} ifJK=KL \\ \text{then,}\measuredangle KJL=\measuredangle KLJ \\ \end{gathered}[/tex]using the properties of the triangle
[tex]\begin{gathered} \measuredangle KJL+\measuredangle KLJ+\measuredangle JKL=180 \\ 2\cdot\measuredangle KLJ+\measuredangle JKL=180 \\ 2\cdot34+\measuredangle JKL=180 \\ \measuredangle JKL=180-68 \\ \measuredangle JKL=112 \end{gathered}[/tex]A length of 48 ft. gave Malama an area
of 96 sq. ft. What other length would
give her the same area (96 sq. ft.)?
4
I need some help solving this It’s from my ACT prep guide
We can convert a measure from radians to degrees by taking into account that π radians is equivalent to 180°.
Then, we can convert a measure in radians into degrees by multiplying by 180°/π.
We can convert 7π/11 into degrees as:
[tex]\frac{7\pi}{11}\cdot\frac{180\degree}{\pi}=\frac{7\cdot180\degree}{11}\approx114.55\degree[/tex]Answer: 114.55°
A cylinder truck all paint cans to be inches across the top diameter in about 10 inches high. How many cubic inches of pink it all to the nearest hundredth?
Given:
A cylinder truck all paint cans to be inches across the top diameter in about 10 inches high.
[tex]\begin{gathered} r=1.5in \\ h=10in \end{gathered}[/tex]Required:
To find the volume of the cylinder.
Explanation:
The volume of the cylinder is,
[tex]V=\pi r^2h[/tex]Therefore,
[tex]\begin{gathered} V=3.14\times1.5^2\times10 \\ \\ =3.14\times2.25\times10 \\ \\ =70.65in^3 \end{gathered}[/tex]Final Answer:
70.65 cubic inches of paint it hold.
The coordinates of three vertices of a rectangle are (3,7), (-3,5), and (0,-4). What are the coordinates of the fourth vertex?A. (6,-2)B. (-2,6)C. (6,2)D. (-2,-6)
ANSWER
A. (6, -2)
EXPLANATION
Let's graph these three vertices,
The fourth vertex must be at the same distance from (0, -4) as vertex (3, 7) is from (-3, 5),
Note that the horizontal distance between these two points is 6 units and the vertical distance is 2 units. The fourth vertex is,
[tex](0+6,-4+2)=(6,-2)[/tex]Hence, the fourth vertex is (6, -2)
WhichIs 9.56556555... a rational or irrationalnumber? Highlight the correct answer below.181a)Whicha) Rational numberb) Irrational numberthat ap
Answer
Option B is correct.
9.56556555... is an irrational number.
Step-by-step Explanation
Rational numbers are numbers that can be expressed as a clear fraction consisting of the numerator and the denominator both being integers.
The decimal form or decimal expansion of a rational number terminates after a particular/finite number of digits (e.g., 0.25, 0.762 etc.) or begins to repeat/recur the same sequence over and over again (e.g., 0.333..., 0.267267... etc)
Anything other than these two rules, the number is regarded as an irrational number.
The number given is 9.56556555...
The dots indicate thst the numbers after the decimal point conbtinue till eternity.
Observing the numbers after the decimal point for the given number, one can see that 565 repeats once and then the number after the second 565 is 55, indicating that the 565 doesn't recur till infinity.
Since the numbers after the decimal point doesnt contain a finite number of digits and the numbers don't recur till infinity, we can conclude that 9.56556555... isn't a rational number.
Hope this Helps!!!
Find the measure of the indicated angle to the nearest degree.A. 63B. 25C. 31D. 27
The point of the problem is to remember the cosine relation. It says, in this case, that
[tex]\cos (?)=\frac{\text{adjacent side}}{Hypotenuse}\Rightarrow\begin{cases}\text{adjacent side}=6 \\ \text{Hypotenuse}=13\end{cases}\Rightarrow\cos (?)=\frac{6}{13}[/tex]Converting the last equation by the inverse function, we get
[tex]?=\cos ^{-1}(\frac{6}{13})\approx62.5[/tex]For the first decimal place (5) equals 5, and by the rounding rule to the nearest degree, we get 63. The answer is A.
In the picture, the first answer circled is the original answer of the problem. My math teacher simplified this to get the second circled answer. Could you explain how he simplified it?
We have an algebraic problem where we have to solve for "w"
[tex]3x+2k=\frac{15y}{9w-18v}[/tex]Solving for "w"
[tex]\begin{gathered} 9w-18v=\frac{15y}{3x+2k} \\ w=\frac{\frac{15y}{3x+2k}}{9}+\frac{18v}{9} \\ w=\frac{15y}{27x+18k}+2v \end{gathered}[/tex]The previous result is the solution to the problem without simplifying, the error is that you have in the image, in the denominator the factor "23x" in reality this is "27x"
Now we can simplify this by taking out the third part of the whole fractional term
For him we divide everything by 3, being the third part of 15, 27, and 18 respectively 5, 9, and 6.
[tex]w=\frac{5y}{9x+6k}+2v[/tex]Need help with this.. tutors have been a great help
Given the table in I which represents function I.
x y
0 5
1 10
2 15
3 20
4 25
• Graph II shows Item II which represents the second function.
Let's determine the increasing and decreasing function.
For Item I, we can see that as the values of x increase, the values of y also increase. Since one variable increases as the other increases, the function in item I is increasing.
For the graph which shows item II, as the values of x increase, the values of y decrease, Since one variable decreases as the other variable decreases, the function in item I is decreasing.
Therefore, the function in item I is increasing, and the function in item II is decreasing.
ANSWER:
A. The function in item I is increasing, and the function in item II is decreasing.
Two students measured a box in class. They used a digital scale and found that the mass was 400 grams. They then measured the box found the length is 2cm, the width is 2cm, and the height is 1cm. What is the density of the object
Explanation
Step 1
the density of an object is given by:
[tex]\begin{gathered} density=\frac{mass_{object}}{volume_{object}} \\ \end{gathered}[/tex]Let
mass: 400 grams
length's box=2 cm
width´s box= 2 cm
height's box= 1 cm
Step 2
find the volume of the box
[tex]\begin{gathered} \text{Volume}=\text{ length}\cdot width\cdot height \\ \text{replacing} \\ \text{Volume= 2 cm }\cdot\text{ 2 cm }\cdot\text{ 1 cm} \\ \text{Volume}=\text{ 4 cubic cm} \end{gathered}[/tex]Step 3
finally, replace the values of mass and volume in the density equation
[tex]\begin{gathered} density=\frac{mass_{object}}{volume_{object}} \\ density=\frac{400\text{ grm}}{4cm^3} \\ \text{density}=100\frac{gr}{cm^3} \end{gathered}[/tex]I hope this helps you
Find the lateral surface area of thiscylinder. Round to the nearest tenth.8ft4ftLSA = [ ? ] ft2—
Solution
Step 1:
Write the lateral surface area or curved surface area of a cylinder:
[tex]Lateral\text{ surface area = 2}\pi rh[/tex]Step 2:
Write the given data
Height h = 8ft
Radius r = 4 ft
Step 3:
Substitute in the formula to find the lateral surface area.
[tex]\begin{gathered} Lateral\text{ surface area = 2}\pi rh \\ =\text{ 2 }\times\text{ 3.142 }\times\text{ 4 }\times\text{ 8} \\ =\text{ 201.1 ft}^2 \end{gathered}[/tex]Final answer
201.1
Answer A= f(x)>0 on the interval x <0 Answer B=f(x)>0 on the interval x<0 Answer C=is f(x)<0 on the interval 00 on the interval 00 on the interval 1
EXPLANATION
Given the function f(x)= -x ²+4x - 3, the statements that apply are:
A) TRUE
B) FALSE
C) TRUE
D) FALSE
E) FALSE
F) TRUE
G) TRUE
H) FALSE
If the time to climb the mountain took an hour more than the time to hike down how long was entire hike?
4.8 mi
Explanation
[tex]\text{time}=\text{ }\frac{\text{distance}}{\text{rate}}[/tex]
Step 1
Set the equations
a) uphill
let
rate1= 1.5 miles per hour
time= unknow= t1
distance = x
b) down hille
rate=4 miles per hour
time=time2=one hour less than the time to climb = t1-1
distance = x
so
replacing
[tex]\begin{gathered} t_1=\frac{x}{1.5\frac{mi}{\text{hour}}}\rightarrow t_1=\frac{x}{1.5}\rightarrow equation(1) \\ t_2=\frac{x}{4\frac{mi}{\text{hour}}} \\ \text{replace t}_2=t_1-1 \\ t_1-1=\frac{x}{4} \\ \text{add 1 in both sides} \\ t_1-1+1=\frac{x}{4}+1 \\ t_1=\frac{x}{4}+1\rightarrow equation(2) \end{gathered}[/tex]Step 2
solve the equations
[tex]\begin{gathered} t_1=\frac{x}{1.5}\rightarrow equation(1) \\ t_1=\frac{x}{4}+1\rightarrow equation(2) \end{gathered}[/tex]set t1= t1
[tex]\begin{gathered} t_1=t_1 \\ \frac{x}{1.5}=\frac{x}{4}+1 \\ \frac{x}{1.5}=\frac{x+4}{4} \\ 4x=(x+4)1.5 \\ 4x=1.5x+6 \\ subtract\text{ 1.5 x in both sides} \\ 4x-1.5x=1.5x+6-1.5x \\ 2.5x=6 \\ \text{divide both sides by 2.5} \\ \frac{2.5x}{2.5}=\frac{6}{2.5} \\ x=2.4 \end{gathered}[/tex]it means the distance to the top of the mountain is 2.4 miles, so the entire hike is twice that amount
total distance=2.4 mi*2
total distance=4.8 miles
Step 3
now, the times
[tex]\begin{gathered} t_1=\frac{x}{1.5} \\ t_1=\frac{2.4}{1.5} \\ t_1=1.6\text{ hours} \\ t_2=t_1-1 \\ t_2=1.6-1=\text{ 0.6 hours} \end{gathered}[/tex]table
I hope this helps you
Which family spends the largest dollar amount on transportation?Family AFamily BFamily C
SOLUTION:
Step 1:
In this question, we are given the following:
Which family spends the largest dollar amount on transportation?
a) Family A
b) Family B
c) Family C
Step 2:
The details of the solution are as follows:
a) Family A
Total income $ 5, 400
Amount spent on Transportation =
[tex]\begin{gathered} 11\text{ \% of \$ 5,400} \\ \frac{11}{100}\text{ x \$ 5, 400} \\ =\text{ }\frac{59400}{100} \\ =\text{ 594} \\ =\text{ \$ 594} \\ So,\text{ Family A spent \$ 594 on Transportation} \end{gathered}[/tex]b) Family B
Total income $ 4,675
Amount spent on Transportation =
+
[tex]\begin{gathered} 13\text{\% of \$ }4,675 \\ \frac{13}{100}\text{ x \$ }4,675 \\ =\text{ }\frac{60775}{100} \\ =607.75 \\ =\text{ }607.\text{ 75 dollars} \\ So,\text{ Family B spent \$ 607.75 on Transportation} \end{gathered}[/tex]c) Family C:
Total income $ 6,675
Amount spent on Transportation =
+
[tex]\begin{gathered} 9\text{\% of \$ }6,675 \\ \frac{9}{100}\text{ x \$ }6,675 \\ =\text{ }\frac{60,075}{100} \\ =600.75 \\ =\text{ }600.75\text{ dollars} \\ So,\text{ Family C spent \$ 600.75 on Transportation} \end{gathered}[/tex]CONCLUSION:
From the above analysis,
we can see that Family B spent the largest dollar amount on Transportation with the sum of $ 607. 75 ( which is 13% of $ 4,675)
French cooks usually weigh ingredients. A French recipe uses 225 grams of granulated sugar.How many cups are needed if there are 2 cups of sugar per pound: (Note that you are changingfrom units of weight, grams, to units of volume, cups. There are 453.5 grams/pound)cups
Given:
The amount of granulated sugar used fo French fries, x=225 g.
1 pound=2cups.
1 pound=453.5g.
Since 1 pound =453.5 g,
[tex]1\text{ g=}\frac{1}{453.5}\text{ pound}[/tex]Therefore, 225 grams can be expressed in pound as,
[tex]\begin{gathered} 225\text{ g=}225\text{ g}\times\frac{\frac{1}{453.5}pound}{1\text{ g}} \\ =\frac{225}{453.5}pound \\ \cong0.496\text{ pound} \end{gathered}[/tex]Since 1 pound =2 cups, we can write
[tex]\begin{gathered} 0.496pound=0.496pound\times\frac{2cup}{1\text{ pound}} \\ =0.992\text{ cups} \\ \cong1\text{ cup} \end{gathered}[/tex]Therefore, 1 cup is needed.
In ATUV, the measure of ZV=90°, TV = 28, UT = 53, and VU = 45. What ratiorepresents the cosecant of ZU?
cosecant = hypotenuse / opposite side
hypotenuse = 53
opposite side = 28
cosecant U = 53/28
Which graph represents the function over the interval [−3, 3]?f(x)=⌊x⌋−2
Given:
[tex]f(x)=x-2\text{ ,\lbrack-3,3\rbrack}[/tex]Miscavage Corporation has two divisions: the Beta Division and the Alpha Division.
The Beta Division has:
sales of $320,000,
variable expenses of $158,100,
and traceable fixed expenses of $72,300.
The Alpha Division has:
sales of $630,000,
variable expenses of $343,800,
and traceable fixed expenses of $135,100.
The total amount of common fixed expenses not traceable to the individual divisions is $137,200.
What is the total company's net operating income?
The total net operating income (NOI) of both divisions is $1,03,500.
What is net operating income?Real estate professionals use the formula known as Net Operating Income, or NOI, to quickly determine the profitability of a specific investment. After deducting required operating costs, NOI calculates the revenue and profitability of investment real estate property. Let's say, for illustration purposes, that you own a duplex with a gross monthly income of $2,000 and monthly operating expenses of $400. You would start with your annual gross income ($24,000) and deduct your operating expenses ($4,800) to arrive at your net operating income.So, the total net operating income:
The formula for net operating income: NOI = Gross Income - Operating ExpensesNow, substitute the values and get the NOI as follows:
NOI = Gross Income - Operating ExpensesNOI = (Sales+Sales) - [(variable expenses + variable expenses) + (fixed expenses + fixed expenses) + 137,200] NOI = (320,000+630,000) - [(158,100 + 343,800) + (72,300 + 135,100) + 137,200]NOI = 9,50,000 - (5,01,900 + 2,07,400 + 137,200)NOI = 9,50,000 - 8,46,500NOI = 1,03,500Therefore, the total net operating income (NOI) of both divisions is $1,03,500.
Know more about net operating income here:
https://brainly.com/question/15834358
#SPJ13
the hypotenuse of a right triangle is 5 ft long. the shorter leg is 1 ft shorter than the longer leg. find the side lengths of the triangle
the hypotenuse of the right angle triangle is h = 5 ft
it is given that
the shorter leg is 1 ft shorter than the longer leg.
let the shorter leg is a and longer leg is b
the
b - a = 1
b = 1 + a
in the traingle using Pythagoras theorem,
[tex]a^2+b^2=h^2[/tex]put he values,
[tex]a^2+(1+a)^2=5^2[/tex][tex]\begin{gathered} a^2+1+a^2+2a=25 \\ 2a^2+2a-24=0 \\ a^2+a-12=0 \end{gathered}[/tex][tex]\begin{gathered} a^2+4a-3a-12=0_{} \\ a(a+4)-3(a+4)=0 \\ (a+4)(a-3)=0 \end{gathered}[/tex]a + 4 = 0
a = - 4
and
a - 3 = 0
a = 3
so, the longer leg is b = a + 1 = 3 + 1 = 4
thus, the answer is
shorter leg = 3 ft
longer length = 4 ft
hypotenuse = 5 ft
Find the value of variable a given the transformation is an isometry.
Answer:
• a =10
,• b = 4
Explanation:
An isometry is a rigid transformation that preserves length and angle measures, as well as perimeter and area.
This means that the two right triangles are congruent.
Thus, we have that:
[tex]\begin{gathered} 3a=30 \\ 10b=40\degree \end{gathered}[/tex]Next, we solve for a and b.
[tex]\begin{gathered} 3a=30 \\ \text{Divide both sides by 3} \\ \frac{3a}{3}=\frac{30}{3} \\ a=10 \end{gathered}[/tex]Likewise:
[tex]\begin{gathered} 10b=40\degree \\ \text{Divide both sides by 10} \\ \frac{10b}{10}=\frac{40\degree}{10} \\ b=4 \end{gathered}[/tex]The values of a and b are 10 and 4 respectively.
f(x) = log 2(x+3) and g(x) = log 2(3x + 1).(a) Solve f(x) = 4. What point is on the graph of f?(b) Solve g(x) = 4. What point is on the graph of g?(c) Solve f(x) = g(x). Do the graphs off and g intersect? If so, where?(d) Solve (f+g)(x) = 7.(e) Solve (f-g)(x) = 3.
Given
[tex]\begin{gathered} f(x)=log_2(x+3) \\ and \\ g(x)=log_2(3x+1) \end{gathered}[/tex]a)
[tex]\begin{gathered} f(x)=4 \\ \Rightarrow log_2(x+3)=4 \\ \Leftrightarrow x+3=2^4 \\ \Rightarrow x+3=16 \\ \Rightarrow x=13 \end{gathered}[/tex]The answer to part a) is x=13. The point on the graph is (13,4)
b)
[tex]\begin{gathered} g(x)=4 \\ \Rightarrow log_2(3x+1)=4 \\ \Leftrightarrow3x+1=2^4 \\ \Rightarrow3x+1=16 \\ \Rightarrow3x=15 \\ \Rightarrow x=5 \end{gathered}[/tex]The answer to part b) is x=5, and the point on the graph is (5,4).
c)
[tex]\begin{gathered} f(x)=g(x) \\ \Rightarrow log_2(x+3)=log_2(3x+1) \\ \Rightarrow\frac{ln(x+3)}{ln(2)}=\frac{ln(3x+1)}{ln(2)}] \\ \Rightarrow ln(x+3)=ln(3x+1) \\ \Rightarrow x+3=3x+1 \\ \Rightarrow2x=2 \\ \Rightarrow x=1 \\ and \\ log_2(1+3)=log_2(4)=2 \end{gathered}[/tex]The answer to part c) is x=1 and graphs intersect at (1,2).
d)
[tex]\begin{gathered} (f+g)(x)=7 \\ \Rightarrow log_2(x+3)+log_2(3x+1)=7 \\ \Rightarrow log_2((x+3)(3x+1))=7 \\ \Leftrightarrow(x+3)(3x+1)=2^7 \\ \Rightarrow3x^2+10x+3=128 \\ \Rightarrow3x^2+10x-125=0 \end{gathered}[/tex]Solving the quadratic equation using the quadratic formula,
[tex]\begin{gathered} \Rightarrow x=\frac{-10\pm\sqrt{10^2-4*3*-125}}{3*2} \\ \Rightarrow x=-\frac{25}{3},5 \end{gathered}[/tex]However, notice that if x=-25/3,
[tex]log_2(x+3)=log_2(-\frac{25}{3}+3)=log_2(-\frac{16}{3})\rightarrow\text{ not a real number}[/tex]Therefore, x=-25/3 is not a valid answer.
The answer to part d) is x=5.
e)
[tex]\begin{gathered} log_2(x+3)-log_2(3x+1)=3 \\ log_2(\frac{x+3}{3x+1})=3 \\ \Leftrightarrow\frac{x+3}{3x+1}=2^3=8 \\ \Rightarrow x+3=24x+8 \\ \Rightarrow23x=-5 \\ \Rightarrow x=-\frac{5}{23} \end{gathered}[/tex]The answer to part e) is x=-5/23
Macky Pangan invested ₱2,500 at the end of every 3-month period for 5 years, at 8% interest compounded quarterly. How much is Macky’s investment worth after 5 years?
Compound interest with addition formula:
[tex]A=P(1+\frac{r}{n})^{nt}+\frac{PMT(1+\frac{r}{n})^{nt}-1}{\frac{r}{n}}[/tex]where,
A = final amount
P = initial principal balance
r = interest rate
n = number of times interest applied per time period
t = number of time periods elapsed
PMT = Regular contributions (additional money added to investment)
in this example
P = 2500
r = 8% = 0.08
n = 4
t = 5 years
PMT = 2500
[tex]A=2500(1+\frac{0.08}{4})^{4\cdot5}+\frac{2500\cdot(1+\frac{0.08}{4})^{4\cdot5}-1}{\frac{0.08}{4}}[/tex]solving for A:
[tex]A=189408.29[/tex]Therefore, his investment after 5 years will be
$189,408.29