In which situation are waves transmitted?
O A. A patient wears a lead apron at the dentist's office when getting
teeth X-rays.
O B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
O C. A person wears earplugs to prevent hearing damage when fueling
a jet plane at the airport.
O D. A reflective screen is put on a parked car's dashboard to keep the
car from heating up in sunlight.
Answer: B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
Which option correctly matches the chemical formula of a compound with its name?
A. N2O3, dinitrogen trioxide
B. N2O, trinitrogen dioxide
C. N2O, dinitrogen trioxide
D. N2O3, trinitrogen dioxide
Answer:
A is indeed correct
Explanation:
just did the question
The option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
What is dinitrogen trioxide?
Dinitrogen trioxide is one of the simple nitrogen oxide. The chemical compound formula of Dinitrogen trioxide N₂O₃.
That is, it consists of 2 molecules of nitrogen, hence the prefix "Di" and 3 molecules of oxygen given the prefix tri.
Thus, the option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
Learn more about Dinitrogen trioxide here: https://brainly.com/question/21392313
#SPJ2
If a satellite is orbiting the Earth in elliptical motion, then it will move _______________ (slowest, fastest) when its closest to the Earth. While moving towards the Earth (along the path from D to A) there is a component of force in the __________________ (same, opposite) direction as the motion; this causes the satellite to ___________________ (slow down, speed up). While moving away from the Earth (along the path from A to D) there is a component of force in the _________________ (same, opposite) direction as the motion; this causes the satellite to ___________________ (slow
Answer:fastest,same,slow down,opposite,slow
Explanation:
A satellite move fastest when its closest to the Earth. The other correct options are same direction, speed up, opposite direction and slow.
Velocity of a satellite around the planet.If a satellite is orbiting the Earth in elliptical motion, then it will move fastest when its closest to the Earth (based on Kepler's, law).
While moving towards the Earth (along the path from D to A) there is a component of force in the same direction as the motion; this causes the satellite to speed up.
While moving away from the Earth (along the path from A to D) there is a component of force in the opposite direction as the motion; this causes the satellite to slow.
Learn more about motion of satellite here: https://brainly.com/question/25721729
#SPJ2
Can someone please help, ty!!
Will mark brainliest.
Answer:
4. unbalanced and Accelerating
5. balance and rest
Review Conceptual Example 8 before starting this problem. A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of 3.96 Hz. The amplitude of the motion is 5.95 x 10-2 m. At the point where the block has its maximum speed, it suddenly splits into two identical parts, only one part remaining attached to the spring. (a) What is the amplitude and (b) the frequency of the simple harmonic motion that exists after the block splits
Answer:
a) A' = 0.345 m, b) f = 2,800 Hz
Explanation:
b) The angular velocity of a simple harmonic motion is
w =[tex]\sqrt{\frac{k}{m} }[/tex]
angular velocity and frequency are related
w = 2π f
we substitute
f = 1 /2π √k/m
indicates that the initial frequency value f = 3.96 Hz
in this case the mass is reduced by half
m ’= m / 2
we substitute
f = 2π [tex]\sqrt{\frac{k}{m} }[/tex]
f = √1/2 (2π √k/m)
f = 1 /√2 3.96
f = 2,800 Hz
a) The amplitude of the movement is defined by the value of the initial depalzamienot before an external force that initiates the movement.
When the block is divided into two parts of equal masses as if it were exploding, for which we can use the conservation of moment
initial instant. Right before the division
p₀ = (m₁ + m₁) v
final instant. Right after the split
p_f = m₁ v '
p₀ = p_f
(2 m₁) v = m₁ v ’
v ’= 2v
At this point we can use conservation of energy for the system with only half the block.
Starting point. Where the block divides
Em₀o = K = ½ m v'²
Final point. Point of maximum elongation
Em_f = Ke = ½ k A²
how energy is conserved
Em₀ = Em_f
½ m’ v’² = ½ k A’²
we substitute the previous expressions
½ m/2 (2v)² = ½ k A’²
A’² = 2 m v² / k (1)
Let's use the conservation of energy with the initial conditions, before dividing the block
½ m v2 = ½ k A2
A² = mv² / k = 5.95 10⁻² m²
we substitute in 1
A'² = 2 A²
A ’²= 2 5.95 10⁻²
A ’²= 11.9 10⁻² m
A' = 0.345 m
Suppose one Sherpa uses a force of 980 N to move a load of equipment to a height of 20 meters in 25 seconds. How much power is used?
F = 980 N
h = 20 m
t = 25 s
P=? (power)
W=F*h (work)
P=W*t
P=F*h*t
P=980*20*25 =490000 W = 490 kW = 0.49 MW
How does altitude from the surface of earth affect the time period of a simple pendulum
Answer:
because the strength of Earth's gravitational field is not uniform everywhere, a given pendulum swings faster, and thus has a shorter period, at low altitudes and at Earth's poles than it does at high altitudes and at the Equator.
An aluminum wire having a cross-sectional area equal to 2.20 10-6 m2 carries a current of 4.50 A. The density of aluminum is 2.70 g/cm3. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
[tex] v = \frac{I}{nqA} [/tex]
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
[tex] n = \frac{6.022\cdot 10^{23} atoms}{1 mol}*\frac{1 mol}{26.982 g}*\frac{2.70 g}{1 cm^{3}}*\frac{(100 cm)^{3}}{1 m^{3}} = 6.03 \cdot 10^{28} atom/m^{3} [/tex]
Now, we can find the drift speed:
[tex]v = \frac{I}{nqA} = \frac{4.50 A}{6.03 \cdot 10^{28} atom/m^{3}*1.6 \cdot 10^{-19} C*2.20 \cdot 10^{-6} m^{2}} = 2.12 \cdot 10^{-4} m/s[/tex]
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!
In a certain region of space the electric potential increases uniformly from east to west and does not vary in any other direction. The electric field:Group of answer choicespoints east and varies with positionpoints east and does not vary with positionpoints west and varies with positionpoints west and does not vary with positionpoints north and does not vary with position
Answer:
Explanation:
The relation between electric field and potential difference is as follows
E = - dV / dr
That means if dV is positive , E is negative . In other words , if potential increases , E is negative or in opposite direction in which potential increases .
Here the electric potential increases uniformly from east to west , that means electric field is from west to east . Since potential is uniformly increasing that means
dV / dr = constant
E = constant
Electric field is constant .
So the option which is correct is
" points east and does not vary with position " .
The cylinder with piston locked in place is immersed in a mixture of ice and water and allowed to come to thermal equilibrium withthe mixture. The piston is then moved inward very slowly, that thegas is always in thermal equilibrium with the ice-water mixture,what happens to the following(increase, decrease, same)?
a. volume of gas
b. temperature of gas
c. internal energy of gas,
d. pressure of gas
Answer:
a. volume of gas: (decreases)
b. temperature of gas: (same)
c. internal energy of gas: (same)
d. pressure of gas: (increases)
Explanation:
We have a gas (let's suppose that is ideal) in a piston with a fixed volume V.
Then we put in a reservoir at 0°C (the mixture of water and ice)
remember that the state equation for an ideal gas is:
P*V = n*R*T
and:
U = c*n*R*T
where:
P = pressure
V = volume
n = number of mols
R = constant
c = constant
T = temperature.
Now, we have equilibrium at T = 0°C, then we can assume that T is also a constant.
Then in the equation:
P*V = n*R*T
all the terms in the left side are constants.
P*V = constant
And knowing that:
U = c*n*R*T
then:
n*R*T = U/c
We can replace it in the other equation to get:
P*V = U/c = constant.
Now, the piston is (slowly) moving inwards, then:
a) Volume of the gas: as the piston moves inwards, the volume where the gas can be is smaller, then the volume of the gas decreases.
b) temperature of the gas: we know that the gas is a thermal equilibrium with the mixture (this happens because we are in a slow process) then the temperature of the gas does not change.
c) Internal energy of the gas:
we have:
P*V = n*R*T = constant
and:
P*V = U/c = constant.
Then:
U = c*Constant
This means that the internal energy does not change.
d) Pressure of the gas:
Here we can use the relation:
P*V = constant
then:
P = (constant)/V
Now, if V decreases, the denominator in that equation will be smaller. We know that if we decrease the value of the denominator, the value of the quotient increases.
And the quotient is equal to P.
Then if the volume decreases, we will see that the pressure increases.
[RM.03H]Which of these is the most likely impact of extensive mining of uranium to produce energy?
land becomes unfit for food production
rainfall decreases because of harmful gases
greenhouse gases are absorbed by the mineral
radiations are better absorbed by the atmosphere
Answer:
land becomes unfit for food production
The map below shows major ocean currents in the North Atlantic and North Pacific Oceans. In general, currents flowing toward the
Equator bring cooler waters to some regions, while currents flowing away from the Equator bring warmer waters to other regions.
North
British
Isles
Askan
North Atlantic
Azor
U.S.A
California
Gulf Stream
Loop
n
Canbean
North Equatorial
North Equatorial CC
North Fuatorial
Equator
South Equatorial
Not
South Equatorial
Image courtesy of NOAA
Judging from the map, which region probably has cooler summers than it would without the effect of a nearby ocean current?
A the Central U.S.
B. the British Isles
C. the U.S. East Coast
D. the US West Coast
Answer:
d
Explanation:
the US West Coast region probably has cooler summers than it would without the effect of a nearby ocean current.
what is ocean current ?
ocean current can be defined as the horizontal movement of seawater which is produced by gravity, wind, and water density, it play an major role in the determination of climates of coastal regions.
The movement of ocean water is continuous which can be up three types such as Waves, Tides, Currents
The streams of water which flow continuously on the ocean surface in specific directions are called ocean currents, it affect the temperature of ocean water as Warm ocean currents increase the temperature whereas Cold ocean currents decrease the temperature.
The magnitude of the ocean currents is about few centimeters per second to as much as 4 metres per second and the intensity of the ocean currents generally decreases with increasing depth.
There are two types of ocean currents such as Warm Ocean Currents
and Cold Ocean Currents
For more details ocean current, visit
https://brainly.com/question/21654036
#SPJ2
Which of the following is the BEST explanation for why oceans have two different types of currents?
Answer:
sddww
Explanation:
szsswa
convert 0.0345mW
to MW
Answer:
3.45e-11MV
that is ur answer
What is the average speed of an Olympic sprinter that runs 100 m in 9.88 s?
Answer:
speed = 10.1215 m/s
Explanation:
speed = distance / time
speed = 100 / 9.88 = 10.1215 m/s
Find the GCF of each set of numbers.
12, 21, 30
Math
Answer:
3 is the GCF for all these numbers if thats what you're asking
What are regular and irregular reflection of light? plz help its
urgent..
Explanation:
Regular reflection: It is the reflection from a smooth surface such that the light rays are evenly parallel to each other and an image is formed. ... Irregular reflection: It is the diffused reflection from uneven surface such that the light rays are not parallel to each other and do not form an image.
Need help on another homework question
Rick places the blue lens of one pair of 3D glasses over the red lens of another pair. He then looks through both lenses at the same time. What color will he see?
A. blue
B. black
C. red
D. white
Answer:
a
Explanation:
As every amusement park fan knows, a Ferris wheel is a ride consisting of seats mounted on a tall ring that rotates around a horizontal axis. When you ride in a Ferris wheel at constant speed, what are the directions of your acceleration and the normal force on you (from the always upright seat) as you pass through (a) the highest point and (b) the lowest point of the ride
Answer:
Answer is explained in the explanation section below.
Explanation:
In this question, we are asked to find out the direction of acceleration and direction of the normal force acting upon us from the always upright seat.
a) You pass through the highest point:
When we sit in the Ferris wheel at the any amusement park, and when it starts rotating and the time when we reach the highest point, then the direction of of our acceleration will be towards the center or it will be towards downward direction.
And at the highest point on the Ferris Wheel, the direction of the normal force F acting upon us will be upwards.
b) You pass through the lowest point of the ride:
When we sit in the Ferris wheel at the any amusement park, and when it starts rotating and the time when we reach the lowest point, then the direction of of our acceleration will be towards the center or it will be towards upward direction.
And at the lowest on the Ferris Wheel, the direction of the normal force F acting upon us will be upwards again.
Scientists have investigated how quickly hoverflies start beating their wings when dropped both in complete darkness and in a lighted environment. Starting from rest, the insects were dropped from the top of a 50 - cm tall box. In the light, those flies that began flying 200 m s after being dropped avoided hitting the bottom of the box 87 % of the time, while those in the dark avoided hitting only 25 % of the time.
Required:
a. How far would a fly have fallen in the 200 ms before it began to beat its wings?
b. How long would it take for a fly to hit the bottom if it never began to fly? In seconds.
Answer:
Explanation:
a )
Hoverfly will fall with acceleration equal to g .
Initial velocity of fall of hoverflies u = 0
displacement ( vertical ) h = ?
time t = 0.2 s
acceleration due to gravity g = 9.8 m / s²
h = ut + 1/2 g t²
= 0 + .5 x 9.8 x .2²
= .196 m
= 19.6 cm
b )
Time taken to fall by 50 cm or 0.5 m under free fall from initial position .
.5 = 0 + .5 x 9.8 t²
t² = .1020
t = .319 s = 319 ms .
On a car trip you drive for 2 hours and 41 minutes on a highway at a speed of 107.0 km/h. Then you stop at a gas station to fill up your tank. You also eat a quick lunch. The whole break lasts 23 minutes. After the break you start your engine up and you switch to a state road. You drive for another 3 hours and 31 minutes at a speed of 67.0 km/h before you arrive to your destination. What was your average speed for the whole trip with the lunchbreak included
Answer:
v = 79.3 km/h
Explanation:
By definition, the average speed, is the quotient between the total distance traveled and the time needed to travel that distance.The total time, is the sum of three times: one while driving before stopping at the gas station (t₁), the time spent there (t₂) and the time since leaving the gas station until reaching the final destination (t₃) .Let's convert these times to seconds first:[tex]t_{1} = 161 min* \frac{60s}{1min} = 9660 s (1)[/tex]
[tex]t_{2} = 23 min* \frac{60s}{1min} = 1380 s (2)[/tex]
[tex]t_{3} = 211 min* \frac{60s}{1min} = 12660 s (3)[/tex]
[tex]t_{tot} =t_{1} +t_{2} +t_{3} = 9660s + 1380s + 12660s = 23700s (4)[/tex]
In order to find the total distance traveled, we need to add the distance traveled before stopping at the gas station (x₁) and the distance traveled after leaving it (x₂).Applying the definition of average speed, we can find these distances as follows:[tex]x_{1} = v_{1} * t_{1} (5)[/tex]
[tex]x_{2} = v_{2} * t_{3} (6)[/tex]
where v₁ = 107.0 km/h, and v₂= 67.0 km/hAs we did with time, let's convert v₁ and v₂ to m/s:[tex]v_{1} = 107.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 29.7 m/s (7)[/tex]
[tex]v_{2} = 67.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 18.6 m/s (8)[/tex]
Replacing (7) and (1) in (5) we get x₁, as follows (in meters):[tex]x_{1} = v_{1} * t_{1} = 29.7 m/s * 9660 s = 286902 m (9)[/tex]
Doing the same for x₂ with (3) and (8):[tex]x_{2} = v_{2} * t_{3} = 18.6 m/s * 12660 s = 235476 m (10)[/tex]
Total distance traveled is just the sum of (9) and (10):[tex]x_{tot} = x_{1} +x_{2} = 286902 m + 235476 m = 522378 m (11)[/tex]
As we have already said, the average speed is just the quotient between (11) and (4), as follows:[tex]v_{avg} =\frac{\Delta x}{\Delta t} = \frac{522378m}{23700s} = 22.0 m/s (12)[/tex]
Converted back to km/h:[tex]v_{avg} = 22.0 m/s*\frac{1km}{1000m}*\frac{3600s}{1h} = 79.3 km/h (13)[/tex]
pls help me this is a major SOS pls help pls btw this is IXL
Explanation:
the object with the higher temperature has greater thermal energy
So the answer is
the stick of butter with less thermal energy.
Hope it will help :)
Answer:
The stick of butter with less thermal energy
Explanation:
I am pretty sure
What is the weight of a 44.5 kg object?
Answer:
98.11 I think
Explanation:
I really hope this helps have a wonderful day
a girl whose mass is 40kg walk up a flight of 20steps each 15mm hight in 10seconds.find power developed by the girl showing the solution
Answer: Approximately 11.76 joules per second
=========================================================
Work Shown:
Mass = 40 kg
Force pulling down = (mass)*(gravity) = 40*9.8 = 392 newtons
Roughly 392 newtons of force are pulling down on her.
To climb the steps, she must apply 392 newtons of force upward.
---------------
Displacement = 20*(15 mm) = 300 mm = 0.3 m
Work = Force*Displacement
Work = 392*0.3
Work = 117.6 joules of energy
---------------
Power = (Work)/(Time)
Power = (117.6 joules)/(10 seconds)
Power = (117.6/10) joules per second
Power = 11.76 joules per second, which is approximate
A point charge, Q1 = -4.2 μC, is located at the origin. A rod of length L = 0.35 m is located along the x-axis with the near side a distance d = 0.45 m from the origin. A charge Q2 = 10.4 μC is uniformly spread over the length of the rod.Part (a) Consider a thin slice of the rod, of thickness dx, located a distance x away from the origin. What is the direction of the force on the charge located at the origin due to the charge on this thin slice of the rod? Part (b) Write an expression for the magnitude of the force on the point charge, |dF|, due to the thin slice of the rod. Give your answer in terms of the variables Q1, Q2, L, x, dx, and the Coulomb constant, k. Part (c) Integrate the force from each slice over the length of the rod, and write an expression for the magnitude of the electric force on the charge at the origin. Part (d) Calculate the magnitude of the force |F|, in newtons, that the rod exerts on the point charge at the origin.
Answer:
a) attractiva, b) dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex], c) F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex], d) F = -1.09 N
Explanation:
a) q1 is negative and the charge of the bar is positive therefore the force is attractive
b) For this exercise we use Coulomb's law, where we assume a card dQ₂ at a distance x
dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex]
where k is a constant, Q₁ the charge at the origin, x the distance
c) To find the total force we must integrate from the beginning of the bar at x = d to the end point of the bar x = d + L
∫ dF = [tex]k \ Q_1 \int\limits^{d+L}_d {\frac{1}{x^2} } \, dQ_2[/tex]
as they indicate that the load on the bar is uniformly distributed, we use the concept of linear density
λ = dQ₂ / dx
DQ₂ = λ dx
we substitute
F = [tex]k \ Q_1 \lambda \int\limits^{d+L}_d \, \frac{dx}{x^2}[/tex]
F = k Q1 λ ([tex]-\frac{1}{x}[/tex])
we evaluate the integral
F = k Q₁ λ [tex](- \frac{1}{d+L} + \frac{1}{d} )[/tex]
F = k Q₁ λ [tex]( \frac{L}{d \ (d+L)})[/tex]
we change the linear density by its value
λ = Q2 / L
F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex]
d) we calculate the magnitude of F
F =9 10⁹ (-4.2 10⁻⁶) [tex]\frac{10.4 10x^{-6} }{0.45 ( 0.45 +0.35)}[/tex]
F = -1.09 N
the sign indicates that the force is attractive
Answer:
a)Toward the rod
b)|dF| = k|Q1|Q2(dx/L)/x^2
c)|F| = k|Q1|Q2/(d(d+L))
d)Plug in for answer c and solve
Explanation:
A)
Q1 is negative and Q2 is positive so it is an attractive force to where the rod is located.
B)
The formula for Force due to electric charges is F=kQ1Q2/r^2
In this case, Q2 is distrusted through the length of the rod as opposed to a single point charge. As such Q2 is actually Q2*dx/L as dx is a small portion of the full length, L.
The radius between Q1 and Q2 depends on the section of the rod taken so r will be the variable x distance from Q1.
The force is only from a small portion of the rod so more accurately, we are finding |dF| as opposed to the full force, F, caused by the whole rod.
The final formula is |dF| = k|Q1|Q2(dx/L)/x^2
C)
Integrating with respect to the only changing variable, x, which spans the length of the rod, from radius = d to d+L we get this:
F = integral from d to d+L of k|Q1|Q2(dx/L)/x^2
factor out constants
F = kQ1Q2/L * integral d to d+L(1/x^2)dx
F = kQ1Q2/L * (-1/x)| from d to d+L
F = kQ1Q2/L * (-1/d+L - -1/d)
F = kQ1Q2/L * (-d/(d(d+L)) + (d+L)/(d(d+L))
F = kQ1Q2/L * (L)/(d(d+L))
F = kQ1Q2/(d(d+L))
D)
Plug in the given values into c and you have your answer.
what happens when a wave passes through a medium ?
Answer:
When waves travel from one medium to another the frequency never changes. As waves travel into the denser medium, they slow down and wavelength decreases. Part of the wave travels faster for longer causing the wave to turn. The wave is slower but the wavelength is shorter meaning frequency remains the same.
Explanation:
How much force is needed to accelerate a Kia Soul with a
mass of 1200 kg to 5 m/s2?
Answer:
[tex]\boxed {\boxed {\sf 6,000 \ Newtons}}[/tex]
Explanation:
Force is the product of mass and acceleration.
[tex]F=ma[/tex]
The mass of the Kia Soul is 1200 kilograms and its acceleration is 5 meters per square second.
[tex]m= 1200 \ kg \\a= 5 \ m/s^2[/tex]
Substitute the values into the formula.
[tex]F= 1200 \ kg * 5 \ m/s^2[/tex]
Multiply.
[tex]F= 6000 \ kg*m/s^2[/tex]
1 kilgram meter per square second is equal to 1 Newton. Our answer of 6000 kg*m/s² equals 6000 N[tex]F= 6000 \ N[/tex]
Answer:
Given :-Mass = 1200 kgAcceleration = 5 m/s²To Find :-Force
Solution :-We know that
F = ma
F = Force
m = mass
a = acceleration
F = 1200 × 5
F = 6000 N
[tex] \\ [/tex]
A loaded wagon of mass 10,000 kg moving with a speed of 15 m/s strikes a stationary wagon of the same mass making a perfect inelastic collision. What will be the speed of coupled wagons after collision?
Answer:
7.5 m/s
Explanation:
Unfortunately, I don't have an explanation but I guessed the correct answer.
How do dog whistles work?
The sound it emits comes from what is known as the ultrasonic range, a pitch that is so high humans can't hear it. Dogs can hear these sounds, however, as can cats and other animals. Because of this, the dog whistle is a favored training tool, though it may not be for every dog parent.
Assuming 84.0% efficiency for the conversion of electrical power by the motor, what current must the 13.0-V batteries of a 716 kg electric car be able to supply to climb a 3.00 x 102 m high hill in 2.00 min at a constant 22.0 m/s speed while exerting 7.00 x 102 N of force to overcome air resistance and friction
Answer:
[tex]\mathbf{ current(I) =1766.67 \ A}[/tex]
Explanation:
Given that:
The air resistance and friction = 700 N
The gravity caused force = 716 × 9.8 = 7016.8
Total force = (7016.8 + 700) N
Total force = 7716.8 N
∴
[tex]13 \times current(I) \times 0.84 = \dfrac{7716.8 \times 300}{2 \times 60}[/tex]
[tex]current(I) \times 10.92= 19292[/tex]
[tex]current(I) = \dfrac{19292}{10.92}[/tex]
[tex]\mathbf{ current(I) =1766.67 \ A}[/tex]