Factor the given polynomial by finding the greatest common monomial Factor 6x^3y+9xy^3

Answers

Answer 1

Answer:

(3xy)(2x² + 3y²)

Step-by-step explanation:

Hello!

The greatest common factor for the coefficients is 3, as both terms have a coefficient with the greatest factor of 3.

The greatest common factor for the x-terms is x, as both terms has x to a minimum of the first power.

The greatest common factor for the y terms is y as both terms has y to a minimum of the first power.

Factor out 3xy:6x³y + 9xy³3xy(2x²) + 3xy(3y²)(3xy)(2x² + 3y²)

The factored form is (3xy)(2x² + 3y²).


Related Questions

14. Given: JM bisects JL JM perpendicular to KLProve: TRIANGLE JMK congruent to TRIANGLE JML

Answers

1) is already written, so we start with the second line.

2)

JM is parallel to KL ----> Given

3) ∠KML = ∠JML ----> They are angles on two perpendicular lines, and Since JM bisects LK, they are equal.

4) ∠KJL=∠MKL ---> Since JM bisects ∠J, the angles KJL and MKL are equal

5) ∠JKM=∠JLM ----> Since 3) and 4), the angles JKM and JLM must also be equal so that the sum of internal angles of each triangle will be 180°

Thus: Triangle JMK is congruent to triangle JML

The length of the hypotenuse in a 30°-60°-90° triangle is 6√10yd. What is thelength of the long leg?

Answers

In order to calculate the length of the long leg, we can use the sine relation of the 60° angle.

The sine relation is the length of the opposite side to the angle over the length of the hypotenuse.

So we have:

[tex]\begin{gathered} \sin (60\degree)=\frac{x}{6\sqrt[]{10}} \\ \frac{\sqrt[]{3}}{2}=\frac{x}{6\sqrt[]{10}} \\ 2x=6\sqrt[]{30} \\ x=3\sqrt[]{30} \end{gathered}[/tex]

So the length of the long leg is 3√30 yd.

An insurance company offers flood insurance to customers in a certain area. Suppose they charge $500 fora given plan. Based on historical data, there is a 1% probability that a customer with this plan suffers aflood, and in those cases, the average payout from the insurance company to the customer was $10,000.Here is a table that summarizes the possible outcomes from the company's perspective:EventFloodPayout Net gain (X)$10,000 -$9,500$0$500No floodLet X represent the company's net gain from one of these plans.Calculate the expected net gain E(X).E(X) =dollars

Answers

The given is a discrete random variable.

For a discrete random variable, the expected value is calculated by summing the product of the value of the random variable and its associated probability, taken over all of the values of the random variable.

It is given that the probability of a flood is 1%=0.01.

It follows that the probability of no flood is (100-1)%=99%.

Hence, the expected net gain is:

[tex]E(X)=0.01(-9500)+0.99(500)=-95+495=400[/tex]

Hence, the expected net gain is $400.

The expected net gain is E(X) = $400.

Translate to an equation and solve W divided by 6 is equal to 36 w=

Answers

Answer:

[tex]w\text{ = 216}[/tex]

Explanation:

Here, we want to translate it into an equation and solve

W divided by 6 equal to 36:

[tex]\begin{gathered} \frac{w}{6}\text{ = 36} \\ \\ w\text{ = 6}\times36 \\ w\text{ = 216} \end{gathered}[/tex]

explain why 4 x 3/5=12x 1/5

Answers

Answer:

They equal because when you simplify each side, you will arrive at the same answer.

[tex]\begin{gathered} 4\times\frac{3}{5}=\frac{4\times3}{5} \\ =\frac{12}{5} \end{gathered}[/tex]

also;

[tex]\begin{gathered} 12\times\frac{1}{5}=\frac{12\times1}{5} \\ =\frac{12}{5} \end{gathered}[/tex]

Explanation:

We want to explain why;

[tex]4\times\frac{3}{5}=12\times\frac{1}{5}[/tex]

They equal because when you simplify each side, you will arrive at the same answer.

[tex]\begin{gathered} 4\times\frac{3}{5}=\frac{4\times3}{5} \\ =\frac{12}{5} \end{gathered}[/tex]

also;

[tex]\begin{gathered} 12\times\frac{1}{5}=\frac{12\times1}{5} \\ =\frac{12}{5} \end{gathered}[/tex]

So, they give the same answer when simplified.

Also you can derive one from the other;

[tex]\begin{gathered} 4\times\frac{3}{5}=12\times\frac{1}{5} \\ 4\times3\times\frac{1}{5}=12\times\frac{1}{5} \\ 12\times\frac{1}{5}=12\times\frac{1}{5} \\ \frac{12}{5}=\frac{12}{5} \end{gathered}[/tex]

Therefore, both sides are equal.

I need help creating a tree diagram for this probability scenario

Answers

We need to draw a tree diagram for the information given

The total is 400

120 in finance course

220 in a speech course

55 in both courses

Then we start for a tree for the given number

Then to make the tree for probability we will divide each number by a total 400

Then the probability of finance only is 65/400

The probability of speech only is 165/400

The probability of both is 55/400

The probability of neither is 5/400

The probability of finance or speech is 285/400

hello I'm stuck on this question and need help thank you

Answers

Explanation

[tex]\begin{gathered} -2x+3y\ge9 \\ x\ge-5 \\ y<6 \end{gathered}[/tex]

Step 1

graph the inequality (1)

a) isolate y

[tex]\begin{gathered} -2x+3y\geqslant9 \\ add\text{ 2x in both sides} \\ -2x+3y+2x\geqslant9+2x \\ 3y\ge9+2x \\ divide\text{ both sides by 3} \\ \frac{3y}{3}\geqslant\frac{9}{3}+\frac{2x}{3} \\ y\ge\frac{2}{3}x+3 \end{gathered}[/tex]

b) now, change the symbol to make an equality and find 2 points from the line

[tex]\begin{gathered} y=\frac{2}{3}x+3 \\ i)\text{ for x=0} \\ y=\frac{2}{3}(0)+3 \\ \text{sp P1\lparen0,3\rparen} \\ \text{ii\rparen for x=3} \\ y=\frac{2}{3}(3)+3=5 \\ so\text{ P2\lparen3,5\rparen} \end{gathered}[/tex]

now, draw a solid line that passes troguth those point

(0,3) and (3,5)

[tex]y\geqslant\frac{2}{3}x+3\Rightarrow y=\frac{2}{3}x+3\text{\lparen solid line\rparen}[/tex]

as we need the values greater or equatl thatn the function, we need to shade the area over the line

Step 2

graph the inequality (2)

[tex]x\ge-5[/tex]

this inequality represents the numbers greater or equal than -5 ( for x), so to graph the inequality:

a) draw an vertical line at x=-5, and due to we are looking for the values greater or equal than -5 we need to use a solid line and shade the area to the rigth of the line

Step 3

finally, the inequality 3

[tex]y<6[/tex]

this inequality represents all the y values smaller than 6, so we need to draw a horizontal line at y=6 and shade the area below the line

Step 4

finally, the solution is the intersection of the areas

I hope this helps you

Consider the graph below.(3,1) (4,2) (6,3) (4,4) (8,5) Which correlation coefficient and interpretation best represent the given points?1.) 0.625, no correlation 2.) 0.791. no correlation 3.) 0.625, positive correlation4.) 0.791. positive correlation

Answers

Given the information on the problem,we have that the correlation coefficient of the data given is:

[tex]r=\frac{\sum^{}_{}(x-\bar{y})(y-\bar{x})}{\sqrt[]{SS_x\cdot SSy}}=\frac{10}{\sqrt[]{16\cdot10}}=0.79[/tex]

therefore, the value of the correlation coeficient is 0.79, which shows a strong positive correlation

A coin is tossed an eight sided die numbered 1 through 8 is rolled find the probability of tossing a head and then rolling a number greater than 6. Round to three decimal places if needed

Answers

We are given that a coin is tossed and a die numbered from 1 through 8 is rolled. To determine the probability of tossing head and then rolling a number greater than 6 is given by the following formula:

[tex]P(\text{head and n>6)=p(head)}\cdot p(n>6)[/tex]

This is because we are trying to determine the probability of two independent events. The probability of getting heads is given by:

[tex]P(\text{heads})=\frac{1}{2}[/tex]

This is because there are two possible outcomes, heads or tails and we are interested in one of the outcomes.

Now we determine the probability of getting a number greater than 6 when rolling the dice. For this, there are 8 possible outcomes and we are interested in two of them, these are the numbers greater than 6 on the die (7, 8). Therefore, the probability is:

[tex]P(n>6)=\frac{2}{8}=\frac{1}{4}[/tex]

Now we determine the product of both probabilities:

[tex]P(\text{head and n>6)=}\frac{1}{2}\times\frac{1}{4}=\frac{1}{8}[/tex]

Now we rewrite the answer as a decimal:

[tex]P(\text{head and n>6)=}0.125[/tex]

Therefore, the probability is 0.125.

Kara categorized her spending for this month into four categories: Rent, Food, Fun, and Other. Theamounts she spent in each category are pictured here.Food$333Rent$417Other$500Fun$250What percent of her total spending did she spend on Fun? Answer to the nearest whole percent.

Answers

In this problem we have to calculate the total spences so we add all the costs so:

[tex]\begin{gathered} T=333+417+500+250 \\ T=1500 \end{gathered}[/tex]

So 1500 is the 100% so now we can calculate which percentage correspount to 250 so:

[tex]\begin{gathered} 1500\to100 \\ 250\to x \end{gathered}[/tex]

so the equation is:

[tex]\begin{gathered} x=\frac{250\cdot100}{1500} \\ x=16.66 \end{gathered}[/tex]

So she spend 16.66% in fun

Which of the following could be the points that Jamur plots?

Answers

To solve this problem, we need to calculate the midpoint for the two points in each option and check if it corresponds to the given midpoint (-3,4).

Calculating the midpoint for the two points of option A.

We have the points:

[tex](-1,7)and(2,3)[/tex]

We label the coordinates as follows:

[tex]\begin{gathered} x_1=-1 \\ y_1=7 \\ x_2=2 \\ y_2=3 \end{gathered}[/tex]

And use the midpoint formula:

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Substituting our values:

[tex](\frac{-1_{}+2_{}}{2},\frac{7_{}+3_{}}{2})[/tex]

Solving the operations:

[tex](\frac{1_{}}{2},\frac{10_{}}{2})=(\frac{1_{}}{2},5)[/tex]

Since the midpoint is not the one given by the problem, this option is not correct.

Calculating the midpoint for the two points of option B.

We have the points:

[tex](-2,6)and(-4,2)[/tex]

We follow the same procedure, label the coordinates:

[tex]\begin{gathered} x_1=-2 \\ y_1=6 \\ x_2=-4 \\ y_2=2 \end{gathered}[/tex]

And use the midpoint formula:

[tex]\begin{gathered} (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}) \\ \text{Substituting our values} \\ (\frac{-2-4_{}}{2},\frac{6+2_{}}{2}) \\ \text{Solving the operations:} \\ (\frac{-6}{2},\frac{8}{2}) \\ (-3,4) \end{gathered}[/tex]

The midpoint for the two points in option B is (-3,4) which is the midpoint given by the problem.

Answer: B (-2,6) and (-4,2)

Imagine you asked students to draw an area model for the expression 5+4x2.
Walking around the room, you see the following three area models.

First, briefly explain the student thinking process you think might be behind each answer.

Answer Describe the thinking process

Which order would you call students A, B and C to present their work to the class and how would you guide the discussion?

Answers

Answer:

area 1

Step-by-step explanation:

A rectangular parking lot has length that is 3 yards less than twice its width. If the area of the land is 299 square yards, what are the dimensions of the land?The parking lot has a width of square yards.

Answers

Answer:

• Width = 13 yards

,

• Length = 23 yards

Explanation:

Let the width of the parking lot = w yards.

The length is 3 yards less than twice its width.

[tex]\implies\text{Length}=(2w-3)\text{ yards}[/tex]

The area of the land = 299 square yards.

[tex]w(2w-3)=299[/tex]

We then solve the equation above for w.

[tex]\begin{gathered} 2w^2-3w=299 \\ \implies2w^2-3w-299=0 \end{gathered}[/tex]

Factor the resulting quadratic expression.

[tex]\begin{gathered} 2w^2-26w+23w-299=0 \\ 2w(w-13)+23(w-13)=0 \\ (2w+23)(w-13)=0 \end{gathered}[/tex]

Solve for w.

[tex]\begin{gathered} 2w+23=0\text{ or }w-13=0 \\ 2w=-23\text{ or }w=13 \\ w\neq-\frac{23}{2},w=13 \end{gathered}[/tex]

Since w cannot be negative, the parking lot has a width of 13 yards.

Finally, find the length of the parking lot.

[tex]\begin{gathered} 13l=299 \\ l=\frac{299}{13}=23\text{ yards} \end{gathered}[/tex]

The length of the parking lot is 23 yards.

At a carry-out pizza restaurant, an order of 3 slices of pizza, 4 breadsticks, and 2 juice drinks costs $12. A second order of 5 slices of pizza, 2 breadsticks, and 3 juice drinks costs $15. If four breadsticks and a juice drink cost $.30 more than a slice of pizza, write a system that represents these statements. p: slices of pizza b: bread sticks d: juice drinks Choose the correct verbal expressions for problems into a system of equations or inequalities.

Answers

p = slices of pizza

b = bread sticks

d = juice drinks

Equation 1

3p + 4b + 2d = 12

Equation 2

5p + 2b + 3d = 15

Equation 3

4b + 1d = 1p + 0.3

That's all

0.75 greater than 1/2

Answers

True

0.75 is greater than 0.5

Explanation

Step 1

remember

[tex]\frac{a}{b}=\text{ a divided by b}[/tex]

then

[tex]\frac{1}{2}=\text{ 1 divided by 2 = 0.5}[/tex]

Step 2

compare

0.75 and 0.5

[tex]0.75\text{ is greater than 0.5}[/tex]

I hope this helps you

FOR GREATER THAN WE ADD THE TERMS.

MATHEMATICALLY THIS MEANS

[tex] = 0.75 + \frac{1}{2} \\ = 0.75 + 0.5 \\ = 1.25[/tex]

1.25 is the answer.

4 5 3 7 89 65Each time, you pick one card randomly and then put it back.What is the probability that the number on the card you pickfirst time is odd and the number on the second card you take isa multiple of 2? Keep your answers in simplified improperfraction form.Enter the answer

Answers

We have a total of 8 cards, where 3 of them are a multiple of 2, and 5 is an odd number. Consider that event A represents the probability of picking an odd number and event B is picking a multiple of 2. We know that the events are independent (because we put the cards back), therefore the probability of A and B can be expressed as

[tex]P(A\text{ and }B)=P(A)\cdot P(B)[/tex]

Where

[tex]\begin{gathered} P(A)=\frac{5}{8} \\ \\ P(B)=\frac{3}{8} \end{gathered}[/tex]

Therefore

[tex]P(A\text{ and }B)=\frac{5}{8}\cdot\frac{3}{8}=\frac{15}{64}[/tex]

The final answer is

[tex]P(A\text{ and }B)=\frac{15}{64}[/tex]

using the converse of the same-side interior angles postulate what equation shows that g∥h

Answers

Answer: [tex]\angle 2+\angle 4=180^{\circ}[/tex] or [tex]\angle 1+\angle 3=180^{\circ}[/tex]

The next algebra test is worth 100 points and contains 35 problems. Multiple-Choice questions are worth 2 points each and word problems are 7 points each. How many of each type equation are there?

Answers

Let

x ----->number of multiple-choice questions

y ----> number of word problems

so

we have

x+y=35 --------> equation 1

2x+7y=100 -----> equation 2

solve the system of equations

Solve by graphing

using a graphing tool

see the attached figure

therefore

x=29

y=6

number of multiple-choice questions is 29

number of word problems is 6

Anna weighs 132 lb. Determine her mass in kilograms using the conversion 1 kg equal 2.2 lb. Use this mass to answer this question. calculate Anna's weight on Jupiter. (G= 25.9 m/ S2) must include a unit with your answer

Answers

Input data

132 lb

132 lb * 1kg / 2.2lb = 60 kg

Anna's weight on Jupiter

w = 60 kg * 25.9 m/S2

w = 1554 N

HELP ASAP!!!

Find the square of 1-4i.

Answers

ANSAWER:

−15+8i

Explanation:

First, you can expand the square of the bynomial:

1/4 squared as a fraction is 1/16.

Given the functions, f(x) = 6x+ 2 and g(x)=x-7, perform the indicated operation. When applicable, state the domain
restriction.

Answers

The domain restriction for (f/g)(x) is x=7

What are the functions in mathematics?

a mathematical phrase, rule, or law that establishes the link between an independent variable and a dependent variable.

What does a domain math example mean?

The collection of all potential inputs for a function is its domain. For instance, the domain of f(x)=x2 and g(x)=1/x are all real integers with the exception of x=0.

Given,

f(x) = 6x+2

g(x) = x-7

So,

(f/g)(x) = 6x+2/x-7

Remember that the denominator can not be equal to zero

Find the domain restriction

x-7=0

x=7

Therefore, the domain is all real numbers except the number 7

(-∞,7)∪(7,∞)

To know more about functions visit:

https://brainly.com/question/12431044

#SPJ13

quadrilateral WXYZ is reflected across the line y=x to create quadrilateral W’X’Y’Z'. What are the coordinates of quadrilateral W’X’Y’Z'.

Answers

Explanation

We are required to determine the coordinates of W’X’Y’Z' when WXYZ is reflected across the line y = x.

This is achieved thus:

From the image, we can deduce the following:

[tex]\begin{gathered} W(-7,3) \\ X(-5,6) \\ Y(-3,7) \\ Z(-2,3) \end{gathered}[/tex]

We know that the following reflection rules exist:

Therefore, we have:

[tex]\begin{gathered} (x,y)\to(y,x) \\ W(-7,3)\to W^{\prime}(3,-7) \\ X(-5,6)\to X^{\prime}(6,-5) \\ Y(-3,7)\to Y^{\prime}(7,-3) \\ Z(-2,3)\to Z^{\prime}(3,-2) \end{gathered}[/tex]

Hence, the answers are:

[tex]\begin{gathered} \begin{equation*} W^{\prime}(3,-7) \end{equation*} \\ \begin{equation*} X^{\prime}(6,-5) \end{equation*} \\ \begin{equation*} Y^{\prime}(7,-3) \end{equation*} \\ \begin{equation*} Z^{\prime}(3,-2) \end{equation*} \end{gathered}[/tex]

This is shown in the graph bwlow for further undertanding:

How much of the wall does the mirror cover? Use the π button in your calculations and round your answer to the nearest hundredths. Include units.

Answers

Since the diameter of the mirror is given, calculate the area of the mirror using the formula

[tex]A=\frac{1}{4}\pi\cdot(D)^2[/tex]

replace with the information given

[tex]\begin{gathered} A=\frac{1}{4}\pi\cdot24^2 \\ A=144\pi\approx452.39in^2 \end{gathered}[/tex]

The mirror covers 452.39 square inches.

Which of the following is the result of using the remainder theorem to find F(-2) for the polynomial function F(x) = -2x³ + x² + 4x-3?

Answers

Solution

We have the polynomial

[tex]f(x)=-2x^3+x^2+4x-3[/tex]

Usin the remainder theorem, we find f(-2) by substituting x = -2

So we have

[tex]\begin{gathered} f(x)=-2x^{3}+x^{2}+4x-3 \\ \\ f(-2)=-2(-2)^3+(-2)^2+4(-2)-3 \\ \\ f(-2)=-2(-8)+4-8-3 \\ \\ f(-2)=16+4-8-3 \\ \\ f(-2)=20-11 \\ \\ f(-2)=9 \end{gathered}[/tex]

Therefore, the remainder is

[tex]9[/tex]

DataNot ReceivingReceivingFinancial AidFinancial AidUndergraduates422238988120Graduates18797312610Total6101462910730If a student is selected at random, what is theprobability that the student receives aid and is agraduate (rounded to the nearest percent)? [? ]%UniversityTotal

Answers

There are 10730 students total as shown in the bottom right hand corner. So, the probability that the student receives aid and is a graduate is given by:

[tex]P=\frac{1879}{10730}\times100=17.51[/tex]

Round to the nearest percent is 17.5%

Answer: 17.5%

Answer:

There are a total of 10730 students and 1879 students who are graduates as well as receiving financial aid. So the probability would be

(1879/10730)*100 = 17.51%

can you help me figure out the equation in the drop down menus

Answers

To find:

The piecewise function for the graph.

Solution:

From the graph, it is clear that when x is less than -1, the graph passes through (-1, -3) and (-2, -5).

It is known that the equation of a line passes through two points is given by:

[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

So, the equation of line passing through (-1, -3) and (-2, -5) is:

[tex]\begin{gathered} y-(-3)=\frac{-5-(-3)}{-2-(-1)}(x-(-1)) \\ y+3=\frac{-2}{-1}(x+1) \\ y+3=2x+2 \\ y=2x-1 \end{gathered}[/tex]

So, the first drop down is "2x - 1", and second drop down is "x is less than or equal to -1".

Now, the graph passes through (1, 5) and (2, 6). So, the equation of the line is:

[tex]\begin{gathered} y-5=\frac{6-5}{2-1}(x-1) \\ y-5=x-1 \\ y=x+4 \end{gathered}[/tex]

So, the third drop down menu is "x + 4" and the fourth drop down menu is "x is greater than or equal to 1".

If R is between G and Z, GZ = 12in., and RG =3in., then RZ =

Answers

Given R is between G and Z.

GZ=12 inches

RG=3 inches.

Since, R is between G and Z,

[tex]GZ=GR+RZ[/tex]

It follows

[tex]\begin{gathered} RZ=GZ-GR \\ =12-3 \\ =9 \end{gathered}[/tex]

So, RZ is 9 inches.

Write a cosine function that has a midline of 4, an amplitude of 3 and a period of 8/5

Answers

A cosine function has the form

[tex]y=A\cdot\cos (Bx+C)+D[/tex]

Where A is the amplitude, B is 2pi/T, and C is null in this case because the phase is not being specified, and D is the vertical shift (midline).

Using all the given information, we have

[tex]y=3\cdot\cos (\frac{2\pi}{T}x)+4[/tex]

Then,

[tex]y=3\cdot\cos (\frac{2\pi}{\frac{8}{5}}x)+4=3\cdot\cos (\frac{10\pi}{8}x)+4=3\cdot\cos (\frac{5\pi}{4}x)+4[/tex]

Hence, the function is

[tex]y=3\cos (\frac{5\pi}{4}x)+4[/tex]

find a slope of the line that passes through (8,8) and (1,9)

Answers

The slope formula is

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

we can use this formula by introducing the values of the given points. In our case

[tex]\begin{gathered} (x_1,y_1)=(8,8) \\ (x_2,y_2)=(1,9) \end{gathered}[/tex]

Hence, we have

[tex]m=\frac{9-8}{1-8}[/tex]

It yields,

[tex]m=\frac{1}{-7}[/tex]

hence, the answer is

[tex]m=-\frac{1}{7}[/tex]

"Solve for x. Enter as a decimal not as a fraction. Round to the nearest hundredth if necessary."

Answers

Answer:

x =

5

Explanation

From the given diagram, it can be infered that WY = 2QR

From the diagram

WY = x+9

QR = 2x-3

substitute into the expression

x+9 = 2(2x-3)

x+9 = 4x - 6

Collect the like terms

x-4x = -6-9

-3x = -15

x = -15/-3

x = 5

Hence the value of x is 5

Other Questions
the spouse is not interested in hearing how you feel when your boss belittles you at work instead , he suggests way you can avoid such criticisam, he is what kind of listener a) Consider an arithmetic series 4+2+0+(-2)+.....i) What is the first term? And find the common difference d.ii) Find the sum of the first 10 terms S(10).b) Solve [tex] {2}^{x - 3} = 7[/tex] What were some of the contradictions of the 1920s? What might we learn from these tensions and clash of cultures in American society? After knee surgery, your trainer tells you to return to your jogging program slowly. He suggests you start by jogging for 14 minutes each day. Each week after, he suggests that you increase your daily jogging time by 7 minutes. How many weeks before you are up to jogging 70 minutes? Simplify the expression leave expression in exact form with coefficient a and b so we have ab. The schedule for summer classes is available and Calculus and Introduction to Psychology are scheduled at the same time, so it is impossible for a student to schedule for both courses. The probability a student registers for Calculus is 0.05 and the probability a student registers for psychology is 0.62. What is the probability a student registers for Calculus or psychology? HELP ASAP PLSSSPLSPSLPSLPLSSGiven f(x) = 3x 4 and g(x) = f(2x), which table represents g(x)? in large compressors, the gas is often cooled while being compressed to reduce the power consumed by the compressor. explain how cooling the gas during a compression process reduces the power consumption. the healthcare provider orders xylocaine (lidocaine) 2g in 500ml d5w iv to infuse at 2 mg/min. what is the infusion rate in ml/ hr? (record answer as a whole number. do not use a trailing zero.) on april 1, a company takes on an 18-month job and receives a $10,000 advance that is recorded in revenue. if no adjusting entry is made at year-end, how will the financial statements be affected? two trait-like factors have been a focus of research on risk for depression, neuroticism and trait rumination. what does each refer to and what is their relationship to depression? Identify the coffecient of x in the expression below.-5x-4y^2 QuestionRead the dictionary definition for the word optical.optical \ p-ti-kl \ adjective: of or related to visionBased on this definition, in which sentence is the word optician used correctly?ResponsesThe optician examined the child to see if he needed glasses.The , optician, examined the child to see if he needed glasses.We took our dog to the optician for his annual vaccinations. We took our dog to the , optician, for his annual vaccinations. The optician gave her a prescription for a flu medicine.The , optician, gave her a prescription for a flu medicine.When the children are ill, they go to the optician. In the figure, Side A is pure water and Side B is a 10% starch solution.There is a semi-permeable membrane between the sides. Is this osmosis or simple diffusion? Why does the level in side B rise? Find the length of the rectangle pictured above, if the perimeter is 82 units. Three resistors with resistances of 9 , 18 , and 30 are in a series circuit with a 12 volt battery. What is the total resistance of the resistors in the circuit? What is Phase I of Wireless E9-1-1? what is the answer to 8x= - 44 ? the analog telephone line has maximum frequency 4 khz. analog telephone signal converted to digital. which sampling frequency analog - to- digital pcm converter must have ? Solye for x.7(x - 3) + 3(4 - x) = -8