Which of the following classes of biomaterials would be most appropriate for fabricating an artificial tendon, a tissue that must sustain substantial deformation at low forces and quickly regain its original dimensions after stress release? Why ?
(a) Metals
(b) Ceramics
(c) Polymers
State Conditions necessary for static equilibrium of a particle of a rigid body
Answer:
Conditions for equilibrium require that the sum of all external forces acting on the body is zero (first condition of equilibrium), and the sum of all external torques from external forces is zero (second condition of equilibrium). These two conditions must be simultaneously satisfied in equilibrium.
Hi there!
For a particle to be in static equilibrium:
[tex]\huge\boxed{\Sigma \tau = 0}}[/tex]
The sum of torques acting on the particle must equal 0 Nm.
[tex]\huge\boxed{\Sigma F = 0}}[/tex]
The sum of forces acting on the particle must equal 0 N.
Both of these conditions MUST be met in order for a particle to be in STATIC equilibrium.
Read an integer from the user repeatedly, until the user enters a negative number. use for loop (C programming)
Answer:
go on then
Explanation: