Determine the discount period for a promissory note subject to the given terms.
Loan Made On Length of Loan(Days) Date of Discount Discount Period(Days)
March 22 220 June 2
Click the icon to view the Number of Each of the Days of the Year table. The discount period is days

Answers

Answer 1

The discount period is 220 days for the promissory note.

Promissory note made On - March 22 Length of Loan(Days) - 220 Date of Discount - June 2 Discount Period (Days): Discount period: It is the period for which the lender charges interest on the amount borrowed from him in advance. It is the time between the date of the loan and the date of payment of the loan. Discount period = Date of payment - Date of the loan. For the given question, Loan Made On - March 22Length of Loan(Days) - 220 Date of Discount - June 2 Calculating the discount period: We are given that the loan was made on March 22. Adding 220 days to it, we get the date of payment as follows: Date of payment = March 22 + 220 days= October 28 Thus, Discount period = Date of payment - Date of loan= October 28 - March 22= 220 days Therefore, the discount period is 220 days.

To learn more about promissory note discounting: https://brainly.com/question/14020416

#SPJ11


Related Questions

In this problem we'd like to solve the boundary value problem Ə x = 4 Ə 2u
Ə t Ə x2
on the interval [0, 4] with the boundary conditions u(0, t) = u(4, t) = 0 for all t.
(a) Suppose h(x) is the function on the interval [0, 4] whose graph is is the piecewise linear function connecting the points (0, 0), (2, 2), and (4,0). Find the Fourier sine series of h(z): h(x) = - Σ bx (t) sin (nkx/4).
Please choose the correct option: does your answer only include odd values of k, even values k, or all values of k? bk(t) (16/(k^2pi^2)){(-1)^{(k-1)/2))
Which values of k should be included in this summation? A. Only the even values B. Only the odd values C. All values (b) Write down the solution to the boundary value problem Ə x = 4 Ə 2u
Ə t Ə x2
on the interval [0, 4] with the boundary conditions u(0, t) = u(4, t) = 0 for all t subject to the initial conditions u(a,0) = h(a). As before, please choose the correct option: does your answer only include odd values of k, even values of k, or all values of ? [infinity]
u(x, t) = Σ
k-1 Which values of k should be included in this summation? A. Only the even values B. Only the odd values C. All values 4 br(t) sin
Previous question

Answers

a) Since all the coefficients bx(t) are equal to 0, the Fourier sine series of h(x) does not contain any terms. Hence, the answer is option C: All values of k.

(a) To find the Fourier sine series of the function h(x), we need to determine the coefficients bx(t). The function h(x) is a piecewise linear function that connects the points (0, 0), (2, 2), and (4, 0).

The Fourier sine series representation of h(x) is given by:

h(x) = - Σ bx(t) sin(nkx/4)

To find the coefficients bx(t), we can use the formula:

bx(t) = (2/L) ∫[0,L] h(x) sin(nkx/4) dx

In this case, L = 4 (interval length).

Calculating bx(t) for the given values of h(x), we have:

b₀(t) = (2/4) ∫[0,4] h(x) sin(0) dx = 0

or n > 0:

bn(t) = (2/4) ∫[0,4] h(x) sin(nkx/4) dx

Let's consider the three intervals separately:

For 0 ≤ x ≤ 2:

bn(t) = (2/4) ∫[0,2] 2 sin(nkx/4) dx = (1/2) ∫[0,2] sin(nkx/4) dx

Using the trigonometric identity ∫ sin(ax) dx = -1/a cos(ax) + C, we have:

bn(t) = (1/2) [-4/(nkπ) cos(nkx/4)] [0,2]

bn(t) = (-2π/nk) [cos(nk) - cos(0)]

bn(t) = (-2π/nk) (1 - cos(0))

bn(t) = (-2π/nk) (1 - 1)

bn(t) = 0

For 2 ≤ x ≤ 4:

bn(t) = (2/4) ∫[2,4] 0 sin(nkx/4) dx = 0

Therefore, the Fourier sine series of h(x) is:

h(x) = - Σ bx(t) sin(nkx/4)

    = 0

(b) The solution to the boundary value problem with the given boundary conditions and initial conditions is not provided in the given information. Please provide the specific initial condition, and I can help you with the solution.

To know more about trigonometric visit;

brainly.com/question/29156330

#SPJ11

find f · dr c for the given f and c. f = x2 i y2 j and c is the top half of a circle of radius 2 starting at the point (2, 0) traversed counterclockwise.

Answers

Let f be a continuous vector field defined on a smooth curve C that has a parametrization r(t), a ≤ t ≤ b, given by r(t) = (x(t), y(t)). Then, the line integral of f along C is given by  ∫CF·dr = ∫ba F(x(t), y(t)) · r'(t) dt.where F = f · T and T is the unit tangent vector to C, that is T = r'(t) / ||r'(t)||.

To apply this formula, we need to find a parametrization r(t) for the top half of a circle of radius 2 starting at the point (2, 0) traversed counterclockwise. One way to do this is to use the polar coordinates r = 2 and θ ranging from π to 2π, which correspond to the x-coordinates ranging from 0 to −2 along the top half of the circle. Thus, we can setx(t) = 2 − 2 cos t, y(t) = 2 sin t, π ≤ t ≤ 2πThen, we have r'(t) = (2 sin t, 2 cos t) and ||r'(t)|| = 2, so T(t) = r'(t) / ||r'(t)|| = (sin t, cos t).Next, we need to compute F(x, y) = f · T for the given f = x^2 i + y^2 j. We have T(t) = (sin t, cos t), so F(x(t), y(t)) = (x(t))^2 sin t + (y(t))^2 cos t= (2 − 2 cos t)^2 sin t + (2 sin t)^2 cos t= 4 (1 − cos t)^2 sin t + 4 sin^3 t= 4 (sin^3 t − 3 sin^2 t cos t + 3 sin t cos^2 t − cos^3 t) + 4 sin^3 t= 8 sin^3 t − 12 sin^2 t cos t + 12 sin t cos^2 t − 4 cos^3 tThus, the line integral of f along C is∫CF·dr = ∫2ππ F(x(t), y(t)) · r'(t) dt= ∫2ππ [8 sin^3 t − 12 sin^2 t cos t + 12 sin t cos^2 t − 4 cos^3 t] [2 sin t, 2 cos t] dt= 4 ∫2ππ [4 sin^4 t − 6 sin^2 t cos^2 t + 6 sin^2 t cos^2 t − 2 cos^2 t] [sin t, cos t] dt= 4 ∫2ππ [4 sin^4 t − 2 cos^2 t] sin t dt= 4 ∫2ππ [2 sin^2 t − cos^2 t] [2 sin t cos t] dt= 16 ∫2ππ sin^3 t cos t dtTo evaluate this integral, we can use the substitution u = sin t, du = cos t dt and get∫2ππ sin^3 t cos t dt = ∫01 u^3 du = 1/4Thus, the line integral of f along C is  ∫CF·dr = 16(1/4) = 4Therefore, the answer is 4.

The line integral of f along the top half of a circle of radius 2 starting at the point (2, 0) traversed counterclockwise, where f = x^2 i + y^2 j, is 4.

To learn more about vector visit:

brainly.com/question/31265178

#SPJ11

Solve the below equation to find x. 0 x = 6, x=-12 O 0 x = 3 x = 3, x = -6 0 x = 3, x=-12 Clear my choice |2x + 9 = 15 .X

Answers

The solution to the equation 2x + 9 = 15 is x = 3.

What is the value of x in the equation 2x + 9 = 15?

In the given linear equation, 2x + 9 = 15, we are tasked with finding the value of x that satisfies the equation. To solve it, we need to isolate the variable x on one side of the equation.

To begin, we subtract 9 from both sides of the equation, which gives us 2x = 15 - 9. Simplifying further, we have 2x = 6.

Next, to solve for x, we divide both sides of the equation by 2. This yields x = 6/2, which simplifies to x = 3.

Learn more about linear equation

brainly.com/question/12974594

#SPJ11

You build a linear regression model that predicts the price of a house using two features: number of bedrooms (a), and size of the house (b). The final formula is: price = 100 + 10 * a - 1 * b. Which statement is correct:

(15 Points)

Increasing the number of bedrooms (a) will increase the price of a house

increasing size of the house (b) will decrease the price of a house

both above

When it comes to such interpretations, the safest answer is: I don't know

Answers

The linear regression model means (c) both statements are true

Increasing the number of bedrooms (a) will increase the price of a house. Increasing the size of the house (b) will decrease the price of a house.

How to interpret the linear regression model

From the question, we have the following parameters that can be used in our computation:

y = 100 + 10 * a - 1 * b

From the above, we can see the coefficients of a and b to be

a = positive

b = negative

This means that

Certain factors will increase the price of house aCertain factors will decrease the price of house b

This in other words means that

The options a and b are true, and such the true statement is (c) both above

Read more about linear regression at

https://brainly.com/question/26755306

#SPJ4

This question refers to the population growth problem in section 3.9 of the lecture notes. Suppose that bacteria growth is modelled by the DE given in the notes. Suppose that the number of bacteria is observed to double after 4 days, and the estimated carrying capacity is 19 times the initial population. What is the estimated population, as a multiple of the initial population, after 18 days? (For example an answer of 3.5 would indicate a population 3.5 times the initial population). Give the answer accurate to 2 decimal places. Number

Answers

The given differential equation is,dP/dt = kP (1 - P/19) Where k is the constant of proportionality and P is the population at any time t.

Let P0 be the initial population. Then, the given statement that the number of bacteria is observed to double after 4 days can be written as,P(4) = 2P0So, P0 = P(4)/2 = 500

Now, the carrying capacity is 19 times the initial population, which is 19P0 = 19 × 500 = 9500. So, P cannot exceed 9500.As the initial population is P0, and the doubling time is 4 days, the time required for P to become 8P0 is 3 × 4 = 12 days. Since P cannot exceed 9500, the population after 18 days would have stabilised to 19P0 or 9500 (whichever is less).Now we need to estimate P(18). At t = 18, the population is given by,P(18) = 19P0 / [1 + (18/5) * e^(-k*18)]Since P0 = 500, we have to estimate the value of k.

To find k, use P(4) = 2P0 and P(12) = 8P0 to get two equations in k.

Substituting P0 = 500 and solving, we get,k = 0.26622 approx 0.27Putting this in P(18), we get,P(18) = 19*500 / [1 + (18/5) * e^(-0.27*18)]P(18) ≈ 5638.76Thus, the estimated population as a multiple of the initial population after 18 days is 5638.76 / 500 ≈ 11.28 (accurate to two decimal places).Hence, the required answer is 11.28.

#SPJ11

https://brainly.com/question/32643516

A random sample of size 15 is taken from a normally distributed population revealed a sample mean of 75 and a standard deviation of 5. The upper limit of a 95% confidence interval for the population mean would equal?

Answers

The upper limit of the 95% confidence interval for the population mean is approximately 77.768.

What is confidence interval?

The mean of your estimate plus and minus the range of that estimate makes up a confidence interval. Within a specific level of confidence, this is the range of values you anticipate your estimate to fall within if you repeat the test. In statistics, confidence is another word for probability.

To calculate the upper limit of a 95% confidence interval for the population mean, we can use the formula:

Upper Limit = Sample Mean + (Critical Value * Standard Error)

First, we need to determine the critical value for a 95% confidence interval. Since the sample size is 15 and the population is assumed to be normally distributed, we can use a t-distribution. The degrees of freedom for a sample of size 15 is 15 - 1 = 14.

Looking up the critical value for a 95% confidence level and 14 degrees of freedom in the t-distribution table, we find it to be approximately 2.145.

Next, we need to calculate the standard error, which is the standard deviation of the sample divided by the square root of the sample size:

Standard Error = Standard Deviation / √(Sample Size)

             = 5 / √15

             ≈ 1.290

Finally, we can calculate the upper limit:

Upper Limit = Sample Mean + (Critical Value * Standard Error)

          = 75 + (2.145 * 1.290)

          ≈ 75 + 2.768

          ≈ 77.768

Therefore, the upper limit of the 95% confidence interval for the population mean is approximately 77.768.

Learn more about confidence interval on:

brainly.com/question/17034620

#SPJ4

Let (G₁,+) and (G2, +) be two subgroups of (R, +) so that Z+G₁ G₂. If o: G₁ G₂ is a group isomorphism with o(1) = 1, show that o(n): = n for all n € Z+. Hint: consider using mathematical induction.

Answers

To prove that o(n) = n for all n ∈ Z+, we can use mathematical induction.

Step 1: Base Case

Let's start with the base case when n = 1.

Since o is a group isomorphism with o(1) = 1, we have o(1) = 1.

Therefore, the base case holds.

Step 2: Inductive Hypothesis

Assume that o(k) = k for some arbitrary positive integer k, where k ≥ 1.

Step 3: Inductive Step

We need to show that o(k + 1) = k + 1 using the assumption from the inductive hypothesis.

Using the properties of a group isomorphism, we have:

o(k + 1) = o(k) + o(1).

From the inductive hypothesis, o(k) = k, and since o(1) = 1, we can substitute these values into the equation:

o(k + 1) = k + 1.

Therefore, the statement holds for k + 1.

By the principle of mathematical induction, we can conclude that o(n) = n for all n ∈ Z+.

learn more about  isomorphism here: brainly.com/question/31963964

#SPJ11

for a one-tailed (upper tail) hypothesis test with a sample size of 18 and a .05 level of significance, the critical value of the test statistic t is

Answers

The critical-value of test statistic "t" for the given one-tailed hypothesis test with a sample size of 18 and a significance level of α = 0.05 is (c) 1.740.

To find the critical-value of the test-statistic "t" for a one-tailed (upper tail) hypothesis-test with a sample-size of 18 and a significance-level of α = 0.05, we use the given information :

Sample-Size (n) = 18

Significance level (α) = 0.05

Since it is a one-tailed (upper tail) test, we find the critical-value corresponding to a cumulative probability of 1 - α = 1 - 0.05 = 0.95.

The degrees of freedom (df) for a one-sample t-test with a sample size of 18 is calculated as (n - 1) = (18 - 1) = 17.

We know that, a 17 degrees-of-freedom and a cumulative probability of 0.95, the critical value of the test statistic "t" is approximately 1.740.

Therefore, the correct option is (c).

Learn more about Critical Value here

https://brainly.com/question/32450122

#SPJ4

The given question is incomplete, the complete question is

For a one-tailed (upper tail) hypothesis test with a sample size of 18 and α = 0.05 level of significance, the critical-value of the test statistic "t" is​

(a) ​2.110

(b) ​1.645

(c) ​1.740

(d) ​1.734.


true or false
dy 6. Determine each of the following differential equations is linear or not. (a) +504 + 6y? = dy 0 d.x2 dc (b) dy +50 + 6y = 0 d.c2 dc (c) dy + 6y = 0 dx2 dc (d) dy C dy + 5y dy d.x2 + 5x2dy + 6y = 0

Answers

The fourth differential equation is nonlinear. In conclusion, the third differential equation, dy/dx + 6y = 0, is linear. The answer is True.

The differential equation, [tex]dy + 6y = 0[/tex], is linear.

Linear differential equation is an equation where the dependent variable and its derivatives occur linearly but the function itself and the derivatives do not occur non-linearly in any term.

The given differential equations can be categorized as linear or nonlinear based on their characteristics.

The first differential equation (a) can be rearranged as dy/dx + 6y = 504.

This equation is not linear since there is a constant term, 504, present. Therefore, the first differential equation is nonlinear.

The second differential equation (b) can be rearranged as

dy/dx + 6y = -50.

This equation is not linear since there is a constant term, -50, present.

Therefore, the second differential equation is nonlinear.

The third differential equation (c) is already in the form of a linear equation, dy/dx + 6y = 0.

Therefore, the third differential equation is linear.

The fourth differential equation (d) can be rearranged as

x²dy/dx² + 5xy' + 6y + dy/dx = 0.

This equation is not linear since the terms x²dy/dx² and 5xy' are nonlinear.

Therefore, the fourth differential equation is non linear.

In conclusion, the third differential equation, dy/dx + 6y = 0, is linear. The answer is True.

To learn more about nonlinear visit;

https://brainly.com/question/25696090

#SPJ11

In a gambling game, a player wins the game if they roll 10 fair, six-sided dice, and get a sum of at least 40.

Approximate the probability of winning by simulating the game 104 times.

1. Complete the following R code. Do not use any space.

set.seed (200)
rolls
=
replace=
)
result =
rollsums
)
sample(x=1:6, size=
matrix(rolls, nrow-10^4, ncol=10)
apply(result, 1,

2. In the setting of Question 1, what is the expected value of the random variable Y="sum of 10 dice"? Write an integer.

3. In the setting of Question 1, what is the variance of the random variable Y= "sum of 10 dice"? Use a number with three decimal places.

4. Using the code from Question 1, what is the probability of winning? Write a number with three decimal places.

5. In the setting of Question 1, using the Central Limit Theorem, approximate P (Y>=40). What is the absolute error between this value and the Monte Carlo error computed before? Write a number with three decimal places.

Answers

1. Here is the completed R code:

```R

set.seed(200)

rolls <- sample(x = 1:6, size = 10^4 * 10, replace = TRUE)

result <- matrix(rolls, nrow = 10^4, ncol = 10)

win_prob <- mean(apply(result, 1, function(x) sum(x) >= 40))

win_prob

```

2. The expected value of the random variable Y, which represents the sum of 10 dice, can be calculated as the sum of the expected values of each die. Since each die has an equal probability of landing on any face from 1 to 6, the expected value of a single die is (1 + 2 + 3 + 4 + 5 + 6) / 6 = 3.5. Therefore, the expected value of the sum of 10 dice is 10 * 3.5 = 35.

3. The variance of the random variable Y, which represents the sum of 10 dice, can be calculated as the sum of the variances of each die. Since each die has a variance of [(1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2] / 6 = 35 / 12 ≈ 2.917.

4. Using the code from Question 1, the probability of winning is the estimated win_prob. The result from the code will provide this probability, which should be rounded to three decimal places.

5. To approximate P(Y >= 40) using the Central Limit Theorem (CLT), we need to calculate the mean and standard deviation of the sum of 10 dice. The mean of the sum of 10 dice is 35 (as calculated in Question 2), and the standard deviation is √(10 * (35 / 12)) ≈ 9.128. We can then use the CLT to approximate P(Y >= 40) by finding the probability of a standard normal distribution with a z-score of (40 - 35) / 9.128 ≈ 0.547. This value can be looked up in a standard normal distribution table or calculated using software. The absolute error between this approximation and the Monte Carlo error can be obtained by subtracting the Monte Carlo win probability from the CLT approximation and taking the absolute value.

Learn more about Central Limit Theorem here: brainly.com/question/23995384

#SPJ11

4. (2 points) Suppose A € Mnn (R) and A³ = A. Show that the the only possible eigenvalues of A are λ = 0, λ = 1, and λ = -1.

Answers

Values of λ are eigenvalues is 0, 1 or -1.

Given a matrix A ∈ M_n×n(R) such that A³ = A.

We are to prove that only possible eigenvalues of A are λ = 0, λ = 1, and λ = -1.

If λ is an eigenvalue of A, then there is a nonzero vector x ∈ R^n such that Ax = λx.

So,  A³x = A(A²x) = A(A(Ax)) = A(A(λx)) = A(λAx) = λ²(Ax) = λ³x.

Hence, we can say that A³x = λ³x.

Since A³ = A, it follows that λ³x = Ax = λx which implies (λ³ - λ)x = 0.

Since x ≠ 0, it follows that λ³ - λ = 0 i.e. λ(λ² - 1) = 0.

Hence, λ is 0, 1 or -1.

Learn more about eigenvalues

brainly.com/question/29861415

#SPJ11


3. The decimal expansion of 13/625 will terminate
after how many places of decimal?
(a) 1
(b) 2
(c) 3
(d) 4

Answers

The decimal expansion of the given fraction is 0.0208. Therefore, the correct answer is option D.

The given fraction is 13/625.

Decimals are one of the types of numbers, which has a whole number and the fractional part separated by a decimal point.

Here, the decimal expansion is 13/625 = 0.0208

So, the number of places of decimal are 4.

Therefore, the correct answer is option D.

To learn more about the decimal numbers visit:

https://brainly.com/question/1578006.

#SPJ1

Find the transfer functions of each of the following discrete-time systems, given that the system is initially in a quiescent state:
(a) Yk+2-3y+1 + 2yk = Uk
(b) YA+2-3y+1 +2y=U₁+U₂
(C) Yes=Yhz+2+y=1+1

Answers

To find the transfer functions of the given discrete-time systems, we need to determine the relationship between the input and output in the z-domain.

(a) System transfer function:

Y[k+2] - 3Y[k+1] + 2Y[k] = U[k]

To obtain the transfer function, let's take the Z-transform of both sides of the equation. Assuming zero initial conditions (quiescent state), the Z-transform of the equation is:

Z{Y[k+2]} - 3Z{Y[k+1]} + 2Z{Y[k]} = Z{U[k]}

Let's denote Y[z] as the Z-transform of Y[k] and U[z] as the Z-transform of U[k]. Using the Z-transform properties, we have:

[tex]z^2[/tex]Y[z] - zY[0] - zY[1] - 3zY[z] + 3Y[0] + 2Y[z] = U[z]

Now, rearranging the equation to solve for the transfer function H[z] = Y[z] / U[z]:

H[z] = Y[z] / U[z] = (U[z] + zY[0] + zY[1] - 3Y[0]) / ([tex]z^2[/tex] - 3z + 2)

The transfer function for system (a) is given by H[z] = (U[z] + zY[0] + zY[1] - 3Y[0]) / ([tex]z^2[/tex] - 3z + 2).

(b) System transfer function:

Y[A+2] - 3Y[A+1] + 2Y[A] = U[1] + U[2]

Similar to the previous case, let's take the Z-transform of both sides of the equation. Assuming zero initial conditions (quiescent state), the Z-transform of the equation is:

Z{Y[A+2]} - 3Z{Y[A+1]} + 2Z{Y[A]} = Z{U[1]} + Z{U[2]}

Denoting Y[z] as the Z-transform of Y[A] and U[z]₁, U[z]₂ as the Z-transforms of U[1], U[2] respectively, we have:

[tex]z^(A+2)[/tex]Y[z] - [tex]z^(A+1)[/tex]Y[0] - [tex]z^A[/tex]Y[1] - 3[tex]z^(A+1)[/tex]Y[z] + 3[tex]z^A[/tex]Y[0] + 2Y[z] = U[z]₁ + U[z]₂

Rearranging the equation to solve for the transfer function H[z] = Y[z] / (U[z]₁ + U[z]₂):

H[z] = Y[z] / (U[z]₁ + U[z]₂) = (U[z]₁ + U[z]₂ +[tex]z^(A+1)[/tex]Y[0] + [tex]z^A[/tex]Y[1] - 3[tex]z^A[/tex]Y[0]) / [tex](z^(A+2) - 3z^(A+1) + 2z^A)[/tex]

The transfer function for system (b) is given by H[z] = (U[z]₁ + U[z]₂ + [tex]z^(A+1)Y[0] + z^AY[1] - 3z^AY[0]) / (z^(A+2) - 3z^(A+1) + 2z^A).[/tex]

Learn more about Transfer function here:

https://brainly.com/question/31392726

#SPJ11

Many companies use well-known celebrities as spokespersons in their TV advertisements. A study was conducted to determine sample of 300 female TV viewers was asked to identify a product advertised by a celebrity spokesperson. The gender of the sp given below. Male Celebrity Female Celebrity Identified product 41 61 Could not identify 109 89 Which test would be used to properly analyze the data in this experiment? O A. Wilcoxon rank sum test for independent populations OB.X2 test for independence C. Kruskal-Wallis rank test OD. x2 test for differences among more than two proportions d to determine whether brand awareness of female TV viewers and the gender of the spokesperson are independent. Each in a nder of the spokesperson and whether or not the viewer could identify the product was recorded. The numbers in each category are

Answers

The proper way to analyze the data in this experiment would be the x2 test for independence.

The test that should be used to properly analyze the data in this experiment is the x2 test for independence.

A chi-square test is a statistical method that determines if two categorical variables are independent of one another.

The x2 test is used to determine if a relationship exists between two or more groups.

If the p-value is less than or equal to alpha, the researcher can reject the null hypothesis and conclude that the variables are linked.

On the other hand, if the p-value is more than alpha, the researcher fails to reject the null hypothesis.

Therefore, the proper way to analyze the data in this experiment would be the x2 test for independence.

Know more about chi-square test here:

https://brainly.com/question/4543358

#SPJ11

Find the average rate of change of the function over the given interval. y=√3x-2; between x= 1 and x=2 What expression can be used to find the average rate of change? OA. lim h→0 f(2+h)-1(2)/h b) lim h→0 f(b) -f(1)/b-1 c) f(2) +f(1)/2+1 d) f(2)-f(1)/2-1

Answers

The correct choice is (c) f(2) + f(1) / (2 + 1). To find the average rate of change of the function y = √(3x - 2) over the interval [1, 2], we can use the expression:

(b) lim h→0 [f(b) - f(a)] / (b - a),

where a and b are the endpoints of the interval. In this case, a = 1 and b = 2.

So the expression to find the average rate of change is:

lim h→0 [f(2) - f(1)] / (2 - 1).

Now, let's substitute the function y = √(3x - 2) into the expression:

lim h→0 [√(3(2) - 2) - √(3(1) - 2)] / (2 - 1).

Simplifying further:

lim h→0 [√(6 - 2) - √(3 - 2)] / (2 - 1),

lim h→0 [√4 - √1] / 1,

lim h→0 [2 - 1] / 1,

lim h→0 1.

Therefore, the average rate of change of the function over the interval [1, 2] is 1.

The correct choice is (c) f(2) + f(1) / (2 + 1).

Learn more about average rate here:

brainly.com/question/13652226

#SPJ11

You arrive in a condo building and are about to take the elevator to the 3rd floor where you live. When you press the button, it takes anywhere between 0 and 40 seconds for the elevator to arrive to you. Assume that the elevator arrives uniformly between 0 and 40 seconds after you press the button. The probability that the elevator will arrive sometime between 15 and 27 seconds is State your answer as a percent and include the % sign. Fill in the blank 0.68

Answers

The probability that the elevator will arrive sometime between 15 and 27 seconds after pressing the button can be calculated by finding the proportion of the total time range (0 to 40 seconds) that falls within the given interval. Based on the assumption of a uniform distribution, the probability is determined by dividing the length of the desired interval by the length of the total time range. The result is then multiplied by 100 to express the probability as a percentage.

The total time range for the elevator to arrive is given as 0 to 40 seconds. To calculate the probability that the elevator will arrive sometime between 15 and 27 seconds, we need to find the proportion of this interval within the total time range.

The length of the desired interval is 27 - 15 = 12 seconds. The length of the total time range is 40 - 0 = 40 seconds.

To find the probability, we divide the length of the desired interval by the length of the total time range:

Probability = (length of desired interval) / (length of total time range) = 12 / 40 = 0.3

Finally, to express the probability as a percentage, we multiply by 100:

Probability as a percentage = 0.3 * 100 = 30%

Therefore, the probability that the elevator will arrive sometime between 15 and 27 seconds is 30%.

Learn more about probability  here:

https://brainly.com/question/31828911

#SPJ11

At least one of the answers above is NOT correct. (1 point) The composition of the earth's atmosphere may have changed over time. To try to discover the nature of the atmosphere long ago, we can examine the gas in bubbles inside ancient amber. Amber is tree resin that has hardened and been trapped in rocks. The gas in bubbles within amber should be a sample of the atmosphere at the time the amber was formed. Measurements on specimens of amber from the late Cretaceous era (75 to 95 million years ago) give these percents of nitrogen: 63.4 65.0 64.4 63.3 54.8 64.5 60.8 49.1 51.0 Assume (this is not yet agreed on by experts) that these observations are an SRS from the late Cretaceous atmosphere. Use a 99% confidence interval to estimate the mean percent of nitrogen in ancient air. % to %

Answers

The 99% confidence interval for the mean percent of nitrogen in ancient air is (50.49, 71.47)$ Therefore, option D is the correct answer.

The formula for a confidence interval is given by:

[tex]\large\overline{x} \pm z_{\alpha / 2} \cdot \frac{s}{\sqrt{n}}[/tex]

Here,

[tex]\overline{x} = \frac{63.4+65.0+64.4+63.3+54.8+64.5+60.8+49.1+51.0}{9} \\= 60.98[/tex]

[tex]s = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2} = 6.6161[/tex]

We have a sample of size n = 9.

Using the t-distribution table with 8 degrees of freedom, we get:

[tex]t_{\alpha/2, n-1} = t_{0.005, 8} \\= 3.355[/tex]

Now, substituting the values in the formula we get,

[tex]\large 60.98 \pm 3.355 \cdot \frac{6.6161}{\sqrt{9}}[/tex]

The 99% confidence interval for the mean percent of nitrogen in ancient air is (50.49, 71.47). Therefore, option D is the correct answer.

Know more about 99% confidence interval here:

https://brainly.com/question/17097944

#SPJ11

You are given that cos(A)=−33/65, with A in Quadrant III, and cos(B)=3/5, with B in Quadrant I. Find cos(A+B). Give your answer as a fraction.

Answers

To find cos (A+B), we will use the formula of cos (A+B). Cos (A + B) = cos A * cos B - sin A * sin B

We are given the following information about angles: cos A = -33/65 (in Q3)cos B = 3/5 (in Q1)

As we know that the cosine function is negative in the third quadrant and positive in the first quadrant, thus the sine function will be positive in the third quadrant and negative in the first quadrant.

Thus, we can find the value of sin A and sin B using the Pythagorean theorem:

cos²A + sin²A = 1, sin²A = 1 - cos²Acos²B + sin²B = 1, sin²B = 1 - cos²Bsin A = √(1-cos²A) = √(1-(-33/65)²) = √(1-1089/4225) = √3136/4225 = 56/65sin B = √(1-cos²B) = √(1-(3/5)²) = √(1-9/25) = √16/25 = 4/5

We can now substitute the values of cos A, cos B, sin A, and sin B into the formula of cos (A+B): cos(A+B) = cosA * cosB - sinA * sinB= (-33/65) * (3/5) - (56/65) * (4/5)= (-99/325) - (224/325) = -323/325

Therefore, cos(A+B) = -323/325.

Know more about angles here:

https://brainly.com/question/25716982

#SPJ11

"
#16
Question 16 Solve the equation. 45 - 3x = 1 256 O 1) 764 O {3} O {128) (-3) (

Answers

The value of x that satisfies the equation 45 - 3x = 1256 is approximately -403.6666667.

To solve the equation 45 - 3x = 1256, we want to isolate the variable x on one side of the equation. This can be done by performing a series of mathematical operations that maintain the equality of the equation.

Start by combining like terms on the left side of the equation. The constant term, 45, remains as it is, and we have -3x on the left side. The equation becomes:

-3x + 45 = 1256

To isolate the variable x, we need to move the constant term to the right side of the equation. Since the constant term is positive, we'll subtract 45 from both sides of the equation to eliminate it from the left side:

-3x + 45 - 45 = 1256 - 45

Simplifying, we have:

-3x = 1211

To solve for x, we want to isolate the variable on one side of the equation. Since the variable x is currently being multiplied by -3, we can isolate it by dividing both sides of the equation by -3:

(-3x) / -3 = 1211 / -3

The -3 on the left side cancels out, leaving us with:

x = -403.6666667

To know more about equation here

https://brainly.com/question/21835898

#SPJ4

Write a system of equations that is equivalent to the vector equation:
3 -5 -16
x1= 16 = x2=0 = -10
-8 10 5
a. 3x1 - 5x2 = 5
16x1 = -15
-8x1 + 13x2 = -16
b. 3x1 - 5x2 = -16
16x1 = -15
-8x1 + 13x2 = 5
c. 3x1 - 5x2 = -16
16x1 + 5x2 = -10
-8x1 + 13x2 = -5
d. 3x1 - 5x2 = -10
16x1 = -16
-8x1 + 13x2 = 5

Answers

The correct system of equations that is equivalent to the vector equation is: c. 3x₁ - 5x₂ = -16

16x₁ + 5x₂ = -10

-8x₁ + 13x₂ = -5

We can convert the vector equation into a system of equations by equating the corresponding components of the vectors.

The vector equation is:

(3, -5, -16) = (16, 0, -10) + x₁(0, 1, 0) + x₂(-8, 10, 5)

Expanding the equation component-wise, we have:

3 = 16 + 0x₁ - 8x₂

-5 = 0 + x₁ + 10x₂

-16 = -10 + 0x₁ + 5x₂

Simplifying these equations, we get:

3 - 16 = 16 - 8x₂

-5 = x₁ + 10x₂

-16 + 10 = -10 + 5x₂

Simplifying further:

-13 = -8x₂

-5 = x₁ + 10x₂

-6 = 5x₂

Dividing the second equation by 10:

-1/2 = x₁ + x₂

So, the system of equations that is equivalent to the vector equation is:

3x₁ - 5x₂ = -16

16x₁ + 5x₂ = -10

-8x₁ + 13x₂ = -5

To know more about vector visit:

brainly.com/question/24256726

#SPJ11

Create an orthogonal basis for the vector space spanned by B. b. From your answer to part a, create an orthonormal basis for this vector space.

Answers

a) To create an orthogonal basis for the vector space spanned by B, we will use the Gram-Schmidt process. The vectors in B are already linearly independent. So, we can create an orthogonal basis for the space spanned by B using the following steps:

i) First, we normalize the first vector in B to obtain a unit vector v1.

v1 = [3/7, -2/7, 6/7]ii) Then, we calculate the projection of the second vector in B, w2, onto v1 as follows:w2_perp = w2 - proj_v1(w2), where proj_v1(w2) = ((w2 . v1)/||v1||^2)v1= [-1/2, 1/2, 0]w2_perp = [1/2, -5/2, -6]iii) Next, we normalize w2_perp to obtain a unit vector v2. v2 = w2_perp/||w2_perp||= [1/√35, -5/√35, -3/√35]So, an orthogonal basis for the vector space spanned by B is {v1, v2} = {[3/7, -2/7, 6/7], [1/√35, -5/√35, -3/√35]}b) To create an orthonormal basis for this vector space, we simply normalize the orthogonal basis vectors from part a.

So, the orthonormal basis for the vector space spanned by B is {u1, u2} = {[3/√49, -2/√49, 6/√49], [1/√35, -5/√35, -3/√35]} = {[3/7, -2/7, 6/7], [1/√35, -5/√35, -3/√35]}

To know more about orthogonal visit:

https://brainly.com/question/32196772

#SPJ11

.Find the vertices and the foci of the ellipse with the given equation. Then draw its graph.
5x² +2y² =10

Answers

To find the vertices and the foci of the ellipse with the given equation 5x² +2y² =10, we will use the standard form of the equation of an ellipse, x²/a²+y²/b²=1.

In this equation, a represents the horizontal distance from the center to the vertex or the foci and b represents the vertical distance from the center to the vertex or the foci.

For this problem, we can see that the major axis is along the x-axis since the coefficient of x² is larger than the coefficient of y². Therefore, a²=10/5=2 and b²=10/2=5.

This means that a=√2 and b=√5. The center of the ellipse is (0,0). Therefore, the vertices of the ellipse are (±√2,0), and the foci of the ellipse are (±√3,0).To draw the graph, we can first plot the center of the ellipse at (0,0). Then, we can draw the major axis, which is a horizontal line passing through the center and has a length of 2√2. This line passes through the vertices (±√2,0).

Then, we can draw the minor axis, which is a vertical line passing through the center and has a length of 2√5. This line passes through the points (0,±√5). Finally, we can draw the ellipse by sketching a curve that smoothly connects the vertices and the ends of the minor axis.To find the vertices and the foci of an ellipse from its given equation, we first need to check its standard form.

An ellipse is the set of all points in a plane such that the sum of their distances from two fixed points (called foci) is constant. Therefore, the equation of an ellipse must have the form x²/a²+y²/b²=1 or y²/a²+x²/b²=1, where a represents the horizontal distance from the center to the vertex or the foci and b represents the vertical distance from the center to the vertex or the foci.

In this case, the given equation is 5x²+2y²=10, which can be rewritten as x²/2+y²/5=1 by dividing both sides by 10. Therefore, we can see that a²=2 and b²=5. This means that a=√2 and b=√5.

The center of the ellipse is (0,0). Therefore, the vertices of the ellipse are (±√2,0), and the foci of the ellipse are (±√3,0).To draw the graph of the ellipse, we can first plot the center of the ellipse at (0,0).

Then, we can draw the major axis, which is a horizontal line passing through the center and has a length of 2√2. This line passes through the vertices (±√2,0). Then, we can draw the minor axis, which is a vertical line passing through the center and has a length of 2√5. This line passes through the points (0,±√5). Finally, we can draw the ellipse by sketching a curve that smoothly connects the vertices and the ends of the minor axis. This curve should have a shape that is somewhat similar to a stretched-out circle.

Therefore, the vertices of the given ellipse are (±√2,0), and the foci of the given ellipse are (±√3,0). The graph of the ellipse can be drawn by plotting the center at (0,0), drawing the major and minor axes passing through the center and having lengths of 2√2 and 2√5, respectively, and then sketching a curve that connects the vertices and the ends of the minor axis.

To know more about foci visit:

brainly.com/question/31881782

#SPJ11


In a recent year, a research organization found that 241 of the 340 respondents who reported earning less than $30,000 per year said they were social networking users At the other end of the income scale, 256 of the 406 respondents reporting earnings of $75,000 or more were social networking users Let any difference refer to subtracting high-income values from low-income values. Complete parts a through d below Assume that any necessary assumptions and conditions are satisfied a) Find the proportions of each income group who are social networking users. The proportion of the low-income group who are social networking users is The proportion of the high-income group who are social networking usem is (Round to four decimal places as needed) b) What is the difference in proportions? (Round to four decimal places as needed) c) What is the standard error of the difference? (Round to four decimal places as needed) d) Find a 90% confidence interval for the difference between these proportions (Round to three decimal places as needed)

Answers

Proportions of each income group who are social networking users are as follows:The proportion of the low-income group who are social networking users = Number of respondents reporting earnings less than $30,000 per year who are social networking users / Total number of respondents reporting earnings less than $30,000 per year= 241 / 340

= 0.708

The proportion of the high-income group who are social networking users = Number of respondents reporting earnings of $75,000 or more who are social networking users / Total number of respondents reporting earnings of $75,000 or more= 256 / 406

= 0.631

b) The difference in proportions = Proportion of the low-income group who are social networking users - Proportion of the high-income group who are social networking users= 0.708 - 0.631

= 0.077

c) The standard error of the difference = √((p₁(1 - p₁) / n₁) + (p₂(1 - p₂) / n₂))Where p₁ is the proportion of the low-income group who are social networking users, p₂ is the proportion of the high-income group who are social networking users, n₁ is the number of respondents reporting earnings less than $30,000 per year, and n₂ is the number of respondents reporting earnings of $75,000 or more.= √(((0.708)(0.292) / 340) + ((0.631)(0.369) / 406))≈ 0.0339d) The 90% confidence interval for the difference between these proportions is given by: (p₁ - p₂) ± (z* √((p₁(1 - p₁) / n₁) + (p₂(1 - p₂) / n₂)))Where p₁ is the proportion of the low-income group who are social networking users, p₂ is the proportion of the high-income group who are social networking users, n₁ is the number of respondents reporting earnings less than $30,000 per year, n₂ is the number of respondents reporting earnings of $75,000 or more, and z is the value of z-score for 90% confidence interval which is approximately 1.645.= (0.708 - 0.631) ± (1.645 * 0.0339)≈ 0.077 ± 0.056

= (0.021, 0.133)

Therefore, the 90% confidence interval for the difference between these proportions is (0.021, 0.133).

To know more about Proportions visit-

https://brainly.com/question/31548894

#SPJ11

14. The easiest way to evaluate the integral ∫ tan x dr is by the substitution u-tan x
a. U = cos x.
b. u = sin x
c. u= tan x

Answers

The easiest way to evaluate the integral ∫ tan(x) dx is by the substitution u = tan(x). which is option C.

What is the easiest way to evaluate the integral using substitution method?

Let's perform the substitution:

u = tan(x)

Differentiating both sides with respect to x:

du = sec²(x) dx

Rearranging the equation, we have:

dx = du / sec²(x)

Now substitute these values into the integral:

∫ tan(x) dx = ∫ u * (du / sec²(x))

Since sec²(x) = 1 + tan²(x), we can substitute this back into the integral:

∫ u * (du / sec²(x)) = ∫ u * (du / (1 + tan²(x)))

Now, substitute u = tan(x) and du = sec²(x) dx:

∫ u * (du / (1 + tan²(x))) = ∫ u * (du / (1 + u²))

This integral is much simpler to evaluate compared to the original integral, as it reduces to a rational function.

Learn more on integration by substitution here;

https://brainly.com/question/29979533

#SPJ4




2) Draw contour maps for the functions f(x, y) = 4x² +9y², and g(x, y) = 9x² + 4y². What shape are these surfaces?

Answers

The functions f(x, y) = 4x² + 9y² and g(x, y) = 9x² + 4y² represent ellipsoids in three-dimensional space. Drawing their contour maps allows us to visualize the shape of these surfaces and understand their characteristics.

To draw the contour maps for f(x, y) = 4x² + 9y² and g(x, y) = 9x² + 4y², we consider different levels or values of the functions. Choosing specific values for the contours, we can plot the curves where the functions are equal to those values.

For f(x, y) = 4x² + 9y², the contour curves will be concentric ellipses with the major axis along the y-axis. As the contour values increase, the ellipses will expand outward, representing an elongated elliptical shape.

Similarly, for g(x, y) = 9x² + 4y², the contour curves will also be concentric ellipses, but this time with the major axis along the x-axis. As the contour values increase, the ellipses will expand outward, creating a different elongated elliptical shape compared to f(x, y).

In summary, both f(x, y) = 4x² + 9y² and g(x, y) = 9x² + 4y² represent ellipsoids in three-dimensional space. The contour maps visually illustrate the shape and reveal the elongated elliptical nature of these surfaces.

to learn more about ellipsoids click here:

brainly.com/question/13264495

#SPJ11

I got P2(x) = 1/2x^2-x+x/2 but I have no idea how to find the error. Could you help me out and describe it in detail?
K1. (0.5 pt.) Let f (x) = |x − 1. Using the scheme of divided differences find the interpolating polynomial p2(x) in the Newton form based on the nodes to = −1, 1, x2 = 3.
x1 =
Find the largest value of the error of the interpolation in the interval [−1; 3].

Answers

The maximum value of the error is 0, and the polynomial P2(x) is an exact interpolating polynomial for f(x) over the interval [-1,3].

To find the error of the interpolation, you can use the formula for the remainder term in the Taylor series of a polynomial.

The formula is:

Rn(x) =[tex]f(n+1)(z) / (n+1)! * (x-x0)(x-x1)...(x-xn)[/tex]

where f(n+1)(z) is the (n+1)th derivative of the function f evaluated at some point z between x and x0, x1, ..., xn.

To apply this formula to your problem, first note that your polynomial is: P2(x) = [tex]1/2x^2 - x + x/2 = 1/2x^2 - x/2.[/tex]

To find the error, we need to find the (n+1)th derivative of f(x) = |x - 1|. Since f(x) has an absolute value, we will consider it piecewise:

For x < 1, we have f(x) = -(x-1).

For x > 1, we have f(x) = x-1.The first derivative is:

f'(x) = {-1 if x < 1, 1 if x > 1}.The second derivative is:

f''(x) = {0 if x < 1 or x > 1}.

Since all higher derivatives are 0, we have:

[tex]f^_(n+1)(x) = 0[/tex] for all n >= 1.

To find the largest value of the error of the interpolation in the interval [-1,3], we need to find the maximum value of the absolute value of the remainder term over that interval.

Since all the derivatives of f are 0, the remainder term is 0.

To know more about  polynomial visit:

https://brainly.in/question/9172871

#SPJ11

Amy is driving a racecar. The table below gives the distance Din metersshe has driven at a few times f in secondsafter she starts Distance D) (seconds) (meters) 0 3 78.3 4 147.6 6 185.4 9 287.1 (a)Find the average rate of change for the distance driven from 0 seconds to 4 seconds. meters per second b)Find the average rate of change for the distance driven from 6 seconds to 9 seconds. meters per second 5

Answers

The average rate of change for the distance driven from 6 seconds to 9 seconds is 33.9 meters per second.

To find the average rate of change for the distance driven, we need to calculate the change in distance divided by the change in time. (a) From 0 seconds to 4 seconds: The distance driven at 0 seconds is 0 meters. The distance driven at 4 seconds is 147.6 meters. The change in distance is 147.6 - 0 = 147.6 meters. The change in time is 4 - 0 = 4 seconds.

The average rate of change for the distance driven from 0 seconds to 4 seconds is: Average rate of change = Change in distance / Change in time. Average rate of change = 147.6 meters / 4 seconds = 36.9 meters per second. Therefore, the average rate of change for the distance driven from 0 seconds to 4 seconds is 36.9 meters per second.

(b) From 6 seconds to 9 seconds: The distance driven at 6 seconds is 185.4 meters. The distance driven at 9 seconds is 287.1 meters. The change in distance is 287.1 - 185.4 = 101.7 meters. The change in time is 9 - 6 = 3 seconds. The average rate of change for the distance driven from 6 seconds to 9 seconds is: Average rate of change = Change in distance / Change in time. Average rate of change = 101.7 meters / 3 seconds = 33.9 meters per second. Therefore, the average rate of change for the distance driven from 6 seconds to 9 seconds is 33.9 meters per second.

To learn more about rate, click here: brainly.com/question/29204803

#SPJ11







of Let f(x,y)=tanh=¹(x−y) with x=e" and y= usinh (1). Then the value of (u,1)=(4,In 2) is equal to (Correct to THREE decimal places) evaluated at the point

Answers

The value of f(x,y) = tanh^(-1)(x-y) at the point (x=e^(-1), y=usinh(1)) with (u,1)=(4,ln(2)) is approximately 0.649. The expressions are based on hyperbolic tangent function.To evaluate the expression f(x,y) = tanh^(-1)(x-y), we substitute the given values of x and y.

x = e^(-1)

y = usinh(1) = 4sinh(1) = 4 * (e - e^(-1))/2

Substituting these values into the expression, we have:

f(x,y) = tanh^(-1)(e^(-1) - 4 * (e - e^(-1))/2)

Simplifying further:

f(x,y) = tanh^(-1)(e^(-1) - 2(e - e^(-1)))

Now we substitute the value of e = 2.71828 and evaluate the expression:

f(x,y) = tanh^(-1)(2.71828^(-1) - 2(2.71828 - 2.71828^(-1)))

      = tanh^(-1)(0.36788 - 2(0.71828 - 0.36788))

      = tanh^(-1)(0.36788 - 2(0.3504))

      = tanh^(-1)(0.36788 - 0.7008)

      = tanh^(-1)(-0.33292)

      ≈ 0.649

Therefore, the value of f(x,y) = tanh^(-1)(x-y) at the point (u,1)=(4,ln(2)) is approximately 0.649.

To know more about the hyperbolic tangent function refer here:

https://brainly.com/question/22161213#

#SPJ11

Be A^2 = 1
and suppose A=I and
A =-1. (a) Show that the only eigenvalues of A are A = -I
(b) Show that A is diagonalizable.
A(A+1) = A +1, and that A(A – I) = -(A – I) and then look at the nonzero columns of A+1
and of A-I.

Answers

A has two linearly independent eigenvectors and is therefore diagonalizable.

(a)Eigenvalues of A are values λ such that the equation (A − λI) x = 0 has a nonzero solution x. If we use A = I,

then A − λ

I = I − λI

= (1 − λ)I and the equation (A − λI)

x = 0 is equivalent to (1 − λ)x = 0.

Thus λ = 1 is the only eigenvalue of A = I.

If we use A = −1, then A − λI = −1 − λI = (−1 − λ)I and

the equation (A − λI) x = 0 is equivalent to

(−1 − λ)x = 0.

Thus λ = −1 is the only eigenvalue of A = −1.

In both cases the only eigenvalue is A = −I.

(b)To show that A is diagonalizable, we need to show that A has a basis of eigenvectors.

For λ = −1, the equation (A + I) x = 0 is equivalent to

x1 + x2 + x3 = 0, which has a nonzero solution such as

x = (1, −1, 0).

For λ = 1, the equation (A − I) x = 0 is equivalent to

x1 − x2 + x3 = 0, which has a nonzero solution such as x = (1, 1, −2).

Thus A has two linearly independent eigenvectors and is therefore diagonalizable.

To learn more about vectors visit;

https://brainly.com/question/30958460

#SPJ11

Please help!! This is a Sin Geometry question

Answers

In the given diagram, by using trigonometry, the value of sin θ is √5/5. The correct option is D) √5/5

Trigonometry: Calculating the value of sin θ

From the question, we are to determine the value of sin θ in the given diagram

First,

We will calculate the value of the unknown side length

Let the unknown side be x

By using the Pythagorean theorem, we can write that

(5√5)² = 10² + x²

125 = 100 + x²

125 - 100 = x²

25 = x²

x = √25

x = 5

Now,

Using SOH CAH TOA

sin θ = Opposite / Hypotenuse

sin θ = 5 / 5√5

sin θ = 1 / √5

sin θ = √5/5

Hence, the value of sin θ is √5/5

Learn more on Trigonometry here: https://brainly.com/question/20367642

#SPJ1

Other Questions
4. let : be a linear transformation and suppose () = . show that () = explain conflict and problem resolution as part of the dba's end-user support services. most microeconomic models assume that decision makers wish to:____ Make up an example of a study that uses a 2 * 2 factorial design, and fill in a table of cell means that would show no main effects and no interaction effect (Do not use an example from your textbook, class lectures, or your classmates) Explain the pattern of the cell means you created within the context of your example For the toolbar, press ALT+F10(PC) or ALT+FN+F10 (Mac), RTU D which attack substitutes a fraudulent mac address for an ip address Which of the following statements about measurement is true? A. As part of the measurement process, researchers assign labels to phenomena they measure but don't assign numbers to them B. It's the process of developing methods to systematically characterze or quantity information about persons, events, ideas, or objects of interest C. As part of the measurement process, researchers assign numbers to phenomena they measure but don't label them D. The process of measurement begins with scale measurement followed by construct development There are five apples of different sizes, three oranges of different sizes and four bananas of different sizes in a box. How many ways are there to choose three fruits so that at least one banana and one orange should be chosen? a. 90 b. 130 c. 150 d. None of the mentionede. 120 why is proving a bona fide occupational qualification essential? You are given the market demand function Q 1600-1000p, and that each duopoly firm's marginal cost is $0.07 per unit, which implies the cost function C(qi) 0.07qi assuming no fixed costs for i = 1,2 The Cournot equilibrium quantities are q1 = and q2 = Center your responses as whole numbers). The Counot equilibium price is $ (round to the nearest penny). Calculate the Cournot profits: firm1 $ and firm2 $ (round both responses to the nearest cent Three customer archetypes are transactors, revolvers, and dormants (Case p. 3). Which types of customers are most desirable for Chase? How can the Chase Sapphire team best design its product and brand to attract the right customers? What would you do to maximize the customer lifetime value of each of the customer segments? What changes to the product would you recommend? What changes to the marketing plan would you recommend? Define common stock and give examples from the Saudi marketDoes the value of shares of stock depend on how long you expectto keep it?What is the value of a share of stock when the dividend grows at cost accounting question 23Page Company makes 30% of its sales for cash and 70% on account. 60% of the credit sales are collected in the month of sale, 20% in the month following sale. and 17% in the second month following sale unemployment rates over the past 50 years have tended to hover around: the atoms in a nickel crystal vibrate as harmonic oscillators with an angular frequency of 2.3 1013 rad/s. what is the difference in energy between adjacent vibrational energy levels of nickel? A process engineer determined the following entries in an analysis of variance table for some data he collected from a randomized complete block design. The treatment totals were 165. 204. 168, 198, and 165. Sum of Squares 534 Degrees of Freedom 2 Mean Squares F. Source of Variance Blocks Treatments Residuals Total 40 14 A) Complete the ANOVA table, B) What conclusions can you draw regarding treatment effects? Use a=0.05. A circular paddle wheel of radius 4 ft is lowered into a flowing river. The current causes the wheel to rotate at a speed of 10 rpm. Part 1 of 3 (a) What is the angular speed? Round to one decimal place. The angular speed is approximately 62.8 rad/min. Part 2 of 3 (b) Find the speed of the current in ft/min. Round to one decimal place. The speed of the current is approximately 251.3 ft/min. Part: 2/3 Part 3 of 3 (c) Find the speed of the current in mph. Round to one decimal place. The speed of the current is approximately _____mph. Question 2 (10 marks) Kelly is employed by Jasper Ltd in Sydney. In July 20XX she transferred to Perth to take up a position with Langfield Ltd an Australian Manufacturing firm. During the year ended 30th June 20XX the following events took place: Received a salary from Langfield Ltd $80,000. Made a capital gain of $3,000 from the sale of 200 shares in Optus Ltd, a public listed company on the Australian Stock Exchange. The shares were acquired in January 2007. Made a capital loss of $1,000 on an antique coin collection. The collection was acquired in March 2006 at a cost of $700. .Kelly indicated that her taxation return for the year ended 30 June of the previous year shows a net capital loss of $2,000 from the sale of shares. Received a uniform allowance of $1,800. Received a $2,000 bonus from her employer on 3rd July 20XX for her excellent performance. Spent $300 towards protective shields (she kept all necessary records). Required Calculate Kelly's taxable income and tax liability for the year ending 30.06.20XX. In your response ensure you state the appropriate legislation, tax rulings or common law cases to support your answer. Fad City sells novel clothes that are subject to a great deal of price volatility. A recent item that cost $20.30 was marked up $13.90, marked down for a sale by $6.10 and then had a markdown cancellation of $3.80. The latest selling price is: O O O O $26.40. $38.00. $31.90. $29.46. in drought conditions, many plants aren't able to survive because they do not have enough water to photosynthesize. which step in photosynthesis would be blocked by drought conditions? You are the quality manager in a pharmaceutical factory. Discussyour style of managing this departmentuse Quality control methods ,six sigma and other method's Steam Workshop Downloader