d939 (cos x). By computing the first few derivatives and looking for a pattern, find 939 dx d939 d 939 (cos x)=

Answers

Answer 1

In the case of d⁹³⁹ (cos x), the pattern allows us to determine that the derivative is a sum of terms involving high-degree polynomials of sine and cosine.

The first derivative of d⁹³⁹ (cos x) is found by applying the chain rule repeatedly. The pattern that emerges from computing the derivatives is that for each derivative, the term cos x gets multiplied by a polynomial expression involving powers of sine and cosine. The degree of the polynomial increases by one with each derivative, and the coefficients follow a specific pattern based on the number of derivatives taken. In the case of d⁹³⁹ (cos x), the pattern allows us to determine that the derivative is a sum of terms involving high-degree polynomials of sine and cosine.

To compute d⁹³⁹ (cos x), we start with the derivative of cos x, which is -sin x. Taking the second derivative, we apply the chain rule again and obtain -cos x. By continuing this process, we find that the third derivative is sin x, the fourth derivative is cos x, and so on. We notice that the derivatives of even order produce cos x, while the derivatives of odd order produce sin x.

Thus, we can conclude that the derivative of d⁹³⁹ (cos x) will have a polynomial expression involving sine and cosine of x, where the degree of the polynomials will range from 0 to 938.

The coefficients of the polynomials can be determined by following the pattern established by the previous derivatives. However, providing the explicit form of the derivative in this case would require extensive calculations and is beyond the scope of a concise answer.

Learn more about Derivative:

brainly.com/question/29144258

#SPJ11


Related Questions

On the same system of coordinate axes, graph the circle 2? + y2 =25 and the ellipse 225. Draw the vertical line <= -2, which intersects the circle at two points, called A and B, and which intersects the ellipse at two points, called C and D. Show that the ratio AB:CD of chord lengths is 5:3. Choose a different vertical line and repeat the calculation of the ratio of chord lengths. Finally, using the line <= k (with |k| < 5, of course), find expressions for the chord lengths and show that their ratio is 5:3. Where in the diagram does the ratio 5:3 appear most conspicuously? Because the area enclosed by the circle is known to be 25, you can now deduce the area enclosed by the ellipse

Answers

15 units is the area can be deduced by the ellipse.

To graph the circle and ellipse, we start with the equations:

Circle: x^2 + y^2 = 25

Ellipse: x^2/225 + y^2/16 = 1

Now, let's draw the vertical line x = -2 and find the points of intersection with the circle and ellipse.

For the circle:

x = -2

(-2)^2 + y^2 = 25

4 + y^2 = 25

y^2 = 21

y = ±√21

Therefore, the points of intersection with the circle are A(-2, √21) and B(-2, -√21).

For the ellipse:

x = -2

(-2)^2/225 + y^2/16 = 1

4/225 + y^2/16 = 1

y^2/16 = 1 - 4/225

y^2/16 = 221/225

y^2 = (221/225) * 16

y = ±√(221/225) * 4

Thus, the points of intersection with the ellipse are C(-2, √(221/225) * 4) and D(-2, -√(221/225) * 4).

Now, let's calculate the ratio of AB to CD.

Distance AB:

AB = √[(-2 - (-2))^2 + (√21 - (-√21))^2]

= √[0 + (2√21)^2]

= √[4 * 21]

= √84

= 2√21

Distance CD:

CD = √[(-2 - (-2))^2 + (√(221/225) * 4 - (-√(221/225) * 4))^2]

= √[0 + (8√(221/225))^2]

= √[(64/225) * 221]

= √(14.784)

= √(14784/1000)

= (1/10)√(14784)

= (1/10) * 384

= 38.4/10

= 3.84

Therefore, the ratio AB:CD is 2√21:3.84, which simplifies to 5:3.

Let's choose a different vertical line and repeat the calculation.

Let's take the line x = 3.

For the circle:

x = 3

3^2 + y^2 = 25

9 + y^2 = 25

y^2 = 16

y = ±4

The points of intersection with the circle are A(3, 4) and B(3, -4).

For the ellipse:

x = 3

3^2/225 + y^2/16 = 1

9/225 + y^2/16 = 1

y^2/16 = 1 - 9/225

y^2/16 = 216/225

y^2 = (216/225) * 16

y = ±√(216/225) * 4

The points of intersection with the ellipse are C(3, √(216/225) * 4) and D(3, -√(216/225) * 4).

Now, let's calculate the ratio of AB to CD.

Distance AB:

AB = √[(3 - 3)^2 + (4 - (-4))^2]

= √[0 + 64]

= √64

= 8

Distance CD:

CD = √[(3 - 3)^2 + (√(216/225) * 4 - (-√(216/225) * 4))^2]

= √[0 + (8√(216/225))^2]

= √[(64/225) * 216]

= √(15.36)

= √(1536/100)

= (1/10)√(1536)

= (1/10) * 39.2

= 3.92/10

= 0.392

Therefore, the ratio AB:CD is 8:0.392, which simplifies to 20:0.98, or approximately 20:1.

Now, let's find expressions for the chord lengths using the line x = k, where |k| < 5.

For the circle:

x = k

k^2 + y^2 = 25

y^2 = 25 - k^2

y = ±√(25 - k^2)

For the ellipse:

x = k

k^2/225 + y^2/16 = 1

y^2/16 = 1 - k^2/225

y^2 = 16 - (16/225) * k^2

y = ±√(16 - (16/225) * k^2)

Now, let's calculate the ratio of the chord lengths for the general case.

Distance AB:

AB = √[(k - k)^2 + (√(25 - k^2) - (-√(25 - k^2)))^2]

= √[0 + 4(25 - k^2)]

= 2√(25 - k^2)

Distance CD:

CD = √[(k - k)^2 + (√(16 - (16/225) * k^2) - (-√(16 - (16/225) * k^2)))^2]

= √[0 + 4(16 - (16/225) * k^2)]

= 2√(16 - (16/225) * k^2)

Therefore, the ratio AB:CD is 2√(25 - k^2):2√(16 - (16/225) * k^2), which simplifies to √(25 - k^2):√(16 - (16/225) * k^2), and further simplifies to 5:3.

The ratio 5:3 appears most conspicuously in the calculation of the chord lengths, where it remains constant regardless of the position of the vertical line x = k.

Since the area enclosed by the circle is known to be 25, and the ratio of the chord lengths for the circle and ellipse is 5:3, we can deduce that the area enclosed by the ellipse is (3/5) * 25 = 15 units.

To learn more about ellipse, refer below:

https://brainly.com/question/20393030

#SPJ11

Bus c is 8 miles from bus b. Bus c is 23 miles from bus a. Circle all possible distances for bus a

Answers

The potential distances for Transport An are any qualities more noteworthy than 8 miles and under 23 miles.

To decide the potential distances for transport A, we want to think about the given distances between the transports.

Given data:

- Transport C is 8 miles from Transport B.

- Transport C is 23 miles from Transport A.

We should break down the potential distances for Transport A:

1. In the event that Transport B is situated between Transport An and Transport C, the distance between Transport An and Transport B would be not exactly the distance between Transport C and Transport A. Be that as it may, this goes against the data gave (Transport C is 23 miles from Transport A). Accordingly, this situation is preposterous.

2. If Transport An is situated between Transport B and Transport C, the distance between Transport An and Transport B would be not exactly the distance between Transport C and Transport A. This implies that the conceivable distance for Transport An eventual any worth more prominent than 8 miles yet under 23 miles. Hence, the potential distances for Transport A in this situation are more noteworthy than 8 miles and under 23 miles.

All in all, the potential distances for Transport A are any qualities more noteworthy than 8 miles and under 23 miles.

For additional such inquiries on distances, click on:

https://brainly.com/question/26550516

#SPJ11

2. LABE measures 180°. Find the measures of

ZABD and ZDBE

Answers

The measures of ∠ABD and ∠DBE are 76° and 104°

Given, ∠ABE = 180°

∠ABC + ∠CBE = ∠ABE

3x+5 + 2x+10 = 180

5x + 15 = 180

5x = 165

x = 165/5 = 33

∠ABD = ∠CBE     (Vertically opposite angles)

Vertically opposite angles are a pair of angles that are opposite each other when two lines intersect. These angles are formed by two intersecting lines and share the same vertex but are on opposite sides of the intersection. Vertically opposite angles are congruent, which means they have equal measures or angles.

∠CBE = 2x + 10

= 2(33) + 10

= 66+10

= 76°

∠ABD = 76

∠DBE = ∠ABC

∠ABC = 3x + 5 = 3(33)+5

= 99+5

= 104

∠DBE = 104°

Therefore, the measures of ∠ABD and ∠DBE are 76° and 104°

Learn more about Vertically opposite angles here

https://brainly.com/question/18588174

#SPJ4

Given question is incomplete, the complete question is below

Angle ABE measures 180°. Find the measures of angle ABD and angle DBE.

find the exact value of the trigonometric expression given that sin(u) = − 3 5 , where 3/2 < u < 2, and cos(v) = 15 17 , where 0 < v < /2. sin(u v)

Answers

The exact value of sin(u-v) is -77/85. This can be answered by the concept of Trigonometry.

Given the information, we can find the exact value of sin(u-v).

We know that sin(u) = -3/5 and cos(v) = 15/17. Since 3/2 < u < 2, u is in the fourth quadrant where sin is negative, and 0 < v < π/2, v is in the first quadrant where cos is positive.

We can use the trigonometric identity for sin(u-v): sin(u-v) = sin(u)cos(v) - cos(u)sin(v).

First, we need to find cos(u) and sin(v). We can use the Pythagorean identities: sin²(u) + cos²(u) = 1 and sin²(v) + cos²(v) = 1.

For u:
sin²(u) = (-3/5)² = 9/25
cos²(u) = 1 - sin²(u) = 1 - 9/25 = 16/25
cos(u) = √(16/25) = 4/5 (cos is positive in the fourth quadrant)

For v:
cos²(v) = (15/17)² = 225/289
sin²(v) = 1 - cos²(v) = 1 - 225/289 = 64/289
sin(v) = √(64/289) = 8/17 (sin is positive in the first quadrant)

Now we can use the identity sin(u-v) = sin(u)cos(v) - cos(u)sin(v):
sin(u-v) = (-3/5)(15/17) - (4/5)(8/17) = -45/85 - 32/85 = -77/85

So, the exact value of sin(u-v) is -77/85.

To learn more about Trigonometry here:

brainly.com/question/29002217#

#SPJ11

modelling and
simulation
Urgent please i need the answer
.
Question 3 Consider a random variable z with possible outcomes {0, -1, 2} and PMF given by: P(Z=0) = 0.33 P(Z=-1) = 0.37, and P(Z=2) P(Z=2) = 0.30 Then the expected value of Z is e[z]=

Answers

Modelling and Simulation Modelling and simulation involve the development of models that imitate the performance of a particular system. The models provide a means of testing the performance of a system in a specific situation. The models may be physical, abstract, or mathematical, and they are used to determine the behaviour of the system.

A simulation is the running of a model to observe the system's behaviour. A model can be of various types:Physical Model: These are models that are built to look like the actual system. They can be smaller, larger, or the same size as the actual system. Examples of these include wind tunnels and model cars.

Mathematical Model: These are models that are constructed using mathematical formulas that describe the relationships between the system's variables. Examples of these include economic models and weather forecasting models.

To know more about development visit :-

https://brainly.com/question/28011228

#SPJ11

Use LU factorization, solve the system of linear equation Ax=b, where 1 -2 1 3 A = -4 2 b= 0 6 -9 1)

Answers

The system of linear equations Ax=b, where A is a given matrix and b is a given vector, can be solved using LU factorization.

Write the given matrix A and vector b.

A = 1 -2 1

-4 2 3

b = 0 6 -9 1

Perform LU factorization on matrix A to obtain A = LU, where L is a lower triangular matrix and U is an upper triangular matrix.

L = 1 0 0

-4 1 0

U = 1 -2 1

0 -6 -1

Solve for y in the equation Ly = b by forward substitution.

1y + 0y + 0y = 0

-4y + 1y + 0y = 6

The solution is y = 0 and y = 6.

Solve for x in the equation Ux = y by back substitution.

1x - 2x + 1x = 0

0x - 6x - x = 6

The solution is x = 0 and x = -1.

Therefore, the solution to the system of linear equations Ax=b is x = (0, -1) and y = (0, 6).

To learn more about factorization- brainly.com/question/31497515

#SPJ11

the region r in the first quadrant is bounded by the graph of y = tan(x), the x-axis, and the vertical line x = 1. what is the volume of the solid formed by revolving r around the vertical line x = 1?

Answers

The volume of the solid is approximately V ≈ 1.062 cubic units.

We have,

To find the volume of the solid formed by revolving region R around the vertical line x = 1, we can use the method of cylindrical shells.

The volume of the solid can be obtained by integrating the area of each cylindrical shell.

Each shell is formed by taking a thin vertical strip of width dx from region R and rotating it around the line x = 1.

Let's denote the radius of each cylindrical shell as r(x), where r(x) is the distance from the line x = 1 to the curve y = tan(x).

Since the shell is formed by revolving the strip around x = 1, the radius of the shell is given by r(x) = 1 - x.

The height of each cylindrical shell is the difference in y-values between the curve y = tan(x) and the x-axis, which is given by y(x) = tan(x).

The differential volume of each cylindrical shell is given by

dV = 2π r(x) y(x) dx.

To find the total volume of the solid, we integrate the differential volume over the interval where region R exists, which is from x = 0 to x = 1.

Therefore, volume V is given by the integral:

V = ∫[0,1] 2π x (1 - x) x tan(x) dx

To solve this integral, we can use integration techniques or numerical methods.

Using numerical approximation, the volume is approximately V ≈ 1.062 cubic units.

Thus,

The volume of the solid is approximately V ≈ 1.062 cubic units.

Learn more about the volume of solids here:

https://brainly.com/question/32732534

#SPJ12

i need an answer and also can someone explain how?

Answers

Using the scale factor given, the perimeter of the octagon is 24 feet.

What is scale factor?

The size by which the shape is enlarged or reduced is called as its scale factor. It is used when we need to increase the size of a 2D shape, such as circle, triangle, square, rectangle, etc.

If y = Kx is an equation, then K is the scale factor for x. We can represent this expression in terms of proportionality also:

y ∝ x

Hence, we can consider K as a constant of proportionality here.

The scale factor in this problem is 8/9

The new perimeter = 8/9 * 27 = 24 feet

Learn more on scale factor here;

https://brainly.com/question/23793002

#SPJ1

Spiral Review Extra Practice

2. Xander's hedgehog weighs 0. 62 pound.

Express his hedgehog's weight in grams.

Round your answer to the nearest gram.

(Example 1)

ONLINE

100

Answers

Rounding the weight to the nearest gram, Xander's hedgehog weighs approximately 281 grams.

What is the weight of the hedgehog in grams?

Choosing the unit for converting pounds to grammes is the first step.

1 pound = 453.592 grams

To convert pounds to grams, we can use the conversion factor that 1 pound is equal to approximately 453.592 grams.

So, to convert Xander's hedgehog weight from pounds to grams:

Weight in grams = 0.62 pounds * 453.592 grams/pound

Weight in grams ≈ 281.415 grams

Rounding the weight to the nearest gram, the weight of Xander's hedgehog will be approximately 281 grams.

To learn more about multiplication, please check:

brainly.com/question/3385014

#SPJ4

$G$ is the centroid of $\triangle ABC. $ $G_1,G_2,$ and $G_3$ are the centroids of $\triangle BCG,\triangle CAG,$ and $\triangle ABG,$ respectively. What is $\dfrac{[G_1G_2G_3]}{[ABC]}?$

Answers

The area of the smaller triangle formed by the centroids is 1/4 of the area of the original triangle. [G₁G₂G₃] / [ABC] = 1/4

The centroid is the point of intersection of the medians. The medians divide each other in a ratio of 2:1, where the longer segment is twice the length of the shorter segment.

Given that G is the centroid of triangle ABC, G₁ is the centroid of triangle BCG, G₂ is the centroid of triangle CAG, and G₃ is the centroid of triangle ABG, we can determine the ratio of their areas.

Since the medians of a triangle divide each other into segments of ratio 2:1, it means that the area of the smaller triangle formed by the medians is 1/4 of the area of the larger triangle.

Therefore, the ratio of [G₁G₂G₃] to [ABC] is:

[G₁G₂G₃] / [ABC] = 1/4

The area of the smaller triangle formed by the centroids is 1/4 of the area of the original triangle.

To know more about centroid click here :

https://brainly.com/question/29148732

#SPJ4

The question is incomplete the complete question is :

G is the centroid of triangle ABC. G₁, G₂, and G₃ are the centroids of triangle BCG, triangle CAG, and triangle ABG respectively. What is [G₁G₂G₃] / [ABC]?

A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 412 gram setting. Is there sufficient evidence at the 0. 05 level that the bags are overfilled? Assume the population is normally distributed

Answers

There is sufficient evidence at the 0.05 level that the bags are underfilled is Alternative Hypothesis.

Hypothesis Testing

When a claim is made on a population parameter, like the population mean, a hypothesis testing procedure is followed. Two opposing hypotheses are established, and a test statistic is evaluated which is used to decide whether or not to reject the claim.

We have to explain that there is sufficient evidence at the 0.05 level that the bags are underfilled or not assuming that the population is normally distributed.

The complement of the null hypothesis is the alternative hypothesis. The extensive nature of null and alternative hypotheses ensures that they account for all potential outcomes.

Bag filling machine works correctly at the 412 gram setting. Test the alternative hypothesis in place of the claim that the true mean is less than 412. This test has a left tail.

The hypotheses are:

[tex]H_0:\mu\leq 412 \,H_1:\mu > 412[/tex]

Learn more about Hypotheses at:

https://brainly.com/question/28331914

#SPJ4

Fully factorise 5r² - 27r - 18

Answers

The fully factorized form of expression 5r² - 27r - 18 is (r - 6)(5r + 3)

To factorize the quadratic expression 5r² - 27r - 18, we can use a factoring method such as grouping or quadratic factoring.

One possible approach is to use quadratic factoring.

We look for two binomials that, when multiplied together, give us the quadratic expression.

The quadratic expression 5r² - 27r - 18 can be factored as follows:

5r² - 27r - 18

5r² - 30r+3r - 18

5r(r-6)+3(r-6)

= (r - 6)(5r + 3)

So, the fully factorized form of 5r² - 27r - 18 is (r - 6)(5r + 3)

To learn more on Expressions click:

https://brainly.com/question/14083225

#SPJ1

FIne the area enclosed by the given ellipse.
x=acost, y=bsint, 0 The area is...

Answers

The area enclosed by the given ellipse is -abπ, where a and b are the lengths of the semi-major and semi-minor axes of the ellipse, respectively.

To find the area enclosed by the given ellipse with parametric equations x = a cos(t) and y = b sin(t), where 0 ≤ t ≤ 2π, we can use the formula for the area of a parametric curve.

The formula for the area A of a parametric curve defined by x = f(t) and y = g(t) over the interval [a, b] is:

A = ∫[a,b] y(t) * x'(t) dt

In this case, we have x = a cos(t) and y = b sin(t).

Let's calculate the area enclosed by the ellipse:

A = ∫[0, 2π] (b sin(t)) * (-a sin(t)) dt

A = -ab ∫[0, 2π] sin^2(t) dt

Using the trigonometric identity sin^2(t) = (1/2)(1 - cos(2t)), we can rewrite the integral as:

A = -ab ∫[0, 2π] (1/2)(1 - cos(2t)) dt

Expanding the integral:

A = -ab * (1/2) ∫[0, 2π] dt + ab * (1/2) ∫[0, 2π] cos(2t) dt

The first integral is simply the length of the interval [0, 2π], which is 2π:

A = -ab * (1/2) * 2π + ab * (1/2) ∫[0, 2π] cos(2t) dt

Simplifying:

A = -abπ + ab * (1/2) ∫[0, 2π] cos(2t) dt

The integral of cos(2t) with respect to t is sin(2t)/2, so:

A = -abπ + ab * (1/2) * [sin(2t)/2] evaluated from 0 to 2π

A = -abπ + ab * (1/2) * [sin(4π)/2 - sin(0)/2]

Since sin(4π) = sin(0) = 0, the second term in the brackets becomes zero:

A = -abπ + 0

A = -abπ

Therefore, the area enclosed by the given ellipse is -abπ, where a and b are the lengths of the semi-major and semi-minor axes of the ellipse, respectively.

Learn more about area  here:

https://brainly.com/question/1631786

#SPJ11

Jennifer made these measurements on ABC,BC must be-?

Answers

Answer:

between 10 and 12

Step-by-step explanation:

Given the measure of angles:

m∠B = 70°

m∠C = 60°

m∠A = 50°

We know m∠B = 70° because the sum of interior angles in a triangle is equal to 180°.

Following this information, since the side lengths are directly proportional to the angle measure they see:

Angle B is the largest angle. Therefore, side AC is the longest side of the triangle since it is opposite of the largest angle.

Angle C is the smallest angle, so the side AB is the shortest side.

Therefore, side BC must be between 10 and 12 inches.

I need help ASAP I’m running out of time

Answers

The slope intercept form of the given equation in the graph is y=-25x+100.

From the given graph, we have (2, 50) and (0, 100).

The slope intercept formula can be used to find the equation of a line when given the slope of the straight line and the y-intercept.

The standard form of the slope intercept form is y=mx+c.

Here, slope (m) = (100-50)/(0-2)

= -25

Now, substitute m=-25 and (x, y)=(2, 50) in y=mx+c, we get

50=-25×2+c

c=100

So, the equation is y=-25x+100

Therefore, the slope intercept form of the given equation in the graph is y=-25x+100.

To learn more about the slope intercept form visit:

brainly.com/question/9682526.

#SPJ1

A Carnot cycle heat engine operates between 400 K and 500 K. Its efficiency is:A)20%B)25%C)44%D)80%E)100%

Answers

The Carnot cycle heat engine operates between 400 K and 500 K so it's efficiency is 20% that is option A.

The efficiency of a Carnot cycle heat engine is given by the formula:

Efficiency = 1 - (T_cold / T_hot)

where T_cold is the temperature of the cold reservoir and T_hot is the temperature of the hot reservoir.

In this case, the Carnot cycle heat engine operates between 400 K and 500 K.

Efficiency = 1 - (400 K / 500 K)

= 1 - 0.8

= 0.2

Multiplying the efficiency by 100 to express it as a percentage, we find that the efficiency is 20%.

Therefore, the correct answer is A) 20%.

To know more about Carnot cycle,

https://brainly.com/question/14126238

#SPJ11

ayuda por favor , matematicas...

Answers

Based on the information, the number that is not a multiple of 4 is Option C: 24,322.

How to explain the multiple

For Option A: 17,300, The last two digits of 17,300 are 00, which is a multiple of 4. Therefore, option A is divisible by 4.

Option B: 20,320: The last two digits of 20,320 are 20, which is a multiple of 4. Therefore, option B is divisible by 4.

Option C: 24,322: The last two digits of 24,322 are 22, which is not a multiple of 4. Therefore, option C is not divisible by 4.

Option D: 29,348,:The last two digits of 29,348 are 48, which is a multiple of 4. Therefore, option D is divisible by 4.

Therefore, the number that is not a multiple of 4 is Option C: 24,322.

Learn more about multiple on

https://brainly.com/question/26856218

#SPJ1

A number is divisible by 4 when it meets any of the following conditions:

• Its last two digits are multiples of 4 (for example, 2,536 is divisible by 4 because 36 is a multiple of 4). • Ends in double 0 (for example, 45,300 is divisible by 4 because it ends in double 0). Which of the following numbers is NOT a multiple of 4?

RESPONSE OPTIONS

Option A. 17,300

Option B. 20,320

Option C. 24.322

Option D. 29.348

8. (5 pts) Write the sum using sigma notation starting from i = 1: -5+2+9+...+65

Answers

The sum using sigma notation starting from i = 1, is as follows:∑i=1^10 ( -5 + (i-1)7 ).

Sigma notation is an efficient method for expressing sums of large quantities. It is denoted by the symbol Sigma (Σ).

The following is the formula for the sum of 'n' terms that start with 'a' and have a common difference of 'd':

Sum of n terms = (n/2)[2a + (n - 1)d]

Let's use this formula to calculate the sum of the following sequence of numbers that starts with -5, has a common difference of 7, and ends with 65. So, a = -5, d = 7, and the last term is 65, which means n = ?

To find 'n', we'll need to use the formula for the nth term in the sequence. The formula is as follows:a + (n-1)d = 65

Substituting the values of a and d, we get:-5 + (n-1)7 = 65Solving for n, we get:n = (65 + 5)/7n = 10

Using the formula for the sum of n terms, we get:

Sum of n terms = (n/2)[2a + (n - 1)d]Sum of 10 terms = (10/2)[2(-5) + (10-1)7]

Sum of 10 terms = (5)(-10 + 63)Sum of 10 terms = (5)(53)Sum of 10 terms = 265

Therefore, the sum using sigma notation starting from i = 1, is as follows:∑i=1^10 ( -5 + (i-1)7 ).

To know more about Sum  visit :

https://brainly.com/question/12952700

#SPJ11

[3 pts] consider the function show that f is a cumulative distribution function (cdf).

Answers

These (Non-negativity, Monotonicity, Right-continuity) three properties collectively define a function as a cumulative distribution function.

To establish that a function f(x) is a cumulative distribution function (CDF), we need to verify three essential properties: non-negativity, monotonicity, and right-continuity.

Non-negativity:

The first property requires that the CDF is non-negative for all values of x. In other words, f(x) ≥ 0 for all x. This condition ensures that the cumulative probabilities assigned by the CDF are non-negative values.

Monotonicity:

The second property states that the CDF must be non-decreasing. If x1 < x2, then it follows that f(x1) ≤ f(x2). This means that as we move along the x-axis from left to right, the cumulative probability assigned by the CDF cannot decrease. It can either remain the same or increase.

Right-continuity:

The third property demands that the CDF is right-continuous. This means that the limit of f(x) as x approaches a from the right exists and is equal to f(a). In simpler terms, if we approach a specific value of x from the right side, the cumulative probability assigned by the CDF should remain unchanged at that value.

These three properties collectively define a function as a cumulative distribution function. To determine if a given function satisfies these criteria, we would need the specific function f(x) in question. Once provided, we can assess whether the function adheres to the non-negativity, monotonicity, and right-continuity properties, thereby establishing it as a cumulative distribution function.

Learn more about cumulative distribution function here

https://brainly.com/question/30402457

#SPJ11

To show that a function f(x) is a cumulative distribution function (CDF), we need to verify three properties:

Non-negativity: The CDF must be non-negative for all x.

Monotonicity: The CDF must be non-decreasing, meaning that if x1 < x2, then f(x1) ≤ f(x2).

Right-continuity: The CDF must be right-continuous, meaning that the limit of f(x) as x approaches a from the right exists and is equal to f(a).

Without the specific function provided, I am unable to demonstrate that a particular function is a CDF. If you provide the function f(x), I will be happy to help you verify if it meets the criteria to be a cumulative distribution function.

) find the points on the surface 5x2 3y2 2z2=1 at which the tangent plane is parallel to the plane −4x 4y 5z=0.

Answers

There are no specific points on the surface 5x^2 + 3y^2 + 2z^2 = 1 at which the tangent plane is parallel to the plane -4x + 4y + 5z = 0. The entire surface is parallel to the given plane.

To find the points on the surface 5x^2 + 3y^2 + 2z^2 = 1 at which the tangent plane is parallel to the plane -4x + 4y + 5z = 0, we need to determine the normal vector of the surface and the normal vector of the given plane.

Let's start by finding the normal vector of the given plane. The coefficients of x, y, and z in the equation -4x + 4y + 5z = 0 represent the components of the normal vector. Therefore, the normal vector of the plane is n1 = (-4, 4, 5).

Next, we need to find the normal vector of the surface 5x^2 + 3y^2 + 2z^2 = 1. To do this, we differentiate the equation implicitly with respect to x, y, and z.

Differentiating the equation with respect to x:

d/dx(5x^2) + d/dx(3y^2) + d/dx(2z^2) = d/dx(1)

10x + 0 + 0 = 0

10x = 0

x = 0

Differentiating the equation with respect to y:

d/dy(5x^2) + d/dy(3y^2) + d/dy(2z^2) = d/dy(1)

0 + 6y + 0 = 0

6y = 0

y = 0

Differentiating the equation with respect to z:

d/dz(5x^2) + d/dz(3y^2) + d/dz(2z^2) = d/dz(1)

0 + 0 + 4z = 0

4z = 0

z = 0

Therefore, the normal vector of the surface at the point (0, 0, 0) is n2 = (0, 0, 0). However, since the magnitude of the normal vector is zero, it indicates that the surface does not have a unique normal vector at the point (0, 0, 0).

Since the tangent plane is parallel to the given plane, the normal vectors of the surface and the plane must be parallel. Thus, the normal vectors n1 and n2 must be parallel.

To check if n1 and n2 are parallel, we can take the cross product of n1 and n2 and see if the resulting vector is the zero vector.

n1 x n2 = (-4, 4, 5) x (0, 0, 0)

= (0, 0, 0)

The resulting vector is indeed the zero vector, which means that n1 and n2 are parallel. Therefore, the tangent plane to the surface 5x^2 + 3y^2 + 2z^2 = 1 is parallel to the plane -4x + 4y + 5z = 0 at all points on the surface.

In summary, there are no specific points on the surface 5x^2 + 3y^2 + 2z^2 = 1 at which the tangent plane is parallel to the plane -4x + 4y + 5z = 0. The entire surface is parallel to the given plane.

Learn more about tangent plane here

https://brainly.com/question/30619505

#SPJ11

Answer the question its on business math.

Answers

The cost to ship 2000 lbs of goods from Atlanta to New Orleans using overnight shipping is $8000 option (A).

To calculate the cost of shipping 2000 lbs of goods from Atlanta to New Orleans (470 miles) using overnight shipping, we need to determine the appropriate price per 100 lbs based on the given distance and then apply the 100% premium for overnight shipping.

First, we need to determine the price per 100 lbs based on the distance of 470 miles. Looking at the given table, the distance falls into the range of 401-600 miles, which has a price of $200 per 100 lbs.

Since we have 2000 lbs of goods, we need to calculate the number of 100 lb units: 2000 lbs / 100 lbs = 20 units.

Now, we can calculate the cost of shipping without the overnight premium: 20 units * $200 per unit = $4000.

As the premium for overnight shipping is 100%, we need to double the cost: $4000 * 2 = $8000.

Hence, the correct answer is A) $8,000.

For more such questions on cost

https://brainly.com/question/2292799

#SPJ8

find the particular solution of y''' = 0 given that: y(0) = 3, y'(1) = 4, y''(2) = 6

Answers

The particular solution of y''' = 0, with initial conditions y(0) = 3, y'(1) = 4, y''(2) = 6, is y(x) = 3x² - 2x + 3.

To find the particular solution of the differential equation y''' = 0, we need to integrate the equation multiple times. Let's proceed step by step:

First, integrate the equation y''' = 0 with respect to x to obtain y''(x):

∫(y''') dx = ∫(0) dx

y''(x) = C₁

Here, C₁ is the constant of integration.

Integrate y''(x) = C₁ with respect to x to find y'(x):

∫(y'') dx = ∫(C₁) dx

y'(x) = C₁x + C₂

Here, C₂ is the constant of integration.

Integrate y'(x) = C₁x + C₂ with respect to x to determine y(x):

∫(y') dx = ∫(C₁x + C₂) dx

y(x) = (C₁/2)x² + C₂x + C₃

Here, C₃ is the constant of integration.

Now, we can apply the given initial conditions to find the particular solution:

Using y(0) = 3:

y(0) = (C₁/2)(0)² + C₂(0) + C₃ = 0 + 0 + C₃ = C₃ = 3

Using y'(1) = 4:

y'(1) = C₁(1) + C₂ = C₁ + C₂ = 4

Using y''(2) = 6:

y''(2) = C₁ = 6

From the equation C₁ + C₂ = 4, and substituting C₁ = 6, we can solve for C₂:

6 + C₂ = 4

C₂ = 4 - 6

C₂ = -2

Therefore, C₁ = 6, C₂ = -2, and C₃ = 3. Plugging these values back into the equation y(x), we obtain the particular solution:

y(x) = (6/2)x² - 2x + 3

y(x) = 3x² - 2x + 3

Hence, the particular solution of the given differential equation y''' = 0, satisfying the initial conditions y(0) = 3, y'(1) = 4, y''(2) = 6, is y(x) = 3x² - 2x + 3.

To know more about particular solution,

https://brainly.com/question/28688394

#SPJ11

write down the iterated integral which expresses the surface area of z=y5cos4x over the triangle with vertices (−1,1),(1,1),(0,2): ∫ab∫f(y)g(y)h(x,y)dxdy a=

Answers

The iterated integral for the surface area is:

∫(y=1 to y=2) ∫(x=-1 to x=1) [tex]y^5cos(4x) dxdy[/tex]

How to find the iterated integral that expresses the surface area of the function?

To find the iterated integral that expresses the surface area of the function [tex]z = y^5cos(4x)[/tex] over the given triangle with vertices (-1,1), (1,1), and (0,2), we need to set up the limits of integration.

Let's denote the lower limit of integration for x as "a" and the upper limit as "b". For y, we need to determine the limits based on the shape of the triangle.

Since the triangle has vertices (-1,1), (1,1), and (0,2), we can express the limits of y as y = 1 to y = 2. For each y value, the limits of x will vary.

We can find the corresponding limits for x by examining the boundaries of the triangle.

At y = 1, the corresponding x values are -1 and 1, so the limits of x for y = 1 are x = -1 to x = 1.

At y = 2, the corresponding x value is 0, so the limits of x for y = 2 are x = 0 to x = 0.

Therefore, the iterated integral for the surface area of the function over the given triangle is:

∫(y=1 to y=2) ∫(x=-1 to x=1) [tex]y^5cos(4x) dxdy[/tex]

Learn more about iterated integral

brainly.com/question/27396591

#SPJ11

change from rectangular to cylindrical coordinates. (let r ≥ 0 and 0 ≤ ≤ 2.) (a) (−1, 1, 1)

Answers

The point (-1, 1, 1) in rectangular coordinates can be expressed in cylindrical coordinates as (r, θ, z) = (√2, 3π/4, 1).

To convert a point from rectangular coordinates (x, y, z) to cylindrical coordinates (r, θ, z), we can use the following relationships:

r = √(x² + y²)

θ = atan2(y, x)

z = z

In this case, we have the point (-1, 1, 1) in rectangular coordinates.

First, we calculate r:

r = √((-1)² + 1²) = √2

Next, we determine θ:

θ = atan2(1, -1) = 3π/4

Finally, we have z as it is already given as 1.

Therefore, the point (-1, 1, 1) in rectangular coordinates can be expressed in cylindrical coordinates as (r, θ, z) = (√2, 3π/4, 1).

In cylindrical coordinates, r represents the distance from the origin to the point projected onto the xy-plane, θ is the angle in the xy-plane measured counterclockwise from the positive x-axis, and z is the same as the z-coordinate in rectangular coordinates.

Visit here to learn more about  cylindrical:

brainly.com/question/30627634

#SPJ11

The joint probability density function of X and Y is given by f(x, y) = ce^(−x−2y) , 0 ≤ x < [infinity], 0 ≤ y < [infinity].
a. Find c.
b. Find P(X < 1, Y < 1).
c. Find P(X > Y ).
d. Find the distribution function of the random variable X − Y .
e. Are X and Y independent?
f. Compute the conditional density of X given that Y = y, where 0 ≤ y < [infinity].

Answers

a. the value of c is 2. b. the probability P(X < 1, Y < 1) is given by 1 - e^-1 - e^-2 + e^-3. c. P(X > Y ) is  (-e^(-x-2y) + e^(-2y)y) + e^(-2y) - e^(-2y)y.

a. Finding the value of c:

To find the value of c, we need to integrate the joint probability density function (PDF) over the entire range of x and y and set it equal to 1, since the PDF must satisfy the normalization condition.

The joint PDF is given by f(x, y) = ce^(-x-2y)

∫∫f(x, y) dx dy = 1

∫∫ce^(-x-2y) dx dy = 1

Integrating with respect to x first:

∫[0,∞] ce^(-x-2y) dx = [-ce^(-x-2y)] [0,∞] = ce^(-2y)

Integrating the result with respect to y:

∫[0,∞] ce^(-2y) dy = [-1/2 * ce^(-2y)] [0,∞] = 1/2

Setting this equal to 1:

1/2 = 1/c

Solving for c:

c = 2

Therefore, the value of c is 2.

b. Calculating P(X < 1, Y < 1):

To find the probability P(X < 1, Y < 1), we need to integrate the joint PDF over the given region.

P(X < 1, Y < 1) = ∫[0,1] ∫[0,1] 2e^(-x-2y) dx dy

Integrating this expression, we get:

P(X < 1, Y < 1) = ∫[0,1] [-2e^(-x-2y)] [0,1] dy

= ∫[0,1] -2e^(-1-2y) + 2e^(-2y) dy

= [-e^(-1-2y) + e^(-2y)] [0,1]

= (-e^(-1-2) + e^(-2)) - (-e^(-1) + e^0)

= (-e^-3 + e^-2) - (-e^-1 + 1)

= 1 - e^-1 - e^-2 + e^-3

Therefore, the probability P(X < 1, Y < 1) is given by 1 - e^-1 - e^-2 + e^-3.

c. Finding P(X > Y):

To find the probability P(X > Y), we need to integrate the joint PDF over the region where X > Y.

P(X > Y) = ∫[0,∞] ∫[y,∞] 2e^(-x-2y) dx dy

Integrating this expression, we get:

P(X > Y) = ∫[0,∞] [-e^(-x-2y)] [y,∞] dy

= ∫[0,∞] -e^(-x-2y) + e^(-2y)y dy

= [-e^(-x-2y) + e^(-2y)y] [y,∞]

= (-e^(-x-2y) + e^(-2y)y) - (-e^(-2y) + e^(-2y)y)

= (-e^(-x-2y) + e^(-2y)y) + e^(-2y) - e^(-2y)y

Learn more about probability here

https://brainly.com/question/13604758

#SPJ11

find the absolute minimum and absolute maximum of f(x,y)=10−4x 7y on the closed triangular region with vertices (0,0),(7,0) and (7,9).

Answers

The absolute minimum value is -18 at the point (7, 0), and the absolute maximum value is 35 at the point (7, 9) within the given triangular region

To find the absolute minimum and absolute maximum of the function f(x, y) = 10 - 4x + 7y on the closed triangular region with vertices (0, 0), (7, 0), and (7, 9), we need to evaluate the function at the critical points inside the region and at the boundary points.

Critical points:

To find the critical points, we need to find the points where the gradient of f(x, y) is equal to zero.

∇f(x, y) = (-4, 7)

Setting -4 = 0 and 7 = 0, we see that there are no critical points in the interior of the triangular region.

Boundary points:

We need to evaluate the function f(x, y) at the vertices of the triangular region.

(a) f(0, 0) = 10 - 4(0) + 7(0) = 10

(b) f(7, 0) = 10 - 4(7) + 7(0) = -18

(c) f(7, 9) = 10 - 4(7) + 7(9) = 35

Therefore, the absolute minimum value is -18 at the point (7, 0), and the absolute maximum value is 35 at the point (7, 9) within the given triangular region.

To know more about function click here

brainly.com/question/28193995

#SPJ11

What critical value t∗ from Table C would you use for a confidence interval for the mean of the population in each of the following situations? (a) A 99.5% confidence interval based on n = 22 observations. (b) A 98% confidence interval from an SRS of 17 observations. (c) A 95% confidence interval from a sample of size 13.

Answers

The critical value t* for a 98% confidence interval from an SRS of 17 observations is 2.602. The critical value t* for a 95% confidence interval from a sample of size 13 is 2.179.

(a) A 99.5% confidence interval based on n = 22 observations:The degrees of freedom is (n - 1) and the confidence level is 99.5%. Therefore, t value is 2.819. Hence, the critical value t* for a 99.5% confidence interval based on

n = 22 observations is 2.819.

(b) A 98% confidence interval from an SRS of 17 observations:Since the sample size is 17, we use the t-distribution with 16 degrees of freedom. At 98% confidence level, t-value is 2.602.

Therefore, the critical value t* for a 98% confidence interval from an SRS of 17 observations is 2.602.(c) A 95% confidence interval from a sample of size 13:Since the sample size is 13, we use the t-distribution with 12 degrees of freedom. At 95% confidence level, t-value is 2.179. Therefore, the critical value t* for a 95% confidence interval from a sample of size 13 is 2.179.Thus, the critical value t* for a 99.5% confidence interval based on n = 22 observations is 2.819.

To know more about critical value visit:-

https://brainly.com/question/32389590

#SPJ11

Estimating Summary Statistics Use the dataset given below. 53, 54, 56, 57, 57, 58, 58, 60, 60, 62, 65, 65, 66, 66, 68, 69

Answers

Estimating Summary Statistics:Given data set is;53, 54, 56, 57, 57, 58, 58, 60, 60, 62, 65, 65, 66, 66, 68, 69In statistics, summary statistics are used to describe or summarize a dataset. It is a method to analyze a huge amount of data in an efficient and meaningful way.

We will estimate some of the summary statistics from the given data set.Mean: The mean of the dataset is the average value of all the values in the dataset. It is calculated by adding all the values in the data set and then dividing the sum by the total number of values in the data set. The formula to calculate the mean is; Mean = (Sum of all values) / (Number of values)By using this formula, we can calculate the mean value of the given dataset as; Mean = The median is the middle value of the dataset. It is calculated by sorting the dataset in increasing or decreasing order and then selecting the middle value.

If there are even numbers of values in the dataset, then the median is the average of the middle two values. To find the median of the given dataset, we first arrange the data set in ascending order.53, 54, 56, 57, 57, 58, 58, 60, 60, 62, 65, 65, 66, 66, 68, 69As there are 16 values in the dataset, the median will be the average of the middle two values. The middle two values are 60 and 60. Therefore, the median value of the given data set is (60+60) / 2 = 60.Mode: The mode is the value that appears the most frequently in the dataset. From the given data set, there is no value that appears more than once.

To know more about keyword visit:

https://brainly.com/question/32201536

#SPJ11

The rectangular prism has a height of 3in,width of 4 in and length of 5in.if the length is doubled,what is the new volume

Answers

Answer:

[tex] \boxed{\boxed{\sf{\:\:\:\green{120 \: in^3}\:\:\:}}} [/tex]

[tex]\\[/tex]

Step-by-step explanation:

The original volume of the rectangular prism is given by:

[tex]\sf\implies Volume = Length \times Width \times Height[/tex]

[tex]\sf\implies Volume = 5\: in \times 4\: in \times 3\: in[/tex]

[tex]\sf\implies Volume = 60\: in^3[/tex]

[tex]\\[/tex]

If we double the length of the prism, the new length will be:

[tex]\sf\implies Length = 2 \times Length[/tex]

[tex]\sf\implies Length = 2 \times 5\: in[/tex]

[tex]\sf\implies Length = 10\: in[/tex]

[tex]\\[/tex]

The width and height of the prism remain the same. Therefore, the new volume of the prism is:

[tex]\sf\implies Volume = Length \times Width \times Height[/tex]

[tex]\sf\implies Volume = 10\: in \times 4\: in \times 3\: in[/tex]

[tex]\sf\implies \boxed{\boxed{\sf{\:\:\:Volume = \green{120\: in^3}\:\:\:}}}[/tex]

[tex]\\[/tex]

[tex]\\[/tex]

Therefore, the new volume of the rectangular prism is 120 cubic inches.

Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.) {5, 12, 19, 26, 33,....} an =

Answers

The formula for the general term an of the sequence is an = 2n + 3.

Given that the pattern of the first few terms continues.

To find a1, we can substitute n=1 in the formula and use the first term of the sequence, which is 5:

a1 = 5

Therefore, the general term of the sequence is:

an = 5 + 7(n-1) = 7n - 2

The given sequence has a common difference of 7 that is each term in the sequence is obtained by adding 7 to the previous term.

Therefore, the formula for the general term an can be obtained as:

an = a1 + (n - 1)d

where a1 is the first term of the sequence and d is the common difference.

Here, a1 = 5 and d = 7. Substituting these values in the formula, we get:

an = 5 + (n - 1)7

Simplifying this expression, we get:

an = 2n + 3

Therefore, the formula for the general term an of the sequence is          an = 2n + 3

Know more about sequence here:

https://brainly.com/question/7882626

#SPJ11

Other Questions
a new corporation forms every time there is a change in ownership in the shares of common stockT/F the ottoman conquest of constantinople spread panic among europeans who Many people can recite that E=mc and some may even know the value of "c" the constant speed of light in a vacuum (299,792,458 m/s); but was does it really mean? The equation E=mc is also known as the mass-equivalence. Simply stated it is the concept that the mass of an object is a measure of its energy content. The mass-energy equivalence aro originally from special relativity as a paradox described by Henri Poincar. Therefore, Albert Einstein was not the first to propose a mass-energy relationship. However, Einstein was the first scientist to propose the E = mc formula and the fin to interpret mass-energy equivalence as a fundamental principle that follows from the relativistic symmetries of space a time. According to the paragraph "c" is: A: dangerous from a nuclear standpoint. B: the constant speed of light in a vacuum. C: a discovery of Henri Poincar D: the mass-energy equivalence. 100 points! A list of rational numbers is given.one and four fifths, negative seven fourths, forty-one percent, negative 1.3Part A: Rewrite all the values into an equivalent form as fractions. (3 points)Part B: Rewrite all the values into an equivalent form as decimal numbers. (3 points)Part C: List the given rational numbers from greatest to least. (3 points)Part D: How did you determine their order? Please explain your answer. (3 point) Describe the central idea of paragraphs 9 and 10 identify at least two details the author used to develop th central idea? Atrial repolarization is indicated by theA. P waveB. QRS waveC. T waveD. R portion of the QRSE. None of the above 5. Notice & Note The writer mentions time throughout theessay. What is significant about this repetition? Supportyour response with evidence from the text. (Joyas voldadoras) .Who is credited with the invention of the modern periodic table?a. Nobelb. Lavoisierc. Mendeld. Mendeleev 2. Biley has 150 stamps.25% are from Africa.15% are from Japan.48% are from France..of Riley's stamps are from America? Graph the inverse of the function plotted, on the same set of axes. Use a dashed curve for the inverse.-10 what becomes inscribed on faustus's arm while in deliberation with mephastophilis what are the 15 signs on the illinois driving test which assessment is most important for the nurse to perform prior to the application of a heating pad a cystlike sac filled with cholesterol and epithelial cells For the following equation: 2x^2-50=0(1) Calculate the discriminant(2) Determine the number and type of solutions(3) Use the quadratic formula to solve All of the following are reasons to monitor your investment portfolio except to a. Ensure the goals are being met b. Take advantage of changes in economic ... Match the BCG name to the correct characteristics.1.Dogs: May generate enough cash to sustain themselves but are not considered current or future winners.2. Cash cows: Generate large amount of cash which can be invested in other SBUs.3. Question marks: Require cash to maintain market share, even though that share is small.4. Stars: Requires cash to sustain rapid growth but will likely generate cash when growth slows. In a clinical trial of 2131 subjects treated with a certain drug, 26 reported headaches. In a control group of 1603 subjects given a placebo, 23 reported headaches Denoting the proportion of headaches in the treatment group by p, and denoting the proportion of headaches in the control (placebo) group by p. the relative risk is P/P The relative risk is a measure of the strength of the effect of the drug treatment. Another such measure is the odds ratio, which is the ratio of the odds in favor of a Py/(1-P) Pel (1-P) headache for the treatment group to the odds in favor of a headache for the control (placebo) group, found by evaluating The relative risk and odds ratios are commonly used in medicine and epidemiological studies. Find the relative risk and odds ratio for the headache data. What do the results suggest about the risk of a headache from the drug treatment? 19. Which of these are active-duty members entitled to?O priority enrollmentO tuition assistanceO priority in choosing classesO free full education in any school they choose A neutral atom has the following electron configuration: [Ar] 4s%3d 10 4p? What is the chemical symbol for the atom? How many electrons does the atom have? x 3 ? How many 3d electrons are in the atom?