We are given two similar triangles which are;
[tex]\begin{gathered} \Delta AEB\text{ and }\Delta ADC \\ \end{gathered}[/tex]Note that the sides are not equal, but similar in the sense that the ratio of two sides in one triangle is equal to that of the two corresponding sides in the other triangle.
To calculate the length of side BC, we can use any of the following ratios (proportions);
[tex]\frac{AE}{ED}=\frac{AB}{BC}[/tex][tex]\frac{AB}{AC}=\frac{AE}{AD}[/tex][tex]\frac{AE}{AB}=\frac{AD}{AC}[/tex]Using the first ratio as stated above, we shall have;
[tex]\begin{gathered} \frac{AE}{ED}=\frac{AB}{BC} \\ \frac{8}{5}=\frac{6.5}{BC} \end{gathered}[/tex]Next we cross multiply and we have;
[tex]\begin{gathered} BC=\frac{6.5\times5}{8} \\ BC=4.0625 \end{gathered}[/tex]ANSWER:
[tex]BC=4.0625[/tex]Hello! Need some help on part c. The rubric, question, and formulas are linked. Thanks!
Explanation:
The rate of increase yearly is
[tex]\begin{gathered} r=69\% \\ r=\frac{69}{100}=0.69 \end{gathered}[/tex]The number of lionfish in the first year is given beow as
[tex]N_0=9000[/tex]Part A:
To figure out the explicit formula of the number of fish after n years will be represented using the formula below
[tex]P(n)=N_0(1+r)^n[/tex]By substituting the formula, we will have
[tex]\begin{gathered} P(n)=N_{0}(1+r)^{n} \\ P(n)=9000(1+0.69)^n \\ P(n)=9000(1.69)^n \end{gathered}[/tex]Hence,
The final answer is
[tex]f(n)=9,000(1.69)^n[/tex]Part B:
to figure out the amoutn of lionfish after 6 years, we wwill substitute the value of n=6
[tex]\begin{gathered} P(n)=9,000(1.69)^{n} \\ f(6)=9000(1.69)^6 \\ f(6)=209,683 \end{gathered}[/tex]Hence,
The final answer is
[tex]\Rightarrow209,683[/tex]Part C:
To figure out the recursive equation of f(n), we will use the formula below
From the question the common difference is
[tex]d=-1400[/tex]Hence,
The recursive formula will be
[tex]f(n)=f_{n-1}-1400,f_0=9000[/tex]Use the graph below to answer the following questionsnegative sine graph with local maxima at about (-3,55) and local minima at (3,55)1. Estimate the intervals where the function is increasing.2. Estimate the intervals where the function is decreasing.3. Estimate the local extrema.4. Estimate the domain and range of this graph.
Answer:
1. Increasing on ( -inf, -3] and ( 3, inf)
2. decreasing on (-3, 3]
3. Local maximum: 60, Local minimum: -60
4. Domain: (-inf , inf)
Range: [-60, 60]
Explanation:
1.
A function is increasing when its slope is positive. Now, in our case we can see that the slope of f(x) is postive from - infinity to -3 and then it is negatvie from -3 to 3; it again increasing from 3 to infinity.
Therefore, we c
In a robotics competition, all robots must be at least 37 inches tall to enter the competition.Read the problem. Which description best represents the heights a robot must be?Any value less than or equal to 37Any value greater than or equal to 37Any value greater than 37Any value less than 37
Solution
Since the robots must be at least 37 inches tall to enter the competition.
Therefore, the height of any robot must be Any value greater than or equal to 37
Which of the following functions has an amplitude of 3 and a phase shift of pi over 2 question mark
Remember that f(x) = A f(Bx-C) +D
Where |A| is the Amplitude and C/B is the phase Shift
Options
A, B C all have amplitudes of |3| so we have just eliminated D with the amplitude
We need a phase shift of C/B = pi/2
A has Pi/2
B has -Pi/2
C has pi/2 /2 = pi/4
Choice A -3 cos ( 2x-pi) +4 has a magnitude of 3 and and phase shift of pi/2
At noon a private plane left Austin for Los Angeles, 2100 km away, flying at 500 km/h. One hour later a jet left Los Angeles for Austin at 700 km/h. At what time did they pass each other?
what is the equation of the line with x-intercept (6,0) and y-intercept (0, 2)
Answer:
3y=6-x
Explanation:
The slope-intercept form of a line is y=mx+b.
First, we determine the slope(m) of the line.
[tex]\begin{gathered} m=\frac{2-0}{0-6} \\ =-\frac{2}{6} \\ m=-\frac{1}{3} \end{gathered}[/tex]Since the y-intercept, b=2
The equation of the line is:
[tex]\begin{gathered} y=-\frac{1}{3}x+2 \\ y=\frac{-x+6}{3} \\ 3y=6-x \end{gathered}[/tex]If (2 +3i)^2 + (2 - 3i)^2 = a + bia =b=
(2 + 3i)^2 = 4 + 12i + 9(-1)
= 4 + 12i - 9
= -5 + 12i
(2 - 3i)^2 = 4 - 12i - 9(-1)
= 4 - 12i + 9
= 13 - 12i
REsult
= -5 + 12i + 13 - 12i
= 8 - 0i
Then
a = 8 and b = 0
Complete the description of the piece wise function graphed below
Analyze the different intervals at which the function takes the values provided by the graph. Pay special attention on the circles, whether they are filled up or not.
From the graph, notice that the function takes the value of 3 when x is equal to -4, -2 or any number between them. Therefore, the condition is:
[tex]f(x)=3\text{ if }-4\leq x\leq-2[/tex]If x is greater (but not equal) than -2 and lower or equal to 3, the function takes the value of 5. Therefore:
[tex]f(x)=5\text{ if }-2Notice that the first symbol used is "<" and the second is "≤ ".Finally, the function takes the value of -3 whenever x is greater (but not equal) to 3 and less than or equal to 5. Then:
[tex]f(x)=-3\text{ if }3In conclusion:[tex]f(x)=\mleft\{\begin{aligned}3\text{ if }-4\leq x\leq-2 \\ 5\text{ if }-2A special deck of cards has 4 blue cards, and 4 red cards. The blue cards are numbered 1, 2, 3, and 4. The red cards are numbered 1, 2, 3, and 4. The cards are well shuffled and you randomly draw one card.A = card drawn is blueB = card drawn is odd-numbereda) How many elements are there in the sample space? b) P(A) = c) P(B) =
Answer
• a) 8
,• b) 4/8
,• c) 4/8
Explanation
Given
• Blue cards: 4, {B1, B2, B3, B4}
,• Red cards: 4 {R1, R2, R3, R4}
,• A = card drawn is blue
• B = card drawn is odd-numbered {B1, R1, B3, R3}
Procedure
• a) elements in the sample space
There are: S = {B1, B2, B3, B4, R1, R2, R3, R4}
Thus, the number of elements in the sample space is n(S) = 8.
• b) P(A)
Can be calculated as follows:
[tex]P(A)=\frac{n(A)}{n(S)}=\frac{4}{8}[/tex]• c) P(B)
Can be calculated as follows:
[tex]P(B)=\frac{n(B)}{n(S)}=\frac{4}{8}[/tex]the points (-4,-2) and (8,r) lie on a line with slope 1/4 . Find the missing coordinate r.
The points (-4, -2) and (8, r) are located on a line of slope 1/4, We are asked to find the value of "r" that would make suche possible.
So we recall the definition of the slope of the segment that joins two points on the plane as:
slope = (y2 - y1) / (x2 - x1)
in our case:
1/4 = ( r - -2) / (8 - -4)
1/4 = (r + 2) / (8 + 4)
1/4 = (r + 2) / 12
multiply by 12 both sides to cancel all denominators:
12 / 4 = r + 2
operate the division on the left:
3 = r + 2
subtract 2 from both sides to isolate "r":
3 - 2 = r
Then r = 1
Simplify the following expression 6 + (7² - 1) + 12 ÷ 3
You have to simplify the following expression
[tex]6+(7^2-1)+12\div3[/tex]To solve this calculation you have to keep in mind the order of operations, which is:
1st: Parentheses
2nd: Exponents
3rd: Division/Multiplication
4th: Addition/Subtraction
1) The first step is to solve the calculation within the parentheses
[tex](7^2-1)[/tex]To solve it you have to follows the order of operations first, which means you have to solve the exponent first and then the subtraction:
[tex]7^2-1=49-1=48[/tex]So the whole expression with the parentheses calculated is:
[tex]6+48+12\div3[/tex]2) The second step is to solve the division:
[tex]12\div3=4[/tex]Now the expression is
[tex]6+48+4[/tex]3) Third step is to add the three values:
[tex]6+48+4=58[/tex]Determine the value for which the function f(u)= -9u+8/ -12u+11 in undefined
ANSWER
[tex]\frac{11}{12}[/tex]EXPLANATION
A fraction becomes undefined when its denominator is equal to 0.
Hence, the given function will be undefined when:
[tex]-12u+11=0[/tex]Solve for u:
[tex]\begin{gathered} -12u=-11 \\ u=\frac{-11}{-12} \\ u=\frac{11}{12} \end{gathered}[/tex]That is the value of u for which the function is undefined.
I need this practice problem answered I will provide the answer options in another pic
The inverse of a matrix can be calculated as:
[tex]\begin{gathered} \text{When} \\ A=\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & {} \\ {} & {} & \end{bmatrix} \\ \text{Then A\textasciicircum-1 is:} \\ A^{-1}=\frac{1}{ad-bc}\begin{bmatrix}{d} & -{b} & {} \\ {-c} & {a} & {} \\ {} & {} & \end{bmatrix} \end{gathered}[/tex]Then, let's start by calculating the inverse of the given matrix:
[tex]\begin{gathered} \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^{-1}=\frac{1}{4\cdot3-1\cdot(-2)}\begin{bmatrix}{3} & -{1} & {} \\ {-(-2)} & {4} & {} \\ {} & {} & \end{bmatrix} \\ \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^{-1}=\frac{1}{14}\begin{bmatrix}{3} & -{1} & {} \\ {2} & {4} & {} \\ {} & {} & \end{bmatrix} \end{gathered}[/tex]The problem says he multiplies the left side of the coefficient matrix by the inverse matrix, thus:
[tex]\begin{gathered} \begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^{-1}\begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}\cdot\begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{4} & {1} & {} \\ {-2} & {3} & {} \\ {} & {} & \end{bmatrix}^{-1}\begin{bmatrix}{2} & {} & {} \\ {-22} & {} & {} \\ {} & {} & {}\end{bmatrix} \\ \end{gathered}[/tex]*These matrices will be the options to put on the first and second boxes.
Then:
[tex]\begin{gathered} \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\frac{1}{14}\begin{bmatrix}{3} & -{1} & {} \\ {2} & {4} & {} \\ {} & {} & \end{bmatrix}\cdot\begin{bmatrix}{2} & {} & {} \\ {-22} & {} & {} \\ {} & {} & {}\end{bmatrix}\text{ This is for the third box} \\ \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\frac{1}{14}\begin{bmatrix}{3\times2+(-1)\times(-22)} & & {} \\ {2\times2+4\times(-22)} & & {} \\ {} & {} & \end{bmatrix}=\frac{1}{14}\begin{bmatrix}{28} & & {} \\ {-84} & & {} \\ {} & {} & \end{bmatrix}\text{ This is the 4th box} \\ \begin{bmatrix}{x} & {} & {} \\ {y} & {} & {} \\ {} & {} & {}\end{bmatrix}=\begin{bmatrix}{28/14} & & {} \\ {-84/14} & & {} \\ {} & {} & \end{bmatrix}=\begin{bmatrix}{2} & & {} \\ {-6} & & {} \\ {} & {} & \end{bmatrix}\text{ And finally this is the last box} \end{gathered}[/tex]Translate the sentence into an equation.Eight more than the quotient of a number and 3 is equal to 4.Use the variable w for the unknown number.
We are to translate into an equation
Eight more than the quotient of a number and 3 is equal to 4.
Let the number be w
Hence, quotient of w and 3 is
[tex]\frac{w}{3}[/tex]Therefore, eight more than the quotient of a number and 3 is equal to 4
Is given as
[tex]\frac{w}{3}+8=4[/tex]Solving for w
we have
[tex]\begin{gathered} \frac{w}{3}=4-8 \\ \frac{w}{3}=-4 \\ w=-12 \end{gathered}[/tex]Therefpore, the equation is
[tex]\frac{w}{3}+8=4[/tex]3. Find the value of the function h(x) = 2 when x = 10=
In order to find the value of h(x) when x=10, we replace the value of x along with the function by 10, however, since there are not any variables the function is constant for all variables
[tex]h(10)=2[/tex]For which pair of triangles would you use ASA to prove the congruence of the two triangles?
Solution:
Remember that the Angle-Side-Angle Postulate (ASA) states that if two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the two triangles are congruent. According to this, the correct answer is:
C.
A 9-foot roll of waxed paper costs $4.95. What is the price per yard ?
Answer:
$0.55 per yard
Step-by-step explanation:
a 9 foot roll is 4.95 so you divide the cost by the amount to get the unit rate which is $0.55 per yard
An angle bisector is a ray that divides an angle into two angles with equal measures. If OX bisects ZAOB and mZAOB 142, what is the measure of each of the
angles formed? (Note: Round your answer to one decimal place).
Measure of each of the angles formed between ZAOB is 71° using angle bisector theorem.
What is the angle bisector?In geometry, an angle bisector is a line that divides an angle into two equal angles. The term "bisector" refers to a device that divides an object or a shape into two equal halves. An angle bisector is a ray that divides an angle into two identical segments of the same length.
m(ZAOB)=142°
OX will bisect ZAOB in equal angel both side.
So m(ZAOX) is 71°
And also, m(ZAOB) is 71°
To know more about angle bisector click here-
https://brainly.com/question/12896755
#SPJ13
Use properties to rewrite the given equation. Which equations have the same solution as 2.3p – 10.1 = 6.5p – 4 – 0.01p? Select two options. 2.3p – 10.1 = 6.4p – 4 2.3p – 10.1 = 6.49p – 4 230p – 1010 = 650p – 400 – p 23p – 101 = 65p – 40 – p 2.3p – 14.1 = 6.4p – 4
The required equation has the same solution as 2.3p – 10.1 = 6.5p – 4 – 0.01p is 230p – 1010 = 650p – 400 – p.
What is an equivalent expression?Equivalent expressions are even though they appear to be distinct, their expressions are the same. when the values are substituted into the expression, both expressions produce the same result and are referred to be equivalent expressions.
We have the given expression below:
⇒ 2.3p – 10.1 = 6.5p – 4 – 0.01p
Convert the decimal into a fraction to get
⇒ (23/10)p – (101/10) = (65/10)p – 4 – (1/100)p
⇒ (23p – 101)/10 = (650p – 400 – p) /100
⇒ 230p – 1010 = 650p – 400 – p
As a result, the equation that has the same answer as 230p – 1010 = 650p – 400 – p.
To learn more about the equivalent expression click here:
brainly.com/question/27733205
#SPJ1
the sum of the measure of angle m and angle r is 90
Given:
The sum of measure of angle m and r is 90 degrees.
Question
In a pet store, the small fishbowl holds up to 225 gallons of water. The large fishbowl holds up to 213 times as much water as the small fishbowl.
Eloise draws this model to represent the number of gallons of water the large fishbowl will hold.
How many gallons of water does the large fishbowl hold?
The number of gallons that the large fishbowl holds would be = 47,925 gallons.
What are fishbowls?The fishbowls are containers that can be used to transport liquid substance such as water and food products such as fish. This can be measured in Liters, millilitres or in gallons.
The quantity of water the small fishbowl can take = 225 gallons.
The quantity of water the large fish bowl can take = 213(225 gallons)
That is, 213 × 225= 47,925 gallons.
Therefore, the quantity of water that the large fishbowl can hold is 47,925 gallons.
Learn more about water quantity here:
https://brainly.com/question/14026311
#SPJ1
please show and explain this please
only answer ;( c.
Step-by-step explanation:
so hope it help
The one-to-one functions 9 and h are defined as follows.g={(0, 5), (2, 4), (4, 6), (5, 9), (9, 0)}h(x)X +811
Step 1: Write out the functions
g(x) = { (0.5), (2, 4), (4,6), (5,9), (9,0) }
[tex]h(x)\text{ = }\frac{x\text{ + 8}}{11}[/tex]Step 2:
For the function g(x),
The inputs variables are: 0 , 2, 4, 5, 9
The outputs variables are: 5, 4, 6, 9, 0
The inverse of an output is its input value.
Therefore,
[tex]g^{-1}(9)\text{ = 5}[/tex]Step 3: find the inverse of h(x)
To find the inverse of h(x), let y = h(x)
[tex]\begin{gathered} h(x)\text{ = }\frac{x\text{ + 8}}{11} \\ y\text{ = }\frac{x\text{ + 8}}{11} \\ \text{Cross multiply} \\ 11y\text{ = x + 8} \\ \text{Make x subject of formula} \\ 11y\text{ - 8 = x} \\ \text{Therefore, h}^{-1}(x)\text{ = 11x - 8} \\ h^{-1}(x)\text{ = 11x - 8} \end{gathered}[/tex]Step 4:
[tex]Find(h.h^{-1})(1)[/tex][tex]\begin{gathered} h(x)\text{ = }\frac{x\text{ + 8}}{11} \\ h^{-1}(x)\text{ = 11x - 8} \\ \text{Next, substitute h(x) inverse into h(x).} \\ \text{Therefore} \\ (h.h^{-1})\text{ = }\frac{11x\text{ - 8 + 8}}{11} \\ h.h^{-1}(x)\text{ = x} \\ h.h^{-1}(1)\text{ = 1} \end{gathered}[/tex]Step 5: Final answer
[tex]\begin{gathered} g^{-1}(9)\text{ = 5} \\ h^{-1}(x)\text{ = 11x - 8} \\ h\lbrack h^{-1}(x)\rbrack\text{ = 1} \end{gathered}[/tex]The table shows the number of hours spent practicingsinging each week in three samples of 10 randomlyselected chorus members.Time spent practicing singing each week (hours)Sample 1 45873 56 579 Mean = 5.9Sample 2 68 74 5 4 8 4 5 7 Mean = 5.8Sample 3 8 4 6 5 6 4 7 5 93 Mean = 5.7Which statement is most accurate based on the data?O A. A prediction based on the data is not completely reliable, becausethe means are not the same.B. A prediction based on the data is reliable, because the means ofthe samples are close together.O C. A prediction based on the data is reliable, because each samplehas 10 data points.D. A prediction based on the data is not completely reliable, becausethe means are too close together.
The means of three samples are close together. Therefore, option B is the correct answer.
In the given table 3 sample means are given.
What is mean?In statistics, the mean refers to the average of a set of values. The mean can be computed in a number of ways, including the simple arithmetic mean (add up the numbers and divide the total by the number of observations).
Here, mean of sample 1 is 5.9, mean of sample 2 is 5.8 and mean of sample 3 is 5.7.
Thus, means of these three samples are close together.
The means of three samples are close together. Therefore, option B is the correct answer.
To learn more about an arithmetic mean visit:
https://brainly.com/question/15196910.
#SPJ1
consider the graph of the function f(x)= 10^x what is the range of function g if g(x)= -f(x) -5 ?
SOLUTION
So, from the graph, we are looking for the range of
[tex]\begin{gathered} g(x)=-f(x)-5 \\ where\text{ } \\ f(x)=10^x \\ \end{gathered}[/tex]The graph of g(x) is shown below
[tex]g(x)=-10^x-5[/tex]The range is determined from the y-axis or the y-values. We can see that the y-values is from negative infinity and ends in -5. So the range is between
negative infinity to -5.
So we have
[tex]\begin{gathered} f(x)<-5\text{ or } \\ (-\infty,-5) \end{gathered}[/tex]So, comparing this to the options given, we can see that
The answer is option B
Lashonda deposits $500 into an account that pays simple interest at a rate of 6% per year. How much interest will she be paid in the first 3 years?
Answer:
The amount of interest she will be paid in the first 3 years is;
[tex]\text{ \$90}[/tex]Explanation:
Given that Lashonda deposits $500 into an account that pays simple interest at a rate of 6% per year. for the first 3 years;
[tex]\begin{gathered} \text{ Principal P = \$500} \\ \text{rate r = 6\% = 0.06} \\ \text{time t = 3 years} \end{gathered}[/tex]Recall the simple interest formula;
[tex]i=P\times r\times t[/tex]substituting the given values;
[tex]\begin{gathered} i=500\times0.06\times3 \\ i=\text{ \$90} \end{gathered}[/tex]Therefore, the amount of interest she will be paid in the first 3 years is;
[tex]\text{ \$90}[/tex]A local pizza parlor has the following list of toppings available for selection. The parlor is running a special to encourage patrons to try new combinations of toppings. They list all possible three topping pizzas (3 distinct toppings) on individual cards and give away a free pizza every hour to a lucky winner. Find the probability that the first winner randomly selects the card for the pizza topped with spicy italian sausage, banana peppers and beef. Express your answer as a fractionPizza toppings: Green peppers, onions, kalamata olives, sausage, mushrooms, black olives, pepperoni, spicy italian sausage, roma tomatoes, green olives, ham, grilled chicken, jalapeño peppers, banana peppers, beef, chicken fingers, red peppers
First, we need to find out how many possible combinations of pizza toppings there would be.
To do this, we will use the formula for Combination.
Combination is all the possible arrangements of things in which order does not matter. In our example, this would mean that a pizza topped with spicy Italian sausage, banana pepper, and beef is the same as a pizza topped with banana pepper, beef, and Italian sausage.
The formula for combination is
[tex]C(n,r)=^nC_r=_nC_r=\frac{n!}{r!(n-r)!}[/tex]From our given, n would be 17, since there are a total of 17 toppings (including spicy Italian sausage, banana peppers, and beef) and r would be 3 since there are three toppings that you chose.
Substituting it in the formula,
[tex]C(n,r)=\frac{n!}{r!(n-r)!}[/tex][tex]C(17,3)=\frac{17!}{3!(17-3)!}[/tex][tex]C(17,3)=680[/tex]Now, since we know that there are a total of 680 combinations of pizza toppings, we can now solve the probability of the first winner selecting a pizza topped with Italian sausage, banana peppers, and beef.
Hello, may I have help with finding the maximum or minimum of this quadratic equation? Could I also know the domain and range and the vertex of the equation?
To solve this problem, we will use the following graph as reference:
From the above graph, we get that the quadratic equation represents a vertical parabola that opens downwards with vertex:
[tex](3,5)\text{.}[/tex]The domain of the function consists of all real numbers, and the range consists of all numbers smaller or equal to 5.
Answer:
Maximum of 5, at x=3.
Vertex (3,5).
Domain:
[tex](-\infty,\infty).[/tex]Range:
[tex](-\infty,5\rbrack.[/tex](b) The area of a rectangular painting is 5568 cm².If the width of the painting is 58 cm, what is its length?Length of the painting:
Step 1: Problem
The area of a rectangular painting is 5568 cm².
If the width of the painting is 58 cm, what is its length?
Length of the painting:
Step 2: Concept
Area of a rectangle = Length x Width
Step 3: Method
Given data
Area = 5568 cm square
Width = 58 cm
Length = ?
Area of a rectangle = Length x Width
5568 = 58L
L = 5568/58
L = 96cm
Step 4: Final answer
Length of the painting = 96cm
Given a and b are the first-quadrant angles, sin a=5/13, and cos b=3/5, evaluate sin(a+b)1) -33/652) 33/653) 63/65
We know that angles a and b are in the first quadrant. We also know this values:
[tex]\begin{gathered} \sin a=\frac{5}{13} \\ \cos b=\frac{3}{5} \end{gathered}[/tex]We have to find sin(a+b).
We can use the following identity:
[tex]\sin (a+b)=\sin a\cdot\cos b+\cos a\cdot\sin b[/tex]For the second term, we can replace the factors with another identity:
[tex]\sin (a+b)=\sin a\cdot\cos b+\sqrt[]{1-\sin^2a}\cdot\sqrt[]{1-\cos^2b}[/tex]Now we know all the terms from the right side of the equation and we can calculate:
[tex]\begin{gathered} \sin (a+b)=\sin a\cdot\cos b+\sqrt[]{1-\sin^2a}\cdot\sqrt[]{1-\cos^2b} \\ \sin (a+b)=\frac{5}{13}\cdot\frac{3}{5}+\sqrt[]{1-(\frac{5}{13})^2}\cdot\sqrt[]{1-(\frac{3}{5})^2} \\ \sin (a+b)=\frac{15}{65}+\sqrt[]{1-\frac{25}{169}}\cdot\sqrt[]{1-\frac{9}{25}} \\ \sin (a+b)=\frac{15}{65}+\sqrt[]{\frac{169-25}{169}}\cdot\sqrt[]{\frac{25-9}{25}} \\ \sin (a+b)=\frac{15}{65}+\sqrt[]{\frac{144}{169}}\cdot\sqrt[]{\frac{16}{25}} \\ \sin (a+b)=\frac{15}{65}+\frac{12}{13}\cdot\frac{4}{5} \\ \sin (a+b)=\frac{15}{65}+\frac{48}{65} \\ \sin (a+b)=\frac{63}{65} \end{gathered}[/tex]Answer: sin(a+b) = 63/65