Carl Heinrich had lateral filing cabinets that need to be placed along one wall of a storage closet. The filing cabinets are each 2 1/2 feet wide and the wall is 15 feet long. Decide how many cabinets can be placed along the wall

Answers

Answer 1

In this case we have to divide the length of the wall by the width of a cabinet. Doing so, we have:

[tex]\begin{gathered} 2\frac{1}{2}=\frac{2\cdot2+1}{2}=\frac{5}{2}\text{ (Converting the mixed number to an improper fraction)} \\ \frac{15}{1}\div\frac{5}{2}=\frac{15\cdot2}{5}(\text{Dividing fractions)} \\ \frac{15\cdot2}{5}=\frac{30}{5}=6\text{ (Simplifying the result)} \\ \text{The answer is 6 cabinets.} \end{gathered}[/tex]


Related Questions

The width of a rectangle measures (4.3q - 3.1) centimeters, and its length
measures (9.6q-3.6) centimeters. Which expression represents the perimeter, in
centimeters, of the rectangle?

Answers

The expression that represents the perimeter and the of the rectangle is: 14.6q - 13.4.

What is the Perimeter of a Rectangle?

A rectangle's perimeter if the length of its surrounding borders. Thus, the perimeter of a rectangle is the sum of all the length of the sides of the rectangle which can be calculated using the formula below:

Perimeter of a rectangle = 2(length + width).

Given the following:

Width of the rectangle =  (4.3q - 3.1) centimetersLength of the rectangle =  (9.6q - 3.6) centimeters

Therefore, substitute the expression for the width and length of the rectangle into the perimeter of the rectangle formula:

Perimeter of rectangle = 2(9.6q - 3.6 + 4.3q - 3.1)

Combine like terms

Perimeter of rectangle = 2(7.3q - 6.7)

Perimeter of rectangle = 14.6q - 13.4

Learn more about the perimeter of rectangle on:

https://brainly.com/question/24571594

#SPJ1

Write an equation of the line that passes through (-4,-5) and is parallel to the line defined by 4x +y = -5. Write the answer inslope-intercept form (if possible) and in standard form (Ax+By=C) with smallest integer coefficients. Use the "Cannot bewritten" button, if applicable.The equation of the line in slope-intercept form:

Answers

Answer: y = -4x - 21 OR 4x + y = -21

The given line is 4x + y = -5

Given point = (-4, -5)

Step 1: find the slope of the line

The slope intercept form of equation is given as

y = mx + b

Re -arrange the above equation to slope - intercept form

4x + y = -5

Isolate y

y = -5 - 4x

y = -4x - 5, where m = -4

Since the point is parallel to the equation

Therefore, m1 = m2

m2 = -4

For a given point

(y - y1) = m(x - x1)

Let x1 = -4, and y1 = -5

[(y - (-5)] = -4[(x - (-4)]

[y + 5] = -4[x + 4]

Open the parentheses

y + 5 = -4x - 16

y = -4x - 16 - 5

y = -4x - 21

The equation is y = -4x - 21 or 4x + y = -21

please try to answer quickly because my brainly app keeps crashing before i get the answer.

Answers

Answer:

Explanations:

The formula for calculating the surface area of a sphere is given as:

[tex]SA=4\pi r^2[/tex]

Determine the radius of the sphere given the Circumference 4cm. Recall that;

[tex]\begin{gathered} C=4cm \\ 2\pi r=4 \\ r=\frac{4}{2\pi} \\ \end{gathered}[/tex]

Substitute the resulting radius into the sphere's surface area

[tex]\begin{gathered} SA=4\pi\cdot(\frac{4}{2\pi})^2 \\ SA=4\pi\cdot\frac{16}{4\pi^2} \\ SA=\frac{16}{\pi} \\ SA=\frac{16}{3.14} \\ SA=5.096\approx5cm^2 \end{gathered}[/tex]

Hence the surface area of the spherical object is 5 squar

Graph the solution set of each system of inequalities. Graph the solution set of each sx+2y ≤ 63x- 4y < 2

Answers

Given:

[tex]\begin{gathered} x+2y\le6\ldots\text{ (1)} \\ 3x-4y<2\ldots(2) \end{gathered}[/tex]

We have to take the value of x as zero and to find the value of y in bothe the equations to plot the graph.

By taking the value of x as zero in the first equation,

[tex]\begin{gathered} 2y\le6 \\ y\le3 \end{gathered}[/tex]

By taking the value of y as zero in the first equation,

[tex]x\le6[/tex]

By taking the value of x as zero in the second equation,

[tex]\begin{gathered} -4y<2 \\ -2y<1 \\ y>-\frac{1}{2} \end{gathered}[/tex]

By taking the value of y as zero in the second equation,

[tex]\begin{gathered} 3x<2 \\ x<\frac{2}{3} \end{gathered}[/tex]

What is the solution to 4x-8=12 please explain

Answers

Given the equation 4x-8=12 you need to clear the value of x.

First step is to leave the value of x in one side of the equation and the integers in the other side, to do so you have to add 8 to both sides of the equation

[tex]\begin{gathered} 4x-8=12 \\ 4x-8+8=12+8 \\ 4x=20 \end{gathered}[/tex]

Next you have to divide both terms of the equation by 4 to get the value of x

[tex]\begin{gathered} 4x=20 \\ \frac{4x}{4}=\frac{20}{4} \\ x=5 \end{gathered}[/tex]

The value of x=5

Find du and v. Treat a and n as constants.

Answers

Stated that;

[tex]u=x^n[/tex]

Then, differentiating u with respect to x using the power rule where n is a constant is;

[tex]\begin{gathered} du=(n\times1)x^{n-1} \\ du=nx^{n-1} \end{gathered}[/tex]

Also,

[tex]dv=e^{ax}[/tex]

Then, we can find v by integrating, we have;

[tex]\begin{gathered} \int dv=\int e^{ax}dx \\ v=\frac{1}{a}e^{ax} \\ \end{gathered}[/tex]

find the midpoint of PQ. P(6,4) and Q(4,3)

Answers

the midpoint between two points has the following formula

[tex](\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]

replace in the formula using P as point 1 and Q as point 2

[tex]\begin{gathered} (\frac{6+4}{2},\frac{4+3}{2}) \\ (\frac{10}{2},\frac{7}{2}) \\ (5,\frac{7}{2}) \\ (5,3.5) \end{gathered}[/tex]

what is 1x2x3x4x5x6x7x8x9

Answers

Answer:

1x2x3x4x5x6x7x8x9 = 362880

you could also break it down

1x2x3=6

4x5x6=120

7x8x9=504

6 x 120 x 504 = 362880

The solution to the given question [tex]1\times 2\times {3\times 4\times \5\times 6\times 7 \times \ 8\times 9\times 10[/tex] will be[tex]3,628,800[/tex].

The process of making a mathematical expression simpler (usually shorter) is termed simplification.

example :

37 - [5 + {28 - (19 - 7)}]

here using the BODMAS rule we will get the simplified value of this expression.

[tex]=[1\times 2\times {3\times 4\times (5\times 6\times 7 )\times \ 8\times 9\times 10][/tex]

firstly we will solve the small  brackets, thus we get the value

[tex]=[1\times2\times3\times{4\times210 \times8}\times9\times10][/tex]

on multiplying again all the terms by itself we get

=[tex]3,628,800[/tex]

thus the solution of the given expression using simplification will be  [tex]3,628,800[/tex].

Learn more about Simplification here:

https://brainly.com/question/28261894

#SPJ6

help 25 points
A line includes the points (10,6) and (2,7). What is its equation in point-slope form?
Use one of the specified points in your equation. Write your answer using integers, proper fractions, and improper fractions. Simplify all fractions.

Answers

Answer:

y = (-1/8)x + (29/4)

Step-by-step explanation:

(10, 6), (2, 7)

(x₁, y₁)  (x₂, y₂)

       y₂ - y₁         7 - 6             1             -1

m = ------------ = ----------- = ----------- = ---------

       x₂ - x₁          2 - 10         -8              8

y - y₁ = m(x - x₁)

y - 6 = (-1/8)(x - 10)

y - 6 = (-1/8)x + (5/4)

   +6                 +6

-------------------------------

y = (-1/8)x + (29/4)

I hope this helps!

if you copy a page on a machine at 60%, you should get a similar copy of the page. What is the corresponding setting to obtain the original from the copy? The corresponding setting to obtain the original from the copy is _______%

Answers

Answer:

The corresponding setting to obtain the original from the copy is 166.67%

[tex]166\frac{2}{3}\text{\%}[/tex]

Explanation:

Let c and x represent the copy and original respectively;

[tex]c=60\text{\% of x}[/tex]

making x the subject of formula;

[tex]\begin{gathered} c=0.6x \\ x=\frac{c}{0.6} \\ x=1\frac{2}{3}c \\ in\text{ percentage;} \\ x=1\frac{2}{3}c\times100\text{\%} \\ x=166.67\text{\% of c} \end{gathered}[/tex]

Therefore, The corresponding setting to obtain the original from the copy is 166.67%

[tex]166\frac{2}{3}\text{\%}[/tex]

Use the distributive property and simplify: 3n+4-5(n+6)

Answers

By distributing the number -5 into the parentheses, we have

[tex]3n+4-5n-30[/tex]

Now, by collecting similar terms, we get

[tex]-2n-26[/tex]

Therefore, the answer is: -2n-26

In circle G with m_FGH = 150 and FG = 12 units find area of sector FGH.Round to the nearest hundredth.Fa.

Answers

The formula for the area of sector is,

[tex]A=\frac{\theta}{360}\pi(r)^2[/tex]

Substitute the values in the formula to obtain the area of sector FGH.

[tex]\begin{gathered} A=\frac{150}{360}\cdot\pi(12)^2 \\ =188.4955 \\ \approx188.50 \end{gathered}[/tex]

So area of sector FGH is 188.50.

factor the following by taking on the greatest common factor 14a^3 + 35a^2 +42a

Answers

Let's break apart each term into its factors:

[tex]\begin{gathered} 14a^3=2\cdot7\cdot a\cdot a\cdot a \\ 35a^2=5\cdot7\cdot a\cdot a \\ 42a=2\cdot3\cdot7\cdot a \end{gathered}[/tex]

The common factors are

7 * a

That is,

[tex]7\cdot a=7a[/tex]

Now, factorizing the expression, we have:

[tex]\begin{gathered} 14a^3+35a^2+42a \\ =7a(2a^2+5a+6) \end{gathered}[/tex]Answer[tex]7a(2a^2+5a+6)[/tex]

the sum of x and 3/5 is 5/7what is the value of x?

Answers

[tex]x=\frac{4}{35}[/tex]

Explanation

the sum of x and 3/5 is 5/7

Step 1

convert the words into math terms

Let

the sum= addition

is= "="

[tex]x+\frac{3}{5}=\frac{5}{7}[/tex]

Step 2

to find the value of x, isolate

[tex]\begin{gathered} x+\frac{3}{5}=\frac{5}{7} \\ \text{subtract }\frac{3}{5}in\text{ both sides} \\ x+\frac{3}{5}-\frac{3}{5}=\frac{5}{7}-\frac{3}{5} \\ x=\frac{5}{7}-\frac{3}{5} \\ x=\frac{25-21}{35} \\ x=\frac{4}{35} \end{gathered}[/tex]

Need some help with table 2.Fill up tables of proportional relationships with missing Values.

Answers

Proportional Relationships

If the variables x and y are in a proportional relationship, then:

y = kx

Where k is the constant of proportionality that can be found as follows:

[tex]k=\frac{y}{x}[/tex]

If we are given a pair of values (x, y), we can find the value of k and use it to fill the rest of the table.

For example, Table 1 relates the cost y of x pounds of some items. We are given the pair (2, 2.50). We can calculate the value of k:

[tex]k=\frac{2.50}{2}=1.25[/tex]

Now, for each value of x, multiply by this factor and get the value of y. For example, for x = 3:

y = 1.25 * 3 = 3.75

This value is also given and verifies the correct proportion obtained above.

For x = 4:

y = 1.25 * 4 = 5

For x = 7:

y = 1.25 * 7 = 8.75

For x = 10:

y = 1.25 * 10 = 12.50

Now for table 2, we are given the pair (3, 4.5) which gives us the value of k:

[tex]k=\frac{4.5}{3}=1.5[/tex]

Apply this constant for the rest of the table.

For x = 4:

y = 1.5 * 4 = 6

For x = 5:

y = 1.5 * 5 = 7.50

For x = 8:

y = 1.5 * 8 = 12

The last column doesn't give us the value of x but the value of y, so we need to solve for x:

[tex]y=k\cdot x\text{ }=>\text{ }x=\frac{y}{k}[/tex]

For y = 15:

[tex]x=\frac{15}{1.5}=10[/tex]

If f(x)3(=- Vx-3, complete the following statement:x + 2f(19) ==Answer here

Answers

Explanation

This exercise is about evaluating a function at a particular argument. To do that, we replace the variable with the argument in the formula of the function, and simplify.

Let's do that:

[tex]\begin{gathered} f(19)=\frac{3}{19+2}-\sqrt[]{19-3}, \\ \\ f(19)=\frac{3}{21}-\sqrt[]{16}, \\ \\ f(19)=\frac{1}{7}-4, \\ \\ f(19)=\frac{1-28}{7}, \\ \\ f(19)=-\frac{27}{7}\text{.} \end{gathered}[/tex]Answer[tex]f(19)=-\frac{27}{7}\text{.}[/tex]

How do you solve this??

Answers

A mathematical statement comprehended as an equation exists created up of two expressions joined together by the equal sign.

If the equation be 12 - 2x = x - 3 then the value of x = 5.

What is meant by an equation?

The definition of an equation in algebra is a mathematical statement that demonstrates the equality of two mathematical expressions.

A mathematical phrase with two equal sides and an equal sign is called an equation. A formula that expresses the connection between two expressions on each side of a sign. Typically, it has a single variable and an equal sign.

Let the equation be 12 - 2x = x - 3

Subtract 12 from both sides

12 - 2x - 12 = x - 3 - 12

Simplifying the above equation, we get

-2x = x - 15

Subtract x from both sides

-2x - x = x - 15 - x

Simplifying the above equation, we get

-3x = -15

Divide both sides by -3

[tex]$\frac{-3 x}{-3}=\frac{-15}{-3}[/tex]

Therefore, the value of x = 5.

To learn more about equations refer to:

https://brainly.com/question/2228446

#SPJ13

Find the maximum and minimum values of the function g(theta) = 2theta - 4sin(theta) on the interval Big[0, pi 2 Bigg\

Answers

Hello there. To solve this question, we have to remember some properties about polar curves and determining maximum and minimum values.

In this case, we have the function in terms of the angle θ:

[tex]g(\theta)=2\theta-4\sin(\theta)[/tex]

We want to determine its minimum and maximum values on the closed interval:

[tex]\left[0,\,\dfrac{\pi}{2}\right][/tex]

We graph the function as follows:

Notice on the interval, it has a maximum value of 0.

We can determine its minimum value using derivatives, as follows:

[tex]g^{\prime}(\theta)=2-4\cos(\theta)[/tex]

Setting it equal to zero, we obtain

[tex]\begin{gathered} 2-4\cos(\theta)=0 \\ \Rightarrow\cos(\theta)=\dfrac{1}{2} \\ \\ \Rightarrow\theta=\dfrac{\pi}{3} \end{gathered}[/tex]

Taking its second derivative, we obtain

[tex]g^{\prime}^{\prime}(\theta)=4\sin(\theta)[/tex]

And notice that when calculating it on this point, we get

[tex]g^{\prime}^{\prime}\left(\dfrac{\pi}{3}\right)=4\sin\left(\dfrac{\pi}{3}\right)=2\sqrt{3}[/tex]

A positive value, hence it is a minimum point of the function.

Its minimum value is then given by

[tex]g\left(\dfrac{\pi}{3}\right)=2\cdot\dfrac{\pi}{3}-4\sin\left(\dfrac{\pi}{3}\right)=\dfrac{2\pi}{3}-2\sqrt{3}[/tex]

Of course we cannot determine that 0 is a maximum value of this function using derivatives because it is a local maxima on a certain interval, and derivatives can only gives us this value when the slope of the tangent line is equal to zero.

write the equation of a line in y = mx + b form that passes through the given pair of points (1,-2) (3,2)

Answers

The formula for the equation of a line given two points is,

[tex]\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}[/tex]

Given that

[tex]\begin{gathered} (x_1,y_1)=(1,-2) \\ (x_2,y_2)=(3,2) \end{gathered}[/tex]

Substituting the given points to the equation and expressing it in the form, y = mx+b

[tex]\begin{gathered} \frac{y--2}{x-1}=\frac{2--2}{3-1} \\ \frac{y+2}{x-1}=\frac{2+2}{3-1} \\ \frac{y+2}{x-1}=\frac{4}{2} \\ \frac{y+2}{x-1}=2 \end{gathered}[/tex]

Cross multiply

[tex]\begin{gathered} y+2=2(x-1) \\ y+2=2x-2 \\ y=2x-2-2 \\ y=2x-4 \\ \therefore y=2x-4 \end{gathered}[/tex]

Hence, the equation of a line in slope in y = mx+b is

[tex]y=2x-4[/tex]

A scientist needs 270 milliliters of a 20% acid solution for an experiment. The lab has available a 25% and a 10% solution. How many milliliters of the 25% solution and how many milliliters of the 10% solution should the scientist mix to make the 20% solution?

Answers

Given:

A scientist has 5% and a 10% acid solution in his lab.

He needs 270 milliliters of a 20% acid solution.

To find the amount of 25% solution and how many milliliters of the 10% solution should the scientist mix to make the 20% solution:

Here,

The dearer percentage is 25%.

The cheaper percentage is 10%.

The mean percentage is 20%.

Using the mixture and allegation method,

The ratio of the litters of cheaper (10% solution) to dearer value (25% solution) is,

[tex]\begin{gathered} (\text{Dearer value-mean): (Mean-Ch}eaper\text{ value)} \\ (25-20)\colon(20-10) \\ 5\colon10 \\ 1\colon2 \end{gathered}[/tex]

So, the number of liters to be taken from 10% solution is,

[tex]\frac{1}{3}\times270=90\text{ liters}[/tex]

So, the number of liters to be taken from 25% solution is,

[tex]\frac{2}{3}\times270=180\text{ liters}[/tex]

Hence, the answer is

A cab company charges a flat rate of $2 plus an additional $0.50 for every mile traveled. Use this information for Items 12 and 13. 12. a. Write an expression that can be used to determine the total cab fare for a distance of m miles. b. When Sara arrived at your destination, her cab fare was $7.50. Write an equation to represent this situation. How many miles did Sara travel?

Answers

The cost for each travel on this cab company can be expressed as a sum of the fixed fee and the price per mile multiplied by the distance in miles of the travel. Therefore:

[tex]c(m)=2+0.5\cdot m[/tex]

If Sarah paid $7.5 for her cab, then c(m)=7.5 and we can use this value on the expression above to solve for "m". We have:

[tex]\begin{gathered} 7.5=2+0.5\cdot m \\ 0.5\cdot m=7.5-2 \\ 0.5\cdot m=5.5 \\ m=\frac{5.5}{0.5}=11 \end{gathered}[/tex]

She traveled 11 miles.

To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step.

Answers

ANSWER:

Separate the quotient in two terms

STEP-BY-STEP EXPLANATION:

We have the following:

[tex]\begin{gathered} \tan x=\frac{\sin x}{\cos x} \\ \tan x=\frac{1}{\cos x}\cdot\sin x \end{gathered}[/tex]

Therefore, the step shown in the image is to separate the quotient in two terms

use the second derivative test to classify the relative extrema if the test applies

Answers

Answer

The answer is:

[tex](x,f(x))=(0,256)[/tex]

SOLUTION

Problem Statement

The question gives us a polynomial expression and we are asked to find the relative maxima using the second derivative test.

The function given is:

[tex](3x^2+16)^2[/tex]

Method

To find the relative maxima, there are some steps to perform.

1. Find the first derivative of the function

2. Equate the first derivative to zero and solve for x.

3. Find the second derivative of the function.

4. Apply the second derivative test:

This test says:

[tex]\begin{gathered} \text{ If }a\text{ is one of the roots of the equation from the first derivative, then,} \\ f^{\doubleprime}(a)>0\to\text{There is a relative minimum} \\ f^{\doubleprime}(a)<0\to\text{There is a relative maximum} \end{gathered}[/tex]

5. Find the Relative Minimum

Implementation

1. Find the first derivative of the function

[tex]\begin{gathered} f(x)=(3x^2+16)^2 \\ \text{Taking the first derivative of both sides, we have:} \\ f^{\prime}(x)=6x\times2(3x^2+16) \\ f^{\prime}(x)=12x(3x^2+16) \end{gathered}[/tex]

2. Equate the first derivative to zero and solve for x.

[tex]\begin{gathered} f^{\prime}(x)=12x(3x^2+16)=0 \\ \text{This implies that,} \\ 12x=0\text{ OR }3x^2+16=0 \\ \therefore x=0\text{ ONLY} \\ \\ \text{Because }3x^2+16=0\text{ has NO REAL Solutions} \end{gathered}[/tex]

This implies that there is ONLY ONE turning point/stationary point at x = 0

3. Find the second derivative of the function:

[tex]\begin{gathered} f^{\prime}(x)=12x(3x^2+16) \\ f^{\doubleprime}(x)=12(3x^2+16)+12x(6x) \\ f^{\doubleprime}(x)=36x^2+192+72x^2 \\ \therefore f^{\doubleprime}(x)=108x^2+192 \end{gathered}[/tex]

4. Apply the second derivative test:

[tex]\begin{gathered} f^{\doubleprime}(x)=108x^2+192 \\ a=0,\text{ which is the root of the first derivative }f^{\prime}(x) \\ f^{\doubleprime}(a)=f^{\doubleprime}(0)=108(0)^2+192 \\ f^{\doubleprime}(0)=192>0 \\ \\ By\text{ the second derivative test,} \\ f^{\doubleprime}(0)>0,\text{ thus, there exists a relative minimum at }x=0\text{ } \\ \\ \text{ Thus, we can find the relative minimum when we substitute }x=0\text{ into the function }f(x) \end{gathered}[/tex]

5. Find the Relative Minimum:

[tex]\begin{gathered} f(x)=(3x^2+16)^2 \\ \text{substitute }x=0\text{ into the function} \\ f(0)=(3(0)^2+16)^2 \\ f(0)=16^2=256 \\ \\ \text{Thus, the minimum value of the function }f(x)\text{ is }256 \\ \\ \text{The coordinate for the relative minimum for the function }(3x^2+16)^2\text{ is:} \\ \mleft(x,f\mleft(x\mright)\mright)=\mleft(0,f\mleft(0\mright)\mright) \\ \text{But }f(0)=256 \\ \\ \therefore(x,f(x))=(0,256) \end{gathered}[/tex]

Since the function has ONLY ONE turning point, and the turning point is a minimum value, then THERE EXISTS NO MAXIMUM VALUE

Final Answer

The answer is:

[tex](x,f(x))=(0,256)[/tex]

The table shows the linear relationship between the average height in feet of trees on a tree farm andthe number of years since the trees were planted,Average Tree HeightNumber of Years Sincethe Trees were planted1361115Average Height (ft)10244580108m

Answers

Rate of change = change in y / change in x

From the table, number of years since the tree are planted are the x

They are; 1, 3, 6, 11 , 15

Average height are y, and they are;

10, 24, 45, 80, 105

Now, to calculate the rate of change, we will find the difference between two values of y then divide it by the difference between 2 values of x

If we are going to pick the first and second value of y, we must also pick the first and second value of x

If we are to pick the second and 3rd value of y, we must then pick the 2nd and 3rd value of x

That is;

rate of change = 24 -10 / 3-2

= 14/2

= 7 ft/yr

Select three equations that could represent a step in solving this system using the substitution method. 4x+y = 6 x = 8 0.00 0:52 9 1x 2 4(8)+y=6 o y = 18

Answers

[tex]\begin{gathered} 4x+y=6 \\ x=8 \end{gathered}[/tex]

the first step is replacing x=8 on the first equation, so

[tex]4(8)+y=6[/tex]

the second step is do the multiplication

[tex]\begin{gathered} 32+y=6 \\ y+32=6 \end{gathered}[/tex]

and the last step is place the 32 on the other side substracting

[tex]\begin{gathered} y=6-32 \\ y=-26 \end{gathered}[/tex]

Victoria, Cooper, and Diego are reading the same book for theirlanguage arts class. The table shows the fraction of the bookeach student has read. Which student has read the leastamount? Explain your reasoning.

Answers

Given:

Completion of reading in fractions:

[tex]\text{Victoria}=\frac{2}{5};\text{Cooper}=\frac{1}{5};\text{Diego}=\frac{3}{5}[/tex]

Since the denominators,

[tex]\text{The least value of the three given values is }\frac{1}{5}[/tex]

Therefore, Cooper has read the least amount.

Find the surface area of the solid. Use 3.14 for T. Round final answer to the nearest hundredth.

Answers

Answer:

Given:

Radius of the sphere is 26 mi.

To find the surface area of a given sphere.

We know that,

Surface area of a sphere is,

[tex]4\pi r^2[/tex]

where r is the radius of the sphere.

Substitute the values we get, (pi=3.14)

[tex]=4\times3.14\times(26)\placeholder{⬚}^2[/tex][tex]=4\times3.14\times676[/tex][tex]=8,490.56\text{ mi}^2[/tex]

The required surface area is 8,490.56 mi^2.

a= 8 in, b= ? C= 14 in.using pythagorean theorem

Answers

by Pythagorean theorem'

[tex]8^2+b^2=14^2[/tex][tex]\begin{gathered} 64+b^2=196 \\ b^2=196-64 \end{gathered}[/tex][tex]\begin{gathered} b^2=132 \\ b=\sqrt[]{132} \\ b=11.48 \end{gathered}[/tex]

b = 11.48

Patrice found airpods on sale for $84. The sale sales tax is 5%. What is the total Patrice will pay for the airpods?

Answers

To find the final cost with tax. You find the 5% of $84 and add that result to the initial cost:

[tex]84\cdot\frac{5}{100}=4.2[/tex][tex]84+4.2=88.2[/tex]

Then, Patrice will pay $88.2 for the airpods

a national survey of 1517 respondents reached on landlines a and cell phones found thas t the percentage of adults who favor legalized abortion has dropped from 53% a yeas r ago to 44% the study claimed that the error attributable to sampling is +5 percentage points would you claim that a majority of people are not in favor of legalized abortion. the confidence interval for the study is _% to _%

Answers

Answer:

You can claim that the majority of people are not in favor of legalized abortion.

39% < p < 49%

Explanation:

The confidence interval for the study can be calculated as:

44% - 5% < p < 44% + 5%

39% < p < 49%

Where p is the percentage of people that are in favor of legalized abortion and 5% is the error attributable to sampling.

Since the upper limit of the confidence interval is 49% (less than 50%), you can claim that a majority of people are not in favor of legalized abortion.

Other Questions
how do you usually prewrite? explain how your prewriting activities might change depending on what youre writing- or, if they dont change, why. Progress is being made. Its so slow sometimes, so terribly so sometimes, but progress is being made. We have removed the rot, we are strengthening the foundations. There is much work to do, and we all know what needs to be done. We can only do the work, he tells Kathy, and his children, and his crew, his friends, anyone he sees. So let us get up early and stay late, and, brick by brick and block by block, let us get that work done. Roughly how many US adults are considered to be out of labor force meaning that they are not both unemployed and looking for work?. A. 1/4 B. 1/3C. 1/2D. 2/3 If a hammer is dropped from a height of 52 m and there is no air resistance, what is the acceleration the hammer experiences while it is falling towards the ground? Identify the function rule from the values in the table. The function, f. is drawn on the accompanying set of axes. On the same set of axes, sketch the graph of f-?, the inverse of f 1. Are these ratios equivalent? 8:7 and 4:2 Hunter has $300 in a savings account. The interest rate is 8%, compounded annually.To the nearest cent, how much will he have in 3 years? Which theoretical physicist, cosmologist, and author said, "however difficult life may seem, there is always something you can do and succeed at"?. Frank (48) and Suzanne (51) are married, and they will file a joint return for 2021. During the year, Frank earned $94,000 in wages; Suzanne earned $4,500 from a part-time job. They had no other income. What is the maximum amount the couple may contribute to Suzanne's traditional IRA?A. $0B. $4,500C. $6,000D. $7,000 Can you Convert 840 inches to cm. Use unit analysis to convert the rate. a 21.6 gram arrow is shot through a 7.5 cm apple. if the arrow enters the apple at 35.5 m/s and emerges with a speed of 25.3 m/s in the same direction, what is the magnitude of the force with which the apple has resisted the arrow? (assume force is exerted only on the tip of the arrow) The owner of a recycling company wants to reduce his electrical consumption and costs. The electromagnet used in his operation uses 12 A of current, has 7000 loops and a lifting force of 9800 N. If the lifting force needs to remain the same but the owner would like to reduce the current to only 5 A, how many loops would the electromagnet have? todd wants to start a business. so one weekend he sits down and starts to write up a document that details the business's goals, objectives, potential customers, financial resources, the product/service it will provide and its strategies on how it will fulfill each of these areas. todd is writing a(n)? 3. The number line below represents the solution to which inequality of he 0 1 2 3 4 5 6 7 8 9 10 This graph shows the solution to which inequality?3.2)(-3,-5)O A. ys fx-2B. vfx-2O c. vfx-2OD. yzfx-2 Add or subtract. Simplify. Change the answers to mixed numbers, if possible. hello, in the picture you can see a graph and my teacher said that the domain and range would be all real numbers possible. could you please help me because I don't understand why. 1. What is the ultimate source of energy in the food we eat? I 20 P1: a For two events, A and B.P(B) -0.5, P(AB) -0.4 andPAB) = 0.4.Calculatei PAB)ii P(A)ili P(AUB)iv P(AB)(8 marks)b Determine, with a reason, whetherevents A and B are independent ornot.(2 marks)probabilityStatistics and