The Gibbs free energy at 298 K for the given reaction is 130.822 KJ
How do i determine the Gibbs free energy for the reaction?The Gibbs free energy for a given reaction is given by the following formula:
ΔG = ΔH – TΔS
Where
ΔG is the Gibbs free energy ΔH is the enthalpy changeT is the temperature ΔS is the change in entropyWith the above formula, we can determine the Gibbs free energy for the reaction in the above question as follow:
Temperature (T) = 298 KEnthalpy change (ΔH) = 178.8 KJChange of entropy (ΔS) = 161 J/K = 161 / 1000 = 0.161 KJ/KGibbs free energy =?ΔG = ΔH - TΔS
ΔG = 178.8 - (298 × 0.161)
ΔG = 178.8 - 47.978
ΔG = 130.822 KJ
Thus, the Gibbs free energy is 130.822 KJ
Learn more about Gibbs free energy:
https://brainly.com/question/13318988
#SPJ1
and H
An organic liquid having carbon, hydrogen and oxygen was
found to contain C = 37.5%
37.5% and H= 12.5% and the rest
oxygen. The molecular mass of this compound is 32. The
molecular formula for this compound is C2H5OH. True or false
The statement is false that the chemical compound ethanol, with a molecular mass of 46.07 g/mol, has the same molecular formula as Ethanol. The organic liquid, on the other hand, has molecules that weigh 32 g/mol.
Which of the following compounds has a carbon content by mass of 38.7%?Ethylene glycol is a substance that is frequently used as antifreeze. 38.7% of it is carbon, 9.75% hydrogen, and the remainder is oxygen. Ethylene glycol has a molecular weight of 62.07 g.
What is the name for organic substances with a carbon, hydrogen, and oxygen content of 121?In the molecules of carbohydrates, the proportion of carbon to hydrogen to oxygen is 1:2:1. This class of organic compounds gets its name from the parts water (water, -hydrate) and carbon (carbon, carbo-).
To know more about organic compounds visit:-
https://brainly.com/question/5994723
#SPJ9
HELP ME PLEASE. I REALLY WANT TO KNOW CHEMISTRY BUT I NEED HELP. SOME KIND SOUL PLEASE.
The reactant that is consumed first in a chemical reaction, also known as the limiting reactant (or limiting reagent), limits the amount of product that can be produced. As a result ,O2 is the limiting reactant.
What is limiting reactant ?
When a reactant is totally consumed during a chemical reaction, the amount of product that can be created is constrained.
n(Mg) = 2.8 g / 24.31 g/mol, n(Mg) = 0.1153 mol, and n(Mg) = m/M
Then, let's determine how many moles of oxygen there are:
n(O2) = 4.5 L * 1 atm / (0.08206/mol * 273.15 K) n(O2) = V(STP) * P(STP) / R * T(STP)
n(O2) = 0.1788 mol
The balanced equation states that the stoichiometric ratio of magnesium to oxygen is 2:1. As a result, 1 mole of O2 and 2 moles of Mg react.
To react with all of the O2, Mg must be present in the following amounts: n(Mg) = n(O2) / 2 n(Mg) = 0.1788 mol / 2 n(Mg) = 0.0894 mol
Since we have only 0.1153 mol of Mg, which is greater than the required 0.0894 mol, Mg is not the limiting reactant. O2 is the limiting reactant since we have only 0.1788 mol of it, which is less than the required 0.1788 mol.
To know more about reactant visit:-
https://brainly.com/question/13005466
#SPJ1
(i) Calculate the mass of CO2(g) in gram produced by the reaction between 3 mol of CH4(g) and 2 mol of
O2(g) according to the equation : CH4(g) + 2O2(g) CO2(g) + 2H2O(g)
Answer: 0.1334983576 g
Explanation:
The mass must be conserved on both sides of the equation. Mass put in must must = mass put out. So we must start by finding the mass of the reactants and then the mass of 2H2O. Then we must subtractio the mass of the reactants from the mass of 2H2O which will gives us the mass of CO2.
Mass of CH4:
(12.0107)+ 4(1.00794) = 16.48246 g/mol
we are given three mols of CH4 so divide 3 mol by 16.48246 g/mol
3 mol/ 16.48246 g/mol = 0.1820116657 g CH4
Mass of 2O2:
2(15.99994) = 31.99988 g/mol
we are given 2 moles of 2O2 so divide 2 mol by 31.99988 g/mol
2 mol/ 31.99988 g/mol = 0.0625002344 g 2O2
Mass of 2H2O:
2(1.00794)+(15.99994) = 18.01582 g/mol
we are given 2 moles of 2H2O so divide 2 mol by 18.01582 g/mol
2 mol/ 18.01582 g/mol = 0.1110135425 g 2H20
Now we add up the grams on the reactatnt side and subtract that number from the mass of 2H2O:
0.1820116657 g CH4 + 0.0625002344 g 2O2 = 0.2445119001 g (total of g of reactants)
0.2445119001 g - 0.1110135425 g = 0.1334983576 g CO2
Give the systematic name for each of the following organic molecules and enter it in the space provided. Be sure to include appropriate punctuation.
Systematic name : 5-chloro-2-pentanol (or 5-chloropentan-2-ol)
Systematic name : 1,2-difluoro-3-heptanol (or 1,2-difluoroheptan-3-ol).
What is pentanol used for?The active site of numerous reactions is the hydroxyl group (OH). Pentyl butyrate, which has an apricot-like aroma, is the ester that results from the reaction of 1-pentanol and butyric acid. Amyl acetate, also known as pentyl acetate, is the ester that is created when 1-pentanol and acetic acid are combined.
A research evaluating the efficacy of diesel fuel blends with different amounts of pentanol as an additive was done in 2014. Higher pentanol concentrations resulted in higher gaseous emissions at the expense of lower particulate emissions.
Learn more about pentanol
https://brainly.com/question/30218582
#SPJ1
Use equivalent weights to calculate 81.00 mg/L calcium carbonate (CaCO3) in terms of mg/L as dihydrogen phosphate (H2PO4-)
According to the question Therefore, 81.00 mg/L CaCO3 is equivalent to 162.00 mg/L H2PO4-.
What is CaCO3 ?Calcium Carbonate, also known as CaCO3, is a naturally occurring mineral which is found in rocks, shells, and pearls. It is composed of the elements calcium, carbon, and oxygen, and is a major component of sedimentary rocks. Calcium Carbonate is an important building material, and is used in a range of industries, from paper and plastic to pharmaceuticals and cement. It is also used as an additive in many food products, such as baking powder and cheese.
To calculate this, we must first convert 81.00 mg/L CaCO3 to moles.
81.00 mg/L CaCO3 = 0.00045 moles CaCO3
Next, we need to convert from moles of CaCO3 to moles of H2PO4-. The molar ratio between CaCO3 and H2PO4- is 1:2, so for every mole of CaCO3, there are two moles of H2PO4-.
Therefore, 0.00045 moles CaCO3 = 0.00090 moles H2PO4-
Finally, we must convert the moles of H2PO4- back to mg/L:
0.00090 moles H2PO4- = 162.00 mg/L H2PO4-
To learn more about CaCO3
https://brainly.com/question/29671908
#SPJ9
Given the unbalanced equation: Al(s) + O2 (g) → Al2O3 (s) How many moles of Al are needed to react completely with 52.00 g O2?
1.083 moles of Al are needed to react completely with 52.00 g O2.
To begin, we can use the molar mass of O2 to convert 52.00 g to moles.
52.00 g O2 / (32.00 g/mol) = 1.625 mol O2
The balanced equation shows that two moles of aluminum react with three moles of oxygen to form two moles of aluminum oxide. Therefore, we need to know how many moles of aluminum are required to react with 1.625 mol of oxygen.
Using the stoichiometric ratio from the balanced equation:
2 mol Al : 3 mol O2
We can set up a proportion to determine the number of moles of Al needed:
2 mol Al / 3 mol O2 = x mol Al / 1.625 mol O2
Solving for x:
x = (2 mol Al / 3 mol O2) x (1.625 mol O2) = 1.083 mol Al
Therefore, 1.083 moles of aluminum must react completely with 52.00 g of O2.
Learn more about finding moles from the unbalanced equations:
https://brainly.com/question/21427841
what is a gas at room temperature.It reacts violently with other element without heating
Answer:
The gas that is at room temperature reacts violently with other elements without heating is ammonium chloride ammonia, mercury or sodium. Basically, the electronegative element will be adopting -1 oxidation state.
Explanation:
if it helped you please mark me a brainliest :))
Write the molecular formula for a compound with the possible elements C, H, N and O that exhibits a molecular ion at M+ = 122.0374.
The molecular formula of the compound with a molecular ion at M+ = 122.0374 could be C7H10O3N.
How is a molecular formula composed?A molecular formula is the chemical representation of a molecular compound that lists the types and quantities of atoms that make up each molecule.
What is an example of a molecular formula?The chemical formula for a molecular compound molecular formula lists the variety of atoms that make up the molecule. A subscript under oxygen in CO2, for instance, indicates that there are two oxygen atoms present, but a subscript under carbon indicates that there is just one carbon atom present.
How are moles of mass converted?By dividing the mass by the formula mass expressed in g/mol, one can determine the number of moles in a given quantity of substance.
To know more about the molecular formula visit:
https://brainly.com/question/8201330
#SPJ1
How many moles of carbon dioxide will be produced if 4 moles of ethane are burned in the presence of oxygen? PLEASE SHOW WORK!!
2 C₂H6+5 02 --> 4 CO2 + 6 H₂O
a. 4 moles
b. 6 moles
c. 8 moles
d. 12 moles
Answer:
Explanation:
This requires using the mol/mol ratio of the balanced equation to solve.
Start with the given number of moles, cancel those and then multiply by the moles of CO2.
4 mol C2H6 x 4 mol CO2 = 8 moles of CO2 produced
2 mol C2H6
determine the mole fraction of each component in a solution in which 3.57 g of sodium chloride (NaCI) is dissolved in 25.0 g of water. Show the steps of the calculation.
A. The mole fraction of sodium chloride (NaCI) is 0.042
B. The mole fraction of water (H₂O) is 0.958
How do i determine the mole fraction of each component?We'll begin by obtaining the mole of each component in the solution. This is shown below:
For sodium chloride (NaCI)
Mass of sodium chloride (NaCI) = 3.57 gMolar mass of sodium chloride (NaCI) = 58.5 g/mol Mole of sodium chloride (NaCI) =?Mole = mass / molar mass
Mole of NaCI = 3.57 / 58.5
Mole of NaCI = 0.061 mole
For water (H₂O)
Mass of water (H₂O) = 25 g Molar mass of water (H₂O) = 18 g/mol Mole of water (H₂O) =?Mole = mass / molar mass
Mole of H₂O = 25 / 18
Mole of H₂O = 1.389 mole
Finally, we shall determine the mole fraction of each component. Details below:
For sodium chloride (NaCI)
Mole of NaCI = 0.061 moleMole of H₂O = 1.389 moleTotal mole = 0.061 + 1.389 = 1.45 moleMole fraction of NaCI =?Mole fraction of NaCI = Mole of NaCI / total mole
Mole fraction of NaCI = 0.061 / 1.45
Mole fraction of NaCI = 0.042
For water (H₂O)
Mole fraction of NaCI = 0.042Mole fraction of H₂O =?Mole fraction of H₂O = 1 - Mole fraction of NaCI
Mole fraction of H₂O = 1 - 0.042
Mole fraction of H₂O = 0.958
Learn more about mole fraction:
https://brainly.com/question/15735596
#SPJ1
Geothermal power plants send water through pipes deep underground where it is hot. This causes the temperature of the water to increase.
What happens to the molecules of the water when the temperature of the water increases?
a. The energy of the water molecules decreases.
b. The energy of the water molecules increases.
c. The cold energy of the water molecules decreases.
d. More heat molecules combine with the water molecules.
Answer:
When the temperature of water in a geothermal power plant increases, the energy of the water molecules increases. Therefore, the correct answer is b. The energy of the water molecules increases.
Explanation:
4Na + O2 → 2Na2O
How many moles of sodium oxide, Na2O, are produced when oxygen gas and 17.0 moles of sodium react?
If 17 mol of sodium (Na) react in this reaction, 8.5 mol should be the end product i.e., sodium oxide (Na2O) according to the stoichiometry.
Why do we employ stoichiometry in chemistry?Stoichiometry is a technique used by scientists to quantify and control the quantity of reactants and products in chemical reactions on a big scale. Without it, reactions might not be complete, wasting costly ingredients and producing dangerous byproducts.
What practical applications does stoichiometry have?With so many applications in everyday life, stoichiometry is regarded as the core of chemistry. Stoichiometric calculations are used to determine the chemical makeup of every chemical product we use on a regular basis, including shampoos, cleansers, fragrances, soaps, and fertilizers. Stoichiometry is necessary for the chemical industry to function.
To know more about stoichiometry visit-
https://brainly.com/question/30215297
#SPJ1
Which of the following is NOT a synthetic material?
Multiple choice question.
cross out
A)
polyester
cross out
B)
bone china
cross out
C)
wood
cross out
D)
concrete
Answer: C) wood cross out
з сасоз+2fepo4 → саз(po4)2+Fe2(CO3)3
How many grams of calcium phosphate
are produced from 26 grams of (Iron Ill)
phosphate and 12.1 grams of calcium
carbonate. what is the excess reactant
Answer:
A. Excess reactant is FePO4
B. mass of Ca3(PO4)2 produced is 12.41g
Explanation:
A. FePO4 has molar mass of 150.82 g/mol => 26/150.82 = 0.17 mole
CaCO3 has molar mass of 100.09 g/mol => 12.1/100.09 = 0.12 mole
3CaCO3 + 2FePO4 => Ca3(PO4)2 + Fe2(CO3)3
2 moles of FePO4 will react with 3 moles of CaCO3
Therefore,
0.17 mole of FePO4 will react with 0.17 x (3/2) = 0.255 mole of CaCO3
and
0.12 mole of CaCO3 will react with 0.12 (2/3) = 0.08 mole of FePO4
Therefore the excess reactant will be FePO4
B. 3 moles of CaCO3 will produce 1 mole of Ca3(PO4)2
so 0.12 mole of CaCO3 will produce 0.12 x (1/3) = 0.04 mole
Ca3(PO4)2 has molar mass of 310.18 g/mol
=> mass of Ca3(PO4)2 produced is 0.04 x 310.18 = 12.41g
How many grams of hydrogen gas would be needed to form 8.0 grams of water?
Here is your balanced equation: 2H2 + O2 → 2H2O
Answer: 72g
Explanation:
How many grams of nitrogen, N2, would be required to react with 6.25 moles hydrogen, H2?
Answer:
56.88g N2
Explanation:
1 mole of N2 will react to 3 moles of H2
so 6.25 moles of H2 will react to 6.25/3 = 2.03 moles of N2
molar mass of N2 = 2(14.01) = 28.02 g/mol
mass of N2 = 2.03 x 28.02 = 56.88 g
In a perfect world, your calorimeter will not exchange any heat with its contents. In this perfect world, if hot water loses 75 calories when cool metal pieces are poured in, how many calories do the metal pieces gain?
Answer:
In a perfect world, where the calorimeter does not exchange any heat with its contents, the amount of heat lost by the hot water will be equal to the amount of heat gained by the cool metal pieces. This is due to the principle of conservation of energy, which states that energy cannot be created or destroyed, only transferred from one form to another. Therefore, the number of calories gained by the metal pieces will be equal to the number of calories lost by the hot water, which is 75 calories.
Explanation:
In summary, according to the principle of conservation of energy, in a perfect world where a calorimeter does not exchange any heat with its contents, the number of calories gained by the cool metal pieces will be equal to the number of calories lost by the hot water, which is 75 calories.
Which set of reactants will be the most efficient (LEAST wasteful of materials) for the reaction?
We need to calculate the stoichiometric ratios of the reactants and choose the set that provides the required ratios with the least amount of excess or unused reactants.
How to determine most efficient chemicals?To determine the most efficient set of reactants for a reaction, we should consider the stoichiometry of the reaction, which tells us the ratios of the reactants and products that are involved in the reaction. The most efficient set of reactants will be the one that produces the desired product with the least amount of excess or unused reactants, and hence the least amount of waste.
What is the example for that?2A + 3B → 4C If we have 4 moles of A and 6 moles of B, we have the exact stoichiometric amounts required for the reaction to proceed, and all the reactants will be consumed completely to form 8 moles of product C. In this case, there will be no waste of materials, and the reaction will be the most efficient. On the other hand, if we have an excess of one of the reactants, for example, if we have 6 moles of A and 6 moles of B, then only 4 moles of A can react with 6 moles of B to produce 8 moles of C, and the remaining 2 moles of A will be unused and wasted. In this case, the reaction will be less efficient.
To know more about stoichiometric ratios visit:-
brainly.com/question/6907332
#SPJ1
How much heat will be released when 8.21 g of sulfur reacts with excess O, according to the following equation?
Answer:
How much heat will be released when. 8.21 g of sulfur reacts with excess O1 according to the following equation? 25 +302 → 2SO3. AH° = -791.4 kJ.
Explanation:
I HOPE THIS HELPED IF NOT THEN LET ME KNOW
76.0 kJ, According to the provided reaction and stoichiometry, 76.0 kJ of heat will be emitted when 8.21 g of sulphur interacts with too much oxygen to create sulphur dioxide.
We must first determine how many moles of sulphur are present:
S mass divided by S's molar mass equals moles of S.
8.21 g/32.06 g/mol = 0.256 mol are the moles of sulphur.
We may infer that all of the sulphur will react because there is an excess of oxygen, hence the reaction will result in:
1 mol SO2 divided by 0.256 mol S results in 0.256 mol SO2.
q = nΔH
where n is the number of moles of the product (SO2), q is the quantity of heat released, and H is the reaction's enthalpy change.
q = (0.128 mol)(-296.8 kJ/mol) = -76.0 kJ
How many moles of S2 are needed to produce
.750 moles of SO2 gas?
Number of moles of S2 needed to produce 750 moles of SO2 is 375.
Mole calculationS2 + 202 ---> 2SO2 750 moles of SO2 = 375 moles of S2750 Mole Units750 ÷ 2 =375Balance the equation in step one. Chemical equations never have their individual components lost or destroyed; the yield of a reaction must precisely match the original reagents.Step 2: Converting the Units of a Substance Provided to Mole Conversion factors are applied during the conversion of supplied units into moles. Below, you'll find the most crucial conversion factors for converting between moles and grams, moles and gas volumes, moles and molecules, and moles and solutions. Similar to the ones outlined in the preceding section, these conversion factors also work Moreover, keep in mind that while these conversion factors are geared toward converting from one unit to another to determine moles, they can also be used to determine another unit to determine moles.For more information on moles kindly visit to
https://brainly.com/question/20486415
#SPJ9
using the following data
Enthaply of sublimation of Ca= +178•2 KJ mol‐¹
Enthapy of dissociation of Cl₂= +243.4 KJ mol-¹ Enthapy of formation of cacl₂ =-795.8 kJ mol-¹ First and second lonzition energies for ca are +590 KJ mo1-¹and +1145 KJ mol-¹ respectively. The electron affinity of C1: -348.7 KJ moi-1 Determine the lattice energy of cacl₂
Answer:
To determine the lattice energy of CaCl₂, we can use the Born-Haber cycle, which relates the lattice energy to other thermodynamic quantities such as the enthalpy of sublimation, dissociation, and formation.
The Born-Haber cycle for CaCl₂ is as follows:
Ca(s) → Ca(g) ΔHsub
1/2 Cl₂(g) → Cl(g) ΔHdiss
Ca(g) + Cl(g) → CaCl(g) ΔHf
CaCl(g) → CaCl₂(s) ΔHlattice
We can use the following equation to calculate the lattice energy:
ΔHlattice = ΔHsub + ΔHdiss + ΔHf - IE1 - IE2 - EA
where IE1 and IE2 are the first and second ionization energies of Ca, and EA is the electron affinity of Cl.
Substituting the given values, we get:
ΔHlattice = (+178.2) + (+243.4) + (-795.8) - (+590) - (+1145) - (-348.7)
ΔHlattice = -57.1 kJ/mol
Therefore, the lattice energy of CaCl₂ is -57.1 kJ/mol.
you design an experiment to test the effect of adding different amounts of ice (grams) to a given volume of water.
For each trial you record the initial temperature of the water and then the final temperature after the ice was added.
In this experiment, the amount of ice is the
variable, and the temperature change is the
variable.
Answer:
In this experiment, the amount of ice is the independent variable, and the temperature change is the dependent variable.
C₂H5OH + 302 → 2CO₂ + 3H₂O AH-1367kJ/mol
How many grams of carbon dioxide are produced when 370. kJ of energy are used in the following reaction?
We can start by using the given enthalpy change and the balanced equation to calculate the amount of moles of carbon dioxide produced:
1 mol of C2H5OH produces 2 mol of CO2
-1367 kJ/mol is released when 1 mol of C2H5OH is combusted
370 kJ of energy are used in the reaction
Now we can use a proportion to find the number of moles of C2H5OH that produce 370 kJ of energy:
-1367 kJ/mol / 1 mol of C2H5OH = -x kJ / (2 mol of CO2)
Solving for x gives:
x = (370 kJ) (1 mol of C2H5OH) / (-1367 kJ/mol) (2 mol of CO2)
x = 0.1355 mol of CO2
Finally, we can use the molar mass of CO2 (44.01 g/mol) to find the mass of CO2 produced:
mass of CO2 = number of moles of CO2 * molar mass of CO2
mass of CO2 = 0.1355 mol * 44.01 g/mol = 5.96 g of CO2
Therefore, when 370 kJ of energy are used in the reaction, 5.96 g of carbon dioxide are produced.
8. What's the volume of 108g of a material if the material has a density of 0.90 g/mL?
A. 108.9 mL
B. 97.2 mL
C. 120 mL
D. 107.1 mL
Answer:
density = mass/volume
Rearranging, we get:
volume = mass/density
Substituting the given values, we get:
volume = 108g / 0.90 g/mL
volume = 120 mL
Therefore, the volume of the material is 120 mL. Answer: C
The density of a substance is its mass by volume. Then, the volume of the 108 g of material with a density of 0.90 g/ml is 120 mL.
What is density ?Density is a physical property of matter that describes the amount of mass in a given volume of a substance. It is defined as the ratio of an object's mass to its volume.
Mathematically, density is expressed as:
Density = Mass / Volume
The unit of density depends on the units of mass and volume used. For example, in the SI system, the unit of mass is kilograms (kg) and the unit of volume is cubic meters (m³), so the unit of density is kg/m³.
Given that, density = 0.90 g/ml
mass = 108 g
then volume = mass/densiy
v = 108 g/0.900 g/ml = 120 mL.
Therefore, density of the material is 120 mL.
Find more on density:
https://brainly.com/question/29775886
#SPJ2
Chemistry Help!
1. Imagine that you are dissolving a red Gatorade mix in water.
a. What is the solute?
b. What is the solvent?
c. What is the solution?
d. What could you do to increase the molarity of the Gatorade in the water?
Answer:
a. The solute is the substance that is being dissolved, in this case, the red Gatorade mix.
b. The solvent is the substance in which the solute is being dissolved, in this case, water.
c. The solution is the resulting homogeneous mixture of the solute (red Gatorade mix) and the solvent (water).
d. To increase the molarity of the Gatorade in the water, you could add more Gatorade mix to the water while keeping the volume of the solution constant. Alternatively, you could decrease the volume of water while keeping the amount of Gatorade mix constant, which would increase the concentration of Gatorade in the solution.
(Please could you kindly mark my answer as brainliest you could also follow me so that you could easily reach out to me for any other questions)
Order from most to least acidic...
Consider a solution that is 1.4×10−2 M in Ba2+ and 1.9×10−2 M in Ca2+. What minimum concentration of Na2SO4 is required to cause the precipitation of the cation that precipitates first? Express your answer using two significant figures.
Tο determine which catiοn will precipitate first, we need tο cοmpare the sοlubility prοducts (Ksp) οf their respective sulfates. The catiοn with the smaller Ksp value will precipitate first. The Ksp values fοr BaSO₄ and CaSO₄ are:
Ksp(BaSO₄) = 1.1 × 10⁻¹⁰
Ksp(CaSO₄) = 2.4 × 10⁻⁵
What is a catiοn?A catiοn is an iοn with a pοsitive charge that is fοrmed by the lοss οf οne οr mοre electrοns frοm a neutral atοm. Catiοns are fοrmed when atοms lοse electrοns tο achieve a mοre stable electrοn cοnfiguratiοn, typically by becοming isοelectrοnic with a nearby nοble gas.
Since the Ksp value fοr BaSO4 is smaller, it will precipitate first. Tο calculate the minimum cοncentratiοn οf Na₂SO₄ required tο precipitate all οf the Ba2+ iοns, we need tο use the sοlubility prοduct expressiοn fοr BaSO₄:
BaSO₄(s) ⇌ Ba2+(aq) + SO₄₂-(aq)
Ksp = [Ba2+][SO₄₂-]
Since all οf the Ba2+ iοns will be precipitated, the cοncentratiοn οf Ba2+ will be zerο οnce precipitatiοn is cοmplete. Thus, the Ksp expressiοn simplifies tο:
Ksp = [SO₄₂-]²
Sοlving fοr [SO₄₂-], we get:
[SO₄₂-] = sqrt(Ksp) = sqrt(1.1 × 10⁻¹⁰) = 1.05 × 10⁻⁵ M
This means that the cοncentratiοn οf Na₂SO₄ needs tο be at least 1.05 × 10⁻⁵M tο prοvide enοugh SO₄₂- iοns tο precipitate all οf the Ba₂+ iοns. We rοund this tο twο significant figures, giving a final answer οf 1.1 × 10⁻⁵ M Na₂SO₄.
To know more about cations, click the link given below:
brainly.com/question/1333307
#SPJ1
Why is capturing quality data and the use of analytics critical for the fire and emergency services?
Capturing quality data and using analytics are critical for the fire and emergency services to improve situational awareness, enhance resource management, improve incident management, and develop better planning and prevention strategies.
What is fire?
Fire is a chemical reaction that occurs when a fuel (such as wood, paper, or gasoline) combines with oxygen in the air, producing heat and light. The reaction is exothermic, meaning it releases energy in the form of heat and light. Fire requires three elements to exist: fuel, oxygen, and heat. These elements are often referred to as the "fire triangle."
Capturing quality data and using analytics are critical for the fire and emergency services for several reasons:
Improved situational awareness: Fire and emergency services need accurate, up-to-date information to make informed decisions and respond effectively to emergencies.
Enhanced resource management: Fire and emergency services often operate under tight budget constraints and need to make the most of their resources.
Improved incident management: The ability to capture and analyze data in real-time can help fire and emergency services manage incidents more effectively.
Learn more about Fire from given link
https://brainly.com/question/26386412
#SPJ1
10.2g potassium chloride is used to make an aqueous stock solution with a total volume of 250 mL. How much water is needed to dilute the stock solution to 0.25 M with a total volume of 547 mL? (the answer is 200.92 but i want to know how to get there)
The amount of water is needed to dilute the stock solution to 0.25 M with a total volume of 547 mL is 548 mL
Amount of water calculation.
To solve this problem, we can use the formula:
M1V1 = M2V2
where M1 and V1 are the initial concentration and volume, and M2 and V2 are the final concentration and volume.
Given:
M1 = initial concentration = ?
V1 = initial volume = 250 mL
M2 = final concentration = 0.25 M
V2 = final volume = 547 mL
Mass of KCl used = 10.2 g
First, we need to calculate the initial concentration:
M1 = (moles of solute) / (volume of solution in liters)
The molar mass of KCl is 74.55 g/mol. Therefore, the number of moles of KCl used is:
moles of KCl = (mass of KCl) / (molar mass of KCl)
moles of KCl = 10.2 g / 74.55 g/mol
moles of KCl = 0.137 mol
The volume of the initial solution in liters is:
V1 = 250 mL = 0.25 L
Using the formula above, we can calculate the initial concentration:
M1 = (moles of KCl) / (volume of solution in liters)
M1 = 0.137 mol / 0.25 L
M1 = 0.548 M
Now, we can use the formula to calculate the volume of water needed to dilute the solution:
M1V1 = M2V2
(0.548 M)(250 mL) = (0.25 M)(547 mL + V_water)
137 mL = 0.25 M V_water
V_water = 548 mL
Therefore, 548 mL of water is needed to dilute the stock solution to a final volume of 547 mL with a concentration of 0.25 M using M1V1 = M2V2.
Learn more about amount of water below.
https://brainly.com/question/28931214
#SPJ1
Provide the balanced chemical equation for the complete combustion of propan-2-ol
The balanced chemical equation for the complete combustion of propan-2-ol (also known as isopropanol) is: C₃H₈O + 5O₂ → 3CO₂ + 4H₂O.
What is complete combustion?Complete combustion is a chemical reaction between a fuel and an oxidant that produces only carbon dioxide and water vapor as the products. In other words, in complete combustion, all of the fuel is burned completely, producing the maximum amount of heat and light energy. The general equation for complete combustion of a hydrocarbon fuel is: hydrocarbon + oxygen → carbon dioxide + water. In this reaction, methane reacts with oxygen to produce carbon dioxide and water vapor. This reaction is exothermic, meaning it releases heat energy, and it is used in many applications such as heating and energy production. Complete combustion is different from incomplete combustion, where the fuel is not burned completely and other products such as carbon monoxide (CO) and unburned hydrocarbons are produced. Incomplete combustion is generally less efficient and can produce harmful pollutants.
Here,
This equation shows that one molecule of propan-2-ol reacts with five molecules of oxygen gas to produce three molecules of carbon dioxide and four molecules of water vapor. This reaction releases energy in the form of heat and light and is a common way of producing energy from organic fuels. The balanced equation shows that the number of atoms of each element is the same on both sides of the equation, which is a requirement for a balanced chemical equation.
To know more about complete combustion,
https://brainly.com/question/14177748
#SPJ9