Consider the following. у 6 y= x - 2x 41 N -4 х -2 N N y = 2x -4 - 6 (a) Find the points of intersection of the curves. (xy (smallest x-value) (x, y) = (1 (x, y) = ( =( Y) (x, y) = (largest y-value)

Answers

Answer 1

The curves given by the equations intersect at two points, namely (1, -2) and (5, -4). The point with the smallest x-value of intersection is (1, -2), while the point with the largest y-value of intersection is (5, -4).

To find the points of intersection, we need to set the two equations equal to each other and solve for x and y. The given equations are y = x - 2x^2 + 41 and y = 2x - 4. Setting these equations equal to each other, we have x - 2x^2 + 41 = 2x - 4.

Simplifying this equation, we get 2x^2 - 3x + 45 = 0. Solving this quadratic equation, we find two values of x, which are x = 1 and x = 5. Substituting these values back into either equation, we can find the corresponding y-values.

For x = 1, y = 1 - 2(1)^2 + 41 = -2, giving us the point (1, -2). For x = 5, y = 2(5) - 4 = 6, giving us the point (5, 6). Therefore, the points of intersection of the curves are (1, -2) and (5, 6). Among these points, (1, -2) has the smallest x-value, while (5, 6) has the largest y-value.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11


Related Questions

2. Using the minor and cofactor method, find the inverse of the given 3x3 matrix [4 2 1 3 5 2. 1 3-3 ]

Answers

The inverse of the given 3x3 matrix [4 2 1; 3 5 2; 1 3 -3] using the minor and cofactor method is [1/23 -1/23 1/23; -1/23 8/23 1/23; 1/23 1/23 -2/23].

To find the inverse of a 3x3 matrix using the minor and cofactor method, we follow these steps:

Calculate the determinant of the given matrix.

Find the cofactor matrix by calculating the determinants of the 2x2 matrices formed by excluding each element of the original matrix.

Create the adjugate matrix by transposing the cofactor matrix.

Divide each element of the adjugate matrix by the determinant of the original matrix to obtain the inverse matrix.

Applying these steps to the given matrix [4 2 1; 3 5 2; 1 3 -3], we calculate the determinant to be -23. Then, we find the cofactor matrix and transpose it to obtain the adjugate matrix. Finally, dividing each element of the adjugate matrix by -23 gives us the inverse matrix [1/23 -1/23 1/23; -1/23 8/23 1/23; 1/23 1/23 -2/23].


To learn more about matrix click here: brainly.com/question/28180105

#SPJ11

solve for the vertex of f(x)=x^2-10x+13 using completing the square

Answers

Answer:

(5, 38)

Step-by-step explanation:

To find the vertices of the quadratic function f(x) = x^2 - 10x + 13 using squared interpolation, do the following:

step 1:

Group the terms x^2 and x.

f(x) = (x^2 - 10x) + 13

Step 2:

Complete the rectangle for the grouped terms. To do this, take half the coefficients of the x term, square them, and add them to both sides of the equation.

f(x) = (x^2 - 10x + (-10/2)^2) + 13 + (-10/2)^2

= (x^2 - 10x + 25) + 13 + 25

Step 3:

Simplify the equation.

f(x) = (x - 5)^2 + 38

Step 4:

The vertex form of the quadratic function is f(x) = a(x - h)^2 + k. where (h,k) represents the vertex of the parabola. Comparing this to the simplified equation shows that the function vertex is f(x) = x^2 - 10x + 13 (h, k) = (5, 38).

So the vertex of the quadratic function is (5, 38).

The coordinates (0, A) and (B, 0) lie on the line 2x - 3y = 6. What are the values of A and B? b) Use your answer to part a) to work out which line below is 2x - 3y = 6

25 points for the correct answer. ​

Answers

The values of A and B are -2 and 3 respectively, the line 2x - 3y = 6 is equivalent to the line x = 3.

To find the values of A and B, we can substitute the coordinates (0, A) and (B, 0) into the equation 2x - 3y = 6.

For the point (0, A):

2(0) - 3(A) = 6

0 - 3A = 6

-3A = 6

A = -2

So, A = -2.

For the point (B, 0):

2(B) - 3(0) = 6

2B = 6

B = 3

So, B = 3.

Therefore, the values of A and B are A = -2 and B = 3.

b) Now that we know the values of A and B, we can substitute them into the equation 2x - 3y = 6:

2x - 3y = 6

2x - 3(0) = 6 (substituting y = 0)

2x = 6

x = 3

So, the line 2x - 3y = 6 is equivalent to the line x = 3.

To learn more on Equation:

https://brainly.com/question/10413253

#SPJ1

Solve the following equation in x ∈ Z.
x4 −27x2 +49x+66−9x3 = 0

Answers

To solve the equation [tex]x^4 - 27x^2 + 49x + 66 - 9x^3 = 0[/tex]in x ∈ Z (integers), we need to find the values of x that satisfy the equation.

Rearrange the equation in descending order of the powers of x:

[tex]x^4 - 9x^3 - 27x^2 + 49x + 66 = 0[/tex]

Observe that the equation can be factored by grouping. Let's group the terms:

[tex](x^4 - 9x^3) + (-27x^2 + 49x + 66) = 0[/tex]

Factor out the common terms from each group:

[tex]x^3(x - 9) - 11(3x^2 - 7x - 6) = 0[/tex]

Further factor the second group:

[tex]x^3(x - 9) - 11(3x + 2)(x - 3) = 0[/tex]

Apply the zero product property, which states that if the product of two factors is zero, then at least one of the factors must be zero. Set each factor equal to zero and solve for x:

Factor 1:

x^3 = 0

This gives x = 0 as a solution.

Factor 2:

x - 9 = 0

Solving for x gives x = 9.

Factor 3:

3x + 2 = 0

Solving for x gives x = -2/3.

Factor 4:

x - 3 = 0

Solving for x gives x = 3.

Therefore, the solutions for the equation [tex]x^4 - 27x^2 + 49x + 66 - 9x^3 = 0[/tex]in the set of integers (Z) are x = 0, x = 9, x = -2/3, and x = 3.

Learn more about rational root theorem here:

https://brainly.com/question/31805524

#SPJ11

Find the point at which the line f(x) = 5x3 intersects the line g(x) - 2x - 3

Answers

The solution to this equation represents the x-coordinate of the point of intersection. By substituting this value into either f(x) or g(x).

To find the point of intersection, we set the two equations equal to each other:

5x^3 = 2x - 3

This equation represents the x-coordinate of the point of intersection. We can solve it to find the value of x. There are various methods to solve this cubic equation, such as factoring, synthetic division, or numerical methods like Newton's method. Once we find the value(s) of x, we substitute it back into either f(x) or g(x) to determine the corresponding y-coordinate.

For example, let's assume we find a solution x = 2. We can substitute this value into f(x) or g(x) to find the y-coordinate. If we substitute it into g(x), we have:

g(2) = 2(2) - 3 = 4 - 3 = 1

Thus, the point of intersection is (2, 1). This represents the x and y coordinates where the lines f(x) = 5x^3 and g(x) = 2x - 3 intersect.

Learn more about Newton's method here:

https://brainly.com/question/31910767

#SPJ11

Question 33 of 43
The table shows the number of practice problems
completed in 30 minutes in three samples of 10 randomly
selected math students.
Number of practice problems completed in 30 minutes
Sample 1 12 13 11 10 11 13 12 13 9 13
Sample 2 13 18 17 14 15 14 18 14 15 16
Sample 3 18 14 16 15 16 14 17 16 15 14
Which statement is most accurate based on the data?
Mean = 11.7
Mean = 15.4
Mean = 15.5
A. A prediction based on the data is reliable, because there are no
noticeable differences among the samples.
B. A prediction based on the data is not completely reliable, because
the mean of sample 1 is noticeably lower than the means of the
other two samples.
C. A prediction based on the data is not completely reliable, because
the means of samples 2 and 3 are too close together.
D. A prediction based on the data is reliable, because the means of
samples 2 and 3 are very close together.

Answers

The statement which is most accurate based on the data is option

B. A prediction based on the data is not completely reliable, because the mean of sample 1 is noticeably lower than the means of the other two samples.

We have,

Mean is the average of the given numbers and is calculated by dividing the sum of given numbers by the total number of numbers

From the given data,

Mean of the sample 1 = 11.7

Mean of the sample 2 = 15.4

Mean of the sample 3 = 15.5

All three mean are close together.

Therefore the data is reliable

Hence, the statement which is most accurate based on the data is option

B. A prediction based on the data is not completely reliable, because the mean of sample 1 is noticeably lower than the means of the other two samples.

Learn more about Mean here

brainly.com/question/13451489

#SPJ1

Parameterize the line segment going from (0,2) to (3,-1), with 0

Answers

The parameterization of the line segment from (0,2) to (3,-1) is:

x = 3t

y = 2 - 3t

where t ranges from 0 to 1.

To parameterize the line segment going from (0,2) to (3,-1), we can use the parameterization equation:

x = (1 - t) * x1 + t * x2

y = (1 - t) * y1 + t * y2

where (x1, y1) are the coordinates of the starting point (0,2), (x2, y2) are the coordinates of the ending point (3,-1), and t is a parameter that varies from 0 to 1.

Substituting the values, we have:

x = (1 - t) * 0 + t * 3 = 3t

y = (1 - t) * 2 + t * (-1) = 2 - 3t

So, the parameterization of the line segment from (0,2) to (3,-1) is:

x = 3t

y = 2 - 3t

where t ranges from 0 to 1.

Learn more about line segments here, https://brainly.com/question/2437195

#SPJ11

Evaluate the integral using any appropriate algebraic method or trigonometric identity. dy 357√/y6 (1+y²/7) dy 35 √y6 (1+y²/7) Find the volume of the solid generated by revolving the region bounded above by y = 6 cos x and below by y = sec x, T ≤x≤ about the x-axis. T 4 4 ... The volume of the solid is cubic units.

Answers

To evaluate the given integral, we can use the trigonometric identity and algebraic simplification.

The volume of the solid generated by revolving the region bounded by y = 6 cos x and y = sec x about the x-axis can be found using the method of cylindrical shells.

Let's first evaluate the integral: ∫ (357√y^6)/(1 + y^2/7) dy.

We can simplify the integrand by multiplying both the numerator and denominator by 7:

∫ (2499√y^6)/(7 + y^2) dy.

To solve this integral, we can substitute y^2 = 7u, which gives 2y dy = 7 du.

The integral becomes: (12495/2) ∫ √u/(7 + u) du.

Now, we can use a trigonometric substitution by letting u = 7tan^2θ.

Differentiating u with respect to θ gives du = 14tanθsec^2θ dθ.

The integral simplifies to: (12495/2) ∫ (√7tanθsecθ)(14tanθsec^2θ) dθ.

Simplifying further, we have: (87465/2) ∫ tan^2θsec^3θ dθ.

Using trigonometric identities, tan^2θ = sec^2θ - 1, and sec^2θ = 1 + tan^2θ, we can rewrite the integral as:

(87465/2) ∫ (sec^5θ - sec^3θ) dθ.

Integrating term by term, we get: (87465/2) [(1/4)(sec^3θtanθ + ln|secθ + tanθ|) - (1/2)(secθtanθ + ln|secθ + tanθ|)] + C,

where C is the constant of integration.

Now, let's calculate the volume of the solid generated by revolving the region bounded by y = 6 cos x and y = sec x about the x-axis.

We use the method of cylindrical shells to find the volume.

The height of each shell is the difference between the two functions: 6 cos x - sec x.

The radius of each shell is the corresponding x-value.

The volume of each shell is given by 2πrhΔx, where Δx is the width of the shell.

Integrating from x = 4 to x = 4, the volume is given by:

V = ∫[4 to 4] 2πx(6 cos x - sec x) dx.

Evaluating this integral will give the volume of the solid in cubic units.

In summary, to evaluate the given integral, we simplified the integrand using algebraic methods and trigonometric identities. For the volume of the solid generated by revolving the region, we applied the method of cylindrical shells to find the volume by integrating the appropriate expression.

Learn more about trigonometric identities :

https://brainly.com/question/12537661

#SPJ11




Use the new variable t = et to evaluate the limit. = Enter the exact answer. 6e3x – 1 lim- x=07e3x + ex + 1

Answers

To evaluate the limit lim(x→0) (6e^(3x) - 1)/(7e^(3x) + e^x + 1), we can use the substitution t = e^(3x) to simplify the expression.

Let's substitute t = e^(3x) into the given expression. As x approaches 0, t approaches e^(3*0) = e^0 = 1. Thus, we have t→1 as x→0.

Now, rewriting the expression with the new variable t, we get lim(x→0) (6e^(3x) - 1)/(7e^(3x) + e^x + 1) = lim(t→1) (6t - 1)/(7t + e^(x→0) + 1).

Since x approaches 0, the term e^(x→0) becomes e^0 = 1. Therefore, the expression simplifies to lim(t→1) (6t - 1)/(7t + 1 + 1) = lim(t→1) (6t - 1)/(7t + 2).

Finally, evaluating the limit as t approaches 1, we substitute t = 1 into the expression to get (6(1) - 1)/(7(1) + 2) = 5/9.

Hence, the exact value of the limit lim(x→0) (6e^(3x) - 1)/(7e^(3x) + e^x + 1) is 5/9.

Learn more about variable expression here: brainly.com/question/1511425

#SPJ11

Please help asap, my semester ends in less then 2 weeks and I’m struggling

Answers

The probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective is 0.371.

How to calculate the probability

In this case, we have n = 6 (the number of parts) and p = 0.13 (the probability of producing a defective part). We want to find the probability of exactly 1 defective part, so k = 1.

Plugging in the values into the formula, we get:

P(X = 1) = C(6, 1) * 0.13 * (1 - 0.13)⁵

= 6 * 0.13 * 0.87⁵

Calculating this expression:

P(X = 1) ≈ 0.371

Therefore, the probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective is approximately 0.371

Learn more about probability on

https://brainly.com/question/24756209

#SPJ1

At a certain auto parts manufacturer, the Quality Control division has determined that one of the machines produces defective parts 13% of the time. If this percentage is correct, what is the probability that, in a random sample of 6 parts produced by this machine, exactly 1 is defective?

Round your answer to three decimal places.

3. Explain why the nth derivative, y(n) for y=e* is y(n) = e*.

Answers

Therefore, the nth derivative of y=e* is y(n) = e*. This is because exponential functions have the property that their derivative is equal to the function itself.

The function y=e* is a special case where the derivative of the function with respect to x is equal to the function itself. This means that when taking the nth derivative, the result will still be e*. Mathematically, this can be expressed as y(n) = e* for all values of n. This property is unique to exponential functions and makes them useful in a variety of fields, including finance and science.

Therefore, the nth derivative of y=e* is y(n) = e*. This is because exponential functions have the property that their derivative is equal to the function itself.

To know more about the function visit :

https://brainly.com/question/11624077

#SPJ11


USE
CALC 2 TECHNIQUES ONLY. Given r=1-3 sin theta, find the following.
Find the area of the inner loop of the given polar curve rounded 4
decimal places. PLEASE SHOW ALL STEPS

Answers

The area of inner loop of the given polar curve is approximately 4.7074 square units.

What is the rounded area of the inner loop of the polar curve?

Finding the area of inner loop of the given polar curve involves utilizing Calculus 2 techniques. We begin by determining the bounds of theta where the inner loop occurs.

Since r = 1 - 3sin(θ), the inner loop is formed when 1 - 3sin(θ) is negative. Solving this inequality, we find that the inner loop exists when sin(theta) > 1/3. This occurs in the range of theta between arcsin(1/3) and pi - arcsin(1/3).

To find the area, we integrate the equation for the area of a polar region, which is given by A = 1/2 ∫[θ₁ to θ₂ (r²) d(theta).

Substituting r = 1 - 3sin(θ) into the formula and integrating within the bounds of theta, we obtain the area of the inner loop as approximately 4.7074 square units.

Learn more about inner loop

brainly.com/question/29532999

#SPJ11

Given the equation below, find dy dac 13x +8252y + y = 22 dy dac Now, find the equation of the tangent line to the curve at (1, 1). Write your answer in mx + b format y

Answers

The derivative of the given equation is dy/dx = -13/8253.

The equation of the tangent line to the curve at (1, 1) is y = (-13/8253)x + 8266/8253 in mx + b format.

To find dy/dx, we need to differentiate the given equation with respect to x:

13x + 8252y + y = 22

Differentiating both sides with respect to x:

13 + 8252(dy/dx) + (dy/dx) = 0

Simplifying the equation:

8252(dy/dx) + (dy/dx) = -13

Combining like terms:

8253(dy/dx) = -13

Dividing both sides by 8253:

dy/dx = -13/8253

Now, to find the equation of the tangent line at (1, 1), we have the slope (m) as dy/dx = -13/8253 and a point (1, 1). Using the point-slope form of a line, we can write the equation:

y - y1 = m(x - x1)

Substituting the values (1, 1) and m = -13/8253:

y - 1 = (-13/8253)(x - 1)

Simplifying the equation:

y - 1 = (-13/8253)x + 13/8253

Bringing 1 to the other side:

y = (-13/8253)x + 13/8253 + 1

Simplifying further:

y = (-13/8253)x + (8253 + 13)/8253

Final equation of the tangent line in mx + b format is:

y = (-13/8253)x + 8266/8253

To learn more about derivatives visit : https://brainly.com/question/28376218

#SPJ11

Question 7
a)
b)
For which positive value of x are the vectors (-57, 2, 1), (2, 3x2, -4) orthogonal? Find the vector projection of b onto a when b=i- j + 2k, a = 3i - 23 – 3k.

Answers

To find the positive value of x for which the vectors (-57, 2, 1) and (2, 3x^2, -4) are orthogonal, we need to calculate their dot product. The dot product of two orthogonal vectors is zero.

Using the dot product formula, we have:

[tex](-57)(2) + (2)(3x^2) + (1)(-4) = 0[/tex]

Simplifying the equation, we get:

[tex]-114 + 6x^2 - 4 = 0[/tex]

Rearranging and solving for x^2, we have:

[tex]6x^2 = 118[/tex]

[tex]x^2 = 118/6[/tex]

[tex]x^2 = 59/3[/tex]

Thus, the positive value of x for which the vectors are orthogonal is x = √(59/3).

To find the vector projection of vector b = (1, -1, 2) onto vector a = (3, -23, -3), we can use the formula for vector projection.

The vector projection of b onto a is given by:

proj[tex]_a(b) = (b · a) / |a|^2 * a[/tex]

First, calculate the dot product of b and a:

[tex]b · a = (1)(3) + (-1)(-23) + (2)(-3) = 3 + 23 - 6 = 20[/tex]

Next, calculate the magnitude of vector a:

|[tex]a|^2 = √(3^2 + (-23)^2 + (-3)^2) = √(9 + 529 + 9) = √547[/tex]

Finally, substitute the values into the vector projection formula:

[tex]proj_a(b) = (20 / 547) * (3, -23, -3) = (60/547, -460/547, -60/547)[/tex]

So, the vector projection of b onto a is [tex](60/547, -460/547, -60/547).[/tex]

Learn more about vectors are orthogonal here:

https://brainly.com/question/28503609

#SPJ11

URGENT
Determine the absolute extremes of the given function over the given interval: f(x) = 2x3 – 6x2 – 18x, 1 < x < 4 The absolute maximum occurs at x = and the maximum value is

Answers

The absolute extremes of the function f(x) = 2x^3 – 6x^2 – 18x over the interval 1 < x < 4 need to be determined. The absolute maximum occurs at x = ?, and the maximum value is ?.

To find the absolute extremes, we need to evaluate the function at the critical points and endpoints of the interval. First, we find the critical points by taking the derivative of f(x) and setting it equal to zero: f'(x) = 6x^2 - 12x - 18 = 0

We can solve this quadratic equation to find the critical points, which are x = -1 and x = 3. Next, we evaluate the function at the critical points and endpoints:

f(1) = 2(1)^3 - 6(1)^2 - 18(1) = -22

f(3) = 2(3)^3 - 6(3)^2 - 18(3) = -54

f(4) = 2(4)^3 - 6(4)^2 - 18(4) = -64

Comparing the values, we can see that the absolute maximum occurs at x = 1, with a maximum value of -22. Therefore, the absolute maximum of f(x) over the interval 1 < x < 4 is -22.

Learn more about functions here: brainly.in/question/9181709
#SPJ11

A crane lifts the 18000 kg steel hull of a sunken ship out of the water. Determine the tension in the crane's cable when the hull is fully submerged in the water

Answers

when the hull is fully submerged in the water, the tension in the crane's cable is zero because the weight of the hull is exactly balanced by the buoyant force.

To determine the tension in the crane's cable when the hull is fully submerged in the water, we need to consider the forces acting on the hull.

1. Weight of the hull:

The weight of the hull is given as 18000 kg. The force due to gravity acting on the hull is given by:

Weight = mass × acceleration due to gravity = 18000 kg × 9.8 m/s².

2. Buoyant force:

When the hull is fully submerged in the water, it experiences a buoyant force. The magnitude of the buoyant force is equal to the weight of the water displaced by the hull. According to Archimedes' principle, this buoyant force is equal to the weight of the hull.

Therefore, the buoyant force acting on the hull is also 18000 kg × 9.8 m/s².

The tension in the crane's cable is the difference between the weight of the hull and the buoyant force acting on it, as the cable needs to support the net force:

Tension = Weight - Buoyant force

       = (18000 kg × 9.8 m/s²) - (18000 kg × 9.8 m/s²)

       = 0 N.

to know more about force visit:

brainly.com/question/2193360

#SPJ11

QUESTION: Given the function f(x) f (x) = sqrt (22 – 7) Find 1. f'(x) 2. f'(-4)

Answers

The derivative of f(x) = sqrt(15) is f'(x) = 0. Therefore, f'(-4) is also equal to 0.

Given the function f(x) f (x) = sqrt (22 – 7). We are to find 1. f'(x) 2. f'(-4).Solution:Given the function f(x) f (x) = sqrt (22 – 7).Then, f(x) = sqrt (15)Taking the derivative of the function f(x) f (x) = sqrt (22 – 7) with respect to x, we get:f'(x) = d/dx [sqrt(15)]Differentiate the function f(x) with respect to x, we get:d/dx [sqrt(15)] = 0.5(15)^(-1/2) * d/dx[15] = 0d/dx[15] = 0Hence,f'(x) = 0f'(-4) = 0 (since f'(x) = 0 for any x)Therefore, f'(-4) = 0. Answer: 0

learn more about derivative here;

https://brainly.com/question/25616108?

#SPJ11

A fully I flared basketball has a radius of 12 centimeters. How many cubic centimeters of air does your ball need to fully inflate?

Answers

The volume of air needed is equal to the volume of the sphere, which is 7,234.56 cm³.

How to get the volume of a sphere?

The volume of air that we need is equal to the volume of the basketball.

Remember that for a sphere of radius R, the volume is:

[tex]\sf V = \huge \text(\dfrac{4}{3}\huge \text)\times3.14\times r^3[/tex]

In this case, the radius is 12 cm, replacing that we get:

[tex]\sf V = \huge \text(\dfrac{4}{3}\huge \text)\times3.14\times (12 \ cm)^3=7,234.56 \ cm^3[/tex]

Then, to fully inflate the ball, we need 7,234.56 cm³ of air.

If you want to learn more about spheres, kindly check out the link below:

https://brainly.com/question/32048555

Calculate ( – 5+ 6i)". Give your answer in a + bi form, and please show your answers to 2 decimal places (if necessary). Calculate ( - 3 + 6i)". Give your answer in a + bi form, and please show yo

Answers

(-5 + 6i): The solution is (-5 + 6i) in the form of a + bi. The real part, a, is -5, and the imaginary part, b, is 6. Therefore, the complex number (-5 + 6i) satisfies the required format a + bi.

In the given complex number (-5 + 6i), the real part, represented by 'a', is -5, indicating the horizontal position on the complex plane. The imaginary part, denoted by 'b', is 6, which represents the vertical position on the complex plane. By expressing the complex number in the form of a + bi, we can clearly separate the real and imaginary components.

The complex number (-5 + 6i) can be visualized as a point on the complex plane where the horizontal axis corresponds to the real part and the vertical axis represents the imaginary part. In this case, the point lies on the left side of the real axis and above the imaginary axis. This notation allows us to work with complex numbers in a more systematic and convenient manner, enabling mathematical operations such as addition, subtraction, multiplication, and division to be performed easily.

Overall, representing complex numbers in the form of a + bi allows us to understand their structure and properties more effectively, facilitating calculations and visualizations on the complex plane.

Learn more about Complex Number : brainly.com/question/20566728

#SPJ11

3. Find the first and second partial derivatives of the function g(x, y)=cos(x² + y²)-sin(xy).

Answers

First partial derivatives:

∂g/∂x = -2x sin(x² + y²) - y cos(xy)

∂g/∂y = -2y sin(x² + y²) - x cos(xy)

Second partial derivatives:

∂²g/∂x² = -2 sin(x² + y²) - 4x² cos(x² + y²) + y² sin(xy)

∂²g/∂y² = -2 sin(x² + y²) - 4y² cos(x² + y²) + x² sin(xy)

∂²g/∂x∂y = -2xy cos(x² + y²) - x sin(xy) - x sin(x² + y²)

∂²g/∂y∂x = ∂²g/∂x∂y (by the symmetry of mixed partial derivatives)

To find the first partial derivatives, we differentiate the function g(x, y) with respect to each variable, x and y, while treating the other variable as a constant. The derivative of cos(x² + y²) with respect to x is -2x sin(x² + y²) due to the chain rule. Similarly, the derivative of sin(xy) with respect to x is -y cos(xy). The partial derivative with respect to y can be found in a similar manner.

To find the second partial derivatives, we differentiate the first partial derivatives with respect to x and y again. For example, to find ∂²g/∂x², we differentiate ∂g/∂x with respect to x. We apply the chain rule and product rule to obtain the expression -2 sin(x² + y²) - 4x² cos(x² + y²) + y² sin(xy). The other second partial derivatives are computed similarly.

The second partial derivatives provide information about the curvature and rate of change of the function in different directions.

LEARN MORE ABOUT derivative here: brainly.com/question/29020856

#SPJ11

please answer all for thumbs up
y², then all line segments comprising the slope field will hae a non-negative slope. O False O True If the power series C₁ (z+1)" diverges for z=2, then it diverges for z = -5 O False O True If the

Answers

1. The statement "If y², then all line segments comprising the slope field will have a non-negative slope." is true.

2. The statement "If the power series C₁(z+1)^n diverges for z=2, then it diverges for z=-5." is false.


1. "If y², then all line segments comprising the slope field will have a non-negative slope."

This statement is True. If the differential equation involves y², the slope field will have a non-negative slope since y² is always non-negative (i.e., positive or zero) regardless of the value of y. As a result, the line segments representing the slope field will also have non-negative slopes.

2. "If the power series C₁(z+1)^n diverges for z=2, then it diverges for z=-5."

This statement is False. The convergence or divergence of a power series depends on the specific values of z and the properties of the series. If the series diverges for z=2, it does not guarantee divergence for z=-5. To determine the convergence or divergence for z=-5, you would need to analyze the series at this specific value, possibly using a convergence test like the Ratio Test, Root Test, or other relevant methods.

To learn more about differential equation visit : https://brainly.com/question/1164377

#SPJ11

Which is NOT a condition / assumption of the chi-square test for two-way tables? a.Large enough expected counts b.Normal data or large enough sample size c.None of these options: all three conditions / assumptions are necessary d.Random sample(s) of individuals that fall into just once cell of the table

Answers

The option that is NOT a condition/assumption of the chi-square test for two-way tables is: d. Random sample(s) of individuals that fall into just one cell of the table.

In the chi-square test for two-way tables, it is not required that the sample consists of individuals who fall into just one cell of the table. The chi-square test analyzes the association between two categorical variables in a contingency table. The conditions/assumptions for the chi-square test are:

a. Large enough expected counts: The expected frequency for each cell in the table should be at least 5 or higher. This ensures that the chi-square test statistic follows the chi-square distribution.

b. Normal data or large enough sample size: The chi-square test is based on an asymptotic distribution and works well for large sample sizes. However, it is not dependent on the assumption of normality.

c. None of these options: all three conditions/assumptions are necessary: This is an incorrect option because the assumption of normality is not necessary for the chi-square test. The other two conditions (large enough expected counts and random sample) are indeed necessary for the validity of the test.

To know more about chi-square test, visit:

https://brainly.com/question/32120940

#SPJ11

5. Evaluate the following integrals: a) ſ(cos’x)dx b) ſ (tanº x)(sec"" x)dx 1 c) S x? 181 dx d) x-2 -dx x² + 5x+6° 5 18d2 3.2 +2V e)

Answers

a)  the integral of cos^2 x is (1/2)(x + (1/2)sin(2x)) + C.

a) ∫(cos^2 x) dx:

We can use the identity cos^2 x = (1 + cos(2x))/2 to simplify the integral.

∫(cos^2 x) dx = ∫((1 + cos(2x))/2) dx

              = (1/2) ∫(1 + cos(2x)) dx

              = (1/2)(x + (1/2)sin(2x)) + C

Therefore, the integral of cos^2 x is (1/2)(x + (1/2)sin(2x)) + C.

b) ∫(tan(x)sec(x)) dx:

We can rewrite tan(x)sec(x) as sin(x)/cos(x) * 1/cos(x).

∫(tan(x)sec(x)) dx = ∫(sin(x)/cos^2(x)) dx

Using the substitution u = cos(x), du = -sin(x) dx, we can simplify the integral further:

∫(sin(x)/cos^2(x)) dx = -∫(1/u^2) du

                     = -(1/u) + C

                     = -1/cos(x) + C

Therefore, the integral of tan(x)sec(x) is -1/cos(x) + C.

c) ∫(x√(x^2 + 1)) dx:

We can use the substitution u = x^2 + 1, du = 2x dx, to simplify the integral:

∫(x√(x^2 + 1)) dx = (1/2) ∫(2x√(x^2 + 1)) dx

                  = (1/2) ∫√u du

                  = (1/2) * (2/3) u^(3/2) + C

                  = (1/3)(x^2 + 1)^(3/2) + C

Therefore, the integral of x√(x^2 + 1) is (1/3)(x^2 + 1)^(3/2) + C.

d) ∫(x^2 - 2)/(x^2 + 5x + 6) dx:

We can factor the denominator:

x^2 + 5x + 6 = (x + 2)(x + 3)

Using partial fraction decomposition, we can rewrite the integral:

∫(x^2 - 2)/(x^2 + 5x + 6) dx = ∫(A/(x + 2) + B/(x + 3)) dx

Multiplying through by the common denominator (x + 2)(x + 3), we have:

x^2 - 2 = A(x + 3) + B(x + 2)

Expanding and equating coefficients:

x^2 - 2 = (A + B) x + (3A + 2B)

Comparing coefficients:

A + B = 0    (coefficient of x)

3A + 2B = -2 (constant term)

Solving this system of equations, we find A = -2/5 and B = 2/5.

Substituting back into the integral:

∫(x^2 - 2)/(x^2 + 5x + 6) dx = ∫(-2/5)/(x + 2) + (2/5)/(x + 3) dx

                            = (-2/5)ln|x + 2| + (2/5)ln|x + 3|

to know more about integral visit:

brainly.com/question/31059545

#SPJ11

5. [-/1 Points] DETAILS LARCALC11 13.3.007. MY NOTES Explain whether or not the Quotient Rule should be used to find the partial derivative. Do not differentiate. ax-y ay x2 + 87 Yes, the function is

Answers

The Quotient Rule should be used to find the partial derivative of the function.

The Quotient Rule is a rule used for finding the derivative of a quotient of two functions. It states that if we have a function of the form [tex]f(x) = g(x) / h(x)[/tex], where both g(x) and h(x) are differentiable functions, then the derivative of f(x) with respect to x is given by:

[tex]f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / (h(x))^2[/tex]

In the given function, [tex]f(x, y) = (ax - y) / (ay + x^2 + 87)[/tex], we have a quotient of two functions, namely [tex]g(x, y) = ax - y[/tex] and [tex]h(x, y) = ay + x^2 + 87[/tex]. Both g(x, y) and h(x, y) are differentiable functions with respect to x and y.

Therefore, to find the partial derivative of f(x, y) with respect to x or y, we can apply the Quotient Rule by differentiating g(x, y) and h(x, y) individually, and then substituting the derivatives into the Quotient Rule formula.

Note that this explanation only states the rule that should be used and does not actually differentiate the function.

Learn more about quotient rule, below:

https://brainly.com/question/30278964

#SPJ11

13. Consider the parametric curve C: x = t sint, y = t cost, Osts 27. (a) Use parametric equations to find dy dx (b) Find the equation of the tangent line to the given curve when t = 7/6. (c) Find the

Answers

The correct  [tex]\frac{dy}{dx} = \frac{6\sqrt{3} -\pi}{6+\pi\sqrt{3} }[/tex] and the equation of the tangent line is[tex]y =\frac{6\sqrt{3}-\pi }{6+\pi\sqrt{3} } (x-\frac{\pi}{12} )[/tex].

Given:

x = t sint, y = t cost , 0 ≤ t ≤ 2π

dx/dt =  t cost +  t sint

dy/dt = - sint + cost

dy/dx = (dy/dt )/dx/dt

dy/dx =( - sint + cost) / (t cost +  t sint)

At t = 7/6

dy/dx = [- π/6 sinπ/6 + cos π/6] ÷ [π/6 cos π/6 + sinπ/6]

       [tex]\frac{dy}{dx} = \frac{6\sqrt{3} -\pi}{6+\pi\sqrt{3} }[/tex]

At t = π/6, x = π/12, y = π [tex]\sqrt{3}[/tex] /12

Equation of tangent line.

at (π/12),

with slope m = [tex]\frac{6\sqrt{3} -\pi}{6+\pi\sqrt{3} }[/tex]

y - y₁ = m(x - x₁)

y =  [tex]\frac{-\pi\sqrt{3} }{12} = \frac{6\sqrt{3}-\pi }{6+\pi\sqrt{3} } (x-\frac{\pi}{12} )[/tex]

Therefore, the equation of the tangent line to the given curve is  

[tex]y =\frac{6\sqrt{3}-\pi }{6+\pi\sqrt{3} } (x-\frac{\pi}{12} )[/tex]

Learn more about the tangent line here:

https://brainly.com/question/32491902

#SPJ4

Bradley entered the following group of values into the TVM solver of his graphing calculator and N equals 36 I percent equals 0.8 PV equals PMT equals -350 FB equals 0P/Y equals 12 C/Y equals 12 PMT equals N which of these problems could he be trying to solve

Answers

The problem that Bradley could he be trying to solve is C. A person can afford a $350-per-month loan payment. If she is

being offered a 3-year loan with an APR of 0.8%, compounded monthly, what is the most money that she can borrow?

How to explain the information

From the information, Bradley entered the following group of values into the TVM Solver of his graphing calculator. N = 36; 1% = 0.8; PV =; PMT = -350; FV = 0; P/Y = 12; C/Y = 12; PMT:END.

Based on this, a person can afford a $350-per-month loan payment. If she is being offered a 3-year loan with an APR of 0.8%.

The correct option is C

Learn more about APR on

https://brainly.com/question/13593832

#SPJ1

Bradley entered the following group of values into the TVM Solver of his

graphing calculator. N = 36; 1% = 0.8; PV =; PMT = -350; FV = 0; P/Y = 12; C/Y

= 12; PMT:END. Which of these problems could he be trying to solve?

O

A. A person can afford a $350-per-month loan payment. If she is

being offered a 36-year loan with an APR of 9.6%, compounded

monthly, what is the most money that she can borrow?

O

B. A person can afford a $350-per-month loan payment. If she is

being offered a 3-year loan with an APR of 9.6%, compounded

monthly, what is the most money that she can borrow?

O

C. A person can afford a $350-per-month loan payment. If she is

being offered a 3-year loan with an APR of 0.8%, compounded

monthly, what is the most money that she can borrow?

D. A person can afford a $350-per-month loan payment. If she is

being offered a 36-year loan with an APR of 0.8%, compounded

Consider the ordered bases B = {1, 2, x?} and C = {1, (x - 1), (x - 1)} for P2. (a) Find the transition matrix from C to B. ] (b) Find the transition matrix from B to C. (c) Write p(x)

Answers

In this problem, we are given two ordered bases B and C for the vector space P2. We need to find the transition matrix from C to B, the transition matrix from B to C, and write a polynomial p(x) in terms of the basis C.

(a) To find the transition matrix from C to B, we express each vector in basis C as a linear combination of the vectors in basis B. This gives us a matrix where each column represents the coefficients of the vectors in basis B when expressed in terms of basis C.

(b) To find the transition matrix from B to C, we do the opposite and express each vector in basis B as a linear combination of the vectors in basis C. This gives us another matrix where each column represents the coefficients of the vectors in basis C when expressed in terms of basis B.

(c) To write a polynomial p(x) in terms of the basis C, we express p(x) as a linear combination of the vectors in basis C, with the coefficients being the entries of the transition matrix from B to C.

By calculating the appropriate linear combinations and coefficients, we can find the transition matrices and write p(x) in terms of the basis C.

Learn more about matrix here : brainly.com/question/29132693

#SPJ11

For which situations would it be appropriate to calculate a probability about the difference in sample means?

1) Both population shapes are unknown. N1 = 50 and n2 = 100. 2) Population 1 is skewed right and population 2 is approximately Normal. N1 = 50 and n2 = 10. 3) Both populations are skewed right. N1 = 5 and n2 = 10. 4) Population 1 is skewed right and population 2 is approximately Normal. N1 = 10 and n2 = 50. 5) Both populations have unknown shapes. N1 = 50 and n2 = 100. 6) Both populations are skewed left. N1 = 5 and n2 = 40

Answers

Calculating a probability about the difference in means may not be appropriate for these situations.

Calculating a probability about the difference in sample means would be appropriate in situations where we are comparing two samples and want to know if the difference between the means is statistically significant.

In situation 1, where both population shapes are unknown and N1 = 50 and n2 = 100, we can use the central limit theorem to approximate a normal distribution for the sample means, making it appropriate to calculate a probability about the difference in means.

In situation 2, where population 1 is skewed right and population 2 is approximately normal, N1 = 50 and n2 = 10, we can still use the central limit theorem to approximate a normal distribution for the sample means, even though the populations are not normal.

In situation 4, where population 1 is skewed right and population 2 is approximately normal, N1 = 10 and n2 = 50, we can also use the central limit theorem to approximate a normal distribution for the sample means.

In situation 5, where both populations have unknown shapes and N1 = 50 and n2 = 100, we can again use the central limit theorem to approximate a normal distribution for the sample means.

However, in situations 3 and 6, where both populations are skewed right and left respectively, with small sample sizes (N1 = 5 and n2 = 10, N1 = 5 and n2 = 40), it may not be appropriate to use the central limit theorem, as the sample means may not be normally distributed.

To learn more about : probability

https://brainly.com/question/251701

#SPJ8

The function f has a Taylor series about x-1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, f(1) ==> ². f(n)(1) = ( − 1)~ (n − 1)! for n 22. 27 Which one of the following is the Taylor series of f(x) about x=1? (-1)n=0 2n! -(x-1)1+ Σ 1+ Σ 1+ O O O M8 Σ(-1) (x - 1)? n! (n −1)! (-1)(n-1)! (x-1)2n (-1)(x-1)n=1 Ž n=12n
Expert Answer

Answers

The correct answer is:
(-1)^(n-1)(x-1)^n/(n-1)!, where n ranges from 1 to infinity. The Taylor series of f(x) about x=1 is given by:


f(x) = Σ((-1)^(n-1)(x-1)^n)/(n-1)!, where n ranges from 1 to infinity.
We know that f(1) = 1, so we can plug in x=1 to the Taylor series to find the constant term:
f(1) = Σ((-1)^(n-1)(1-1)^n)/(n-1)!
1 = 0, since any term with (1-1)^n will be 0.
Next, we need to find the first few derivatives of f(x) evaluated at x=1:
f'(x) = Σ((-1)^(n-1)n(x-1)^(n-1))/(n-1)!
f''(x) = Σ((-1)^(n-1)n(n-1)(x-1)^(n-2))/(n-1)!
f'''(x) = Σ((-1)^(n-1)n(n-1)(n-2)(x-1)^(n-3))/(n-1)!
We can see a pattern emerging in the coefficients of the derivatives:
f^(n)(1) = (-1)^(n-1)(n-1)!
This matches the information given in the problem statement.
So, we can now plug in these derivatives to the Taylor series formula:
f(x) = f(1) + f'(1)(x-1) + f''(1)(x-1)^2/2! + f'''(1)(x-1)^3/3! + ...
f(x) = 1 + Σ((-1)^(n-1)n(x-1)^(n-1))/(n-1)! + Σ((-1)^(n-1)n(n-1)(x-1)^(n-2))/(n-1)! * (x-1)^2/2! + Σ((-1)^(n-1)n(n-1)(n-2)(x-1)^(n-3))/(n-1)! * (x-1)^3/3! + ...
Simplifying this expression, we get:
f(x) = Σ((-1)^(n-1)(x-1)^n)/(n-1)!, where n ranges from 1 to infinity.
This matches the Taylor series given in the answer choices. Therefore, the correct answer is:
(-1)^(n-1)(x-1)^n/(n-1)!, where n ranges from 1 to infinity.

To know more about Taylor visit:

https://brainly.com/question/31755153

#SPJ11

Let R be the region bounded by the x-axis, the curve y 3004, and the lines a = 1 and 2 :-1. Set up but do not evaluate the integral representing the volume of the solid generated by

Answers

Integral represented by volume of solid in the curve is 23.99 cubic units.

The given region R is bounded by the x-axis, the curve [tex]y=3x^2+4[/tex], and the lines x=1 and x=2. Here, we are required to set up an integral to represent the volume of the solid generated by revolving this region around the y-axis.The figure for the region is shown below:

The region R is a solid of revolution since it is being revolved around the y-axis. Let us take a thin strip of width dx at a distance x from the y-axis as shown in the figure below: The length of this strip is the difference between the y-coordinates of the curve and the x-axis at x.

This is given by [tex](3x^2 + 4) - 0 = 3x^2 + 4[/tex]. The volume of the solid generated by revolving this strip around the y-axis is given by: [tex]dV = πy^2 dx[/tex] [where y = distance from the y-axis to the strip]∴ d[tex]V = π(x^2)(3x^2 + 4) dx[/tex]

Now, the integral representing the volume of the solid generated by revolving the region R around the y-axis is given by:

[tex]V = ∫(2-1) π(x^2)(3x^2 + 4) dx= π ∫(2-1) (3x^4 + 4x^2) dx= π [x^5/5 + (4/3)x^3] [from x=1 to x=2]= π [(32/5) + (32/3) - (4/5) - (4/3)]∴ V = π [(96/15) + (160/15) - (4/5) - (4/3)]≈[/tex] 23.99 cubic units.

Hence, the integral representing the volume of the solid generated by revolving the given region R around the y-axis is given by:

V =[tex]∫(2-1) π(x^2)(3x^2 + 4) dx= π ∫(2-1) (3x^4 + 4x^2) dx= π [x^5/5 + (4/3)x^3] [from x=1 to x=2]= π [(32/5) + (32/3) - (4/5) - (4/3)][/tex]

Therefore volume = 23.99 cubic units.

Learn more about curve here:

https://brainly.com/question/17331883


#SPJ11

Other Questions
what are the key elements of a quality improvement initiative according to the flynn partition, a single-thread cpu core with vector extensions like avx2 would be classified as: simd misd sisd mimd plants evolved from ancestral protists that were closely related to Carson uses debt and common equity. It can borrow unlimited amount at rd = 9% as long as it finances at its target capital structure - 25% debt and 75% common equity. Its last common stock dividend was $1.50. Dividend for this year is expected to be $1.59 and will grow at the same constant rate in the future. Its common stock is selling for $25 per share; its tax rate is 25%. Estimate Carson's WACC. 10.96% 12.33% 10.25% 1165% 12.17% QuestionWhich statement is true based on the information presenting in the graph below100 POINTS + BRAINLIEST Buyers of municipal bonds would normally NOT include:Insurance companiesBanksDefined benefit plansMutual funds For maximum efficiency and performance, a highly tuned and specialized application needs to run on a system capable of handling exactly 16 threads at the same time from the operating system. Which two of the following will best meet the specified requirement?A motherboard with four dual-core processorsA system board with two quad-core processorsA system with a 64-bit operating system installedA motherboard with two 8-core processorsA system board with four quad-core processors Evaluate the integral by interpreting it in terms of areas. L' -x) dx -6 Problem #5: In the equation f(x) = e* ln(11x) ex*+* + log(6x), find f'(3). (5 pts.) Solution: Reason: Honky Tonk Central Inc. has a position in a stock portfolio comprising the companies listed in Table 1. Correlation coefficients between stock returns are given in the correlation matrix. Table 1 Stock Tootsie's Layla's Robert's Position ($m) 23 Daily Volatility 1.00% 19 1.45% 16 1.34% Robert's Correlation Matrix Tootsie's Layla's Tootsie's 1 0.60 Layla's Robert's 0.65 1 0.75 1 (a) Calculate the 10-day 99% value at risk (VaR) for the portfolio and interpret your results. (40 marks) (b) Calculate the 10-day 99% VaR for equivalent positions in the individual assets and demonstrate the benefits of diversification. (c) Discuss the benefits and limitations of the model building approach to VaR. Use part I of the Fundamental Theorem of Calculus to find the derivative of 6x F(x) [*cos cos (t) dt. x F'(x) = = - Given the geometric sequence below, determine the common ratio and explicit formula for the nth term an, assuming that the pattern of the first few terms continues: {2, - 12, 72, 432, ...} T an r(t)= ln (1/(t+1)^1/2) i+ sin (2t^2+t) j -1/(t+1)^6 k, Find Tangent, Normal, and Binormal at t=1 Urban counties may provide traditional city services to the areas not within the boundaries of cities, otherwise known as A. city limit areas. B. incorporated areas. C. unincorporated areas. D. nonurban areas. MINI-CASE GEORGE WASHINGTON, DISTILLER AND SEVENTH CAREER ENTREPRENEURS When he stepped off the podium in front of Federal Hall in New York City on March 4, 1797, George Washington was probably thinking not about the presidency he just handed over to John Adams, but about his audacious plan to start a new career to rescue his Virginia farm, Mount Vernon, from bank- ruptcy. For Washington, farmer, surveyor, soldier, commander, legislator, and president, this new role might be called his seventh career, but it was necessary. Washington had owned a plantation for much of his adult life, and he tried to get back to it between stints as the nation's top general and as president. By the time he could retire to Mount Vernon, he discovered the business was in trouble. The number of people for whom he was responsible had grown from 10 when he inherited the farm to 300 as he left the presidency. Unfortunately his land-holding size and productivity had not kept pace. He was facing bankruptcy. Knowing this even as he was preparing to end his term, Washington picked up on the idea of a dis- tillery when James Anderson, a Scottish immigrant to Virginia, pitched the idea. Washington had shown himself supportive of inventions, having developed new ways of training mules and preparing wheat for market. He had even received America's third patent. Anderson's idea made financial sense. Taxes on imported rum were high, and this was putting a crimp in the average American's drinking habits. Back in 1797, the average American was annually drinking 5 gallons of distilled spirits like rum and whiskey (today the average is 1.8 gallons). So there was a ready market. So, working with Anderson, Washington started with two small stills in 1797 making a 110-proof rye whiskey. Production grew in 1799 to 11,000 gallons sold in two versions (50 cents/gallon for regular and $1/gallon for premium whiskey) and to $7,500 profit made, making Washington America's leading distiller. While Anderson could handle the role of running the distillery itself, the business side was in Washington's hands. Unfortunately, he failed to train a successor. Then Washington died on December 14, 1799. The distillery passed into several hands but began a seemingly unstoppable decline and was closed for good in 1814 3. At his death, Washington's distillery was the largest in the United States. Did this make Washington a high-growth entrepreneur or a small business owner? Why? Memo:Requirements: Create a memo and discuss in one page the option you selected, why you selected this option , and hw it will impact the overall Revenue Cycle process at your organization. Reference key learnings from the textbook, lectures, and additional resources provided in your response.Revenue Cycle Management Project- excel supportQuestion 1-Option 3Cost of implementation -$250000Subscription Cost: 1500 per month for 10 yearsNet Patient Services Revenue increase YoY 7.5%Year 1Year 5Year 10This option includes incremental headcount of two people and additional system training. The system implementation would track and prevent errors upon billing. if you implement this option, billing errors will be reduced by 25%. In addition this option will provide the organization with additional system protection using the third party cloud services.Option 2Cost of implementation $50000Subscription Cost: 2000 per month for 10 yearsNet Patient Services Revenue increase YoY 3%Year 1Year 5Year 10This option involves using existing headcount, which will require additional training. The system implementation would track and prevent errors upon billing coding. If you implement this option , billing errors would be reduced by 15%.Option 1Cost of implementation $100000Subscription Cost: 1000 per month for 10 yearsNet Patient Services Revenue increase YoY 5%Year 1Year 5Year 10This option includes incremental headcount in the Billing Department and the implementation of a system that would track and prevent errors upon billing coding. If you implement this option, billing errors would be reduced by 20%. Which of the following methods of applying the cost-plus approach to product pricing includes selling expenses, administrative expenses, and desired profit in the markup? Oa. total cost method Ob. variable cost method Oc. product cost method Od. demand-based method the discovery of iguanodon teeth sent a powerful message that A chemical reaction can be concisely represented by a chemical ____The substances that undergo a chemical change are the ___The new substances formed in a chemical reaction are the ____In accordance with the law of conservation of __ , a chemical equation must be balancedwhen balancing an equation, you place ____ in front of reactants and products so that the same number of atoms of each element are on each side of the equation repeat part a for a bass viol, which is typically played by a person standing up. the portion of a bass violin string that is free to vibrate is about 1.0 m long. the g2 string produces a note with frequency 98 hz when vibrating in its fundamental standing wave. Steam Workshop Downloader