0 The equation of the plane through the points -0 0-0 and can be written in the form Ax+By+Cz=1 2 doon What are A 220 B B 回回, and C=

Answers

Answer 1

The equation of the plane passing through the points (-0, 0, -0) and (1, 2) can be written in the form Ax + By + Cz = D, where A = 0, B = -1, C = 2, and D = -2.

To find the equation of a plane passing through two given points, we can use the point-normal form of the equation, which is given by:

Ax + By + Cz = D

We need to determine the values of A, B, C, and D. Let's first find the normal vector to the plane by taking the cross product of two vectors formed by the given points.

Vector AB = (1-0, 2-0, 0-(-0)) = (1, 2, 0)

Since the plane is perpendicular to the normal vector, we can use it to determine the values of A, B, and C. Let's normalize the normal vector:

||AB|| = sqrt(1^2 + 2^2 + 0^2) = sqrt(5)

Normal vector N = (1/sqrt(5), 2/sqrt(5), 0)

Comparing the coefficients of the normal vector with the equation form, we have A = 1/sqrt(5), B = 2/sqrt(5), and C = 0. However, we can multiply the equation by any non-zero constant without changing the plane itself. So, to simplify the equation, we can multiply all the coefficients by sqrt(5):

A = 1, B = 2, and C = 0.

Now, we need to determine D. We can substitute the coordinates of one of the given points into the equation:

11 + 22 + 0*D = D

5 = D

Therefore, D = 5. The final equation of the plane passing through the given points is:

x + 2y = 5

Learn more about equation of a plane:

https://brainly.com/question/32163454

#SPJ11

The complete question is:

A Plane Passes Through The Points (-0,0,-0), And (1,2).  Find An Equation For The Plane.


Related Questions

What is the volume of this sphere?

Use ​ ≈ 3.14 and round your answer to the nearest hundredth.

22 ft

Answers

The calculated volume of the sphere is 44602.24 ft³

How to determine the volume of the sphere

From the question, we have the following parameters that can be used in our computation:

Radius = 22 ft

The volume of a sphere can be expressed as;

V = 4/3πr³

Where

r = 22

substitute the known values in the above equation, so, we have the following representation

V = 4/3π * 22³

Evaluate

V = 44602.24

Therefore the volume of the sphere is 44602.24 ft³

learn more about volume from

brainly.com/question/10171109

#SPJ1




10. Show that the following limit does not exist: my cos(y) lim (x, y) = (0,0) x2 + y2 11. Evaluate the limit or show that it does not exist: ry? lim (x, y)–(0,0) .22 + y2 12.Evaluate the following

Answers

For question 10, we need to show that the limit lim(x, y)→(0,0) of (xy cos(y))/(x^2 + y^2) does not exist.

For question 11, we need to evaluate the limit lim(x, y)→(0,0) of (x^2 + y^2)/(x^2 + y^2 + xy).

For question 12, the evaluation of the limit is not specified.

10. To show that the limit does not exist, we can approach (0,0) along different paths and obtain different results. For example, approaching along the y-axis (x = 0), the limit becomes lim(y→0) of (0 * cos(y))/(y^2) = 0. However, approaching along the line y = x, the limit becomes lim(x→0) of (x * cos(x))/(2x^2) = lim(x→0) of (cos(x))/(2x) which does not exist.

To evaluate the limit, we can simplify the expression: lim(x, y)→(0,0) of (x^2 + y^2)/(x^2 + y^2 + xy) = lim(x, y)→(0,0) of 1/(1 + (xy/(x^2 + y^2))). Since the denominator approaches 1 as (x, y) approaches (0, 0), the limit becomes 1/(1 + 0) = 1.

The evaluation of the limit is not specified, so the limit remains undefined until further clarification or computation is provided.

Learn more about limit here:

https://brainly.com/question/12207558

#SPJ11

Trouble Solving This
4) The cost of making x items is C(x)=15+2x. The cost p per item and the number made x are related by the equation p+x=25. Profit is then represented by px-C(x) [revenue minus cost]. a) Find profit as

Answers

The profit, represented by [tex]px - C(x)[/tex], can be calculated using the cost function  [tex]C(x) = 15 + 2x[/tex]  and the equation [tex]p + x = 25[/tex]. The specific expression for profit will depend on the values of p and x.

[tex]C(x) = 15 + 2x[/tex]

To find the profit, we need to substitute the given equations into the profit equation [tex]px - C(x)[/tex]. Let's solve it step by step:

From the equation [tex]p + x = 25[/tex], we can rearrange it to solve for p:

[tex]p = 25 - x[/tex]

Now, substitute this value of p into the profit equation:

Profit [tex]= (25 - x) * x - C(x)[/tex]

Next, substitute the cost function :

Profit [tex]= (25 - x) * x - (15 + 2x)[/tex]

Expanding the equation:

Profit [tex]= 25x - x^2 - 15 - 2x[/tex]

Simplifying further:

Profit [tex]= -x^2 + 23x - 15[/tex][tex]= -x^2 + 23x - 15[/tex]

The resulting expression represents the profit as a function of the number of items made, x. It is a quadratic equation with a negative coefficient for the [tex]x^2[/tex] term, indicating a downward-opening parabola. The specific values of x will determine the maximum or minimum point of the parabola, which corresponds to the maximum profit.

Learn more about parabola, below:

https://brainly.com/question/21685473

#SPJ11








61-64 Find the points on the given curve where the tangent line is horizontal or vertical. 61. r = 3 cose 62. r= 1 - sin e r =

Answers

For the curve given by r = 3cos(e), the tangent line is horizontal when e = π/2 + nπ, where n is an integer. The tangent line is vertical when e = nπ, where n is an integer.

To find the points on the curve where the tangent line is horizontal or vertical, we need to determine the values of e that satisfy these conditions.

For the curve r = 3cos(e), the slope of the tangent line can be found using the polar derivative formula: dr/dθ = (dr/de) / (dθ/de). In this case, dr/de = -3sin(e) and dθ/de = 1. Thus, the slope of the tangent line is given by dy/dx = (dr/de) / (dθ/de) = -3sin(e).

A horizontal tangent line occurs when the slope dy/dx is equal to zero. Since sin(e) ranges from -1 to 1, the equation -3sin(e) = 0 has solutions when sin(e) = 0, which happens when e = π/2 + nπ, where n is an integer.

A vertical tangent line occurs when the slope dy/dx is undefined, which happens when the denominator dθ/de is equal to zero. In this case, dθ/de = 1, and there are no restrictions on e. Thus, the tangent line is vertical when e = nπ, where n is an integer.

Therefore, for the curve r = 3cos(e), the tangent line is horizontal when e = π/2 + nπ, and the tangent line is vertical when e = nπ, where n is an integer.

Learn more about integer here:

https://brainly.com/question/490943

#SPJ11

what is the probability, to the nearest hundredth, that a point chosen randomly inside the rectangle is in the triangle?

Answers

The probability that a point chosen randomly inside the rectangle is in the triangle is 1/3, or approximately 0.33 to the nearest hundredth.


The probability that a point chosen randomly inside the rectangle is in the triangle is equal to the area of the triangle divided by the area of the rectangle.

To find the area of the triangle, we need to first find its base and height. The base of the triangle is the length of the rectangle, which is 8 units. To find the height, we need to draw a perpendicular line from the top of the rectangle to the base of the triangle. This line has a length of 4 units. Therefore, the area of the triangle is (1/2) x base x height = (1/2) x 8 x 4 = 16 square units.

The area of the rectangle is simply the length times the width, which is 8 x 6 = 48 square units.

Therefore, the probability that a point chosen randomly inside the rectangle is in the triangle is 16/48, which simplifies to 1/3.


In conclusion, the probability that a point chosen randomly inside the rectangle is in the triangle is 1/3, or approximately 0.33 to the nearest hundredth.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

II. Show that: 1. sin6x = 2 sin 3x cos 3x 2. (cosx- sinx) =1-sin 2x 3 sin(x+x)=-sinx

Answers

The identity sin6x = 2 sin 3x cos 3x can be proven using the double-angle identity for sine and the product-to-sum identity for cosine.

The identity (cosx- sinx) = 1 - sin 2x can be derived by expanding and simplifying the expression on both sides of the equation.

The identity sin(x+x) = -sinx can be derived by applying the sum-to-product identity for sine.

To prove sin6x = 2 sin 3x cos 3x, we start by using the double-angle identity for sine: sin2θ = 2sinθcosθ. We substitute θ = 3x to get sin6x = 2 sin(3x) cos(3x), which is the desired result.

To prove (cosx- sinx) = 1 - sin 2x, we expand the expression on the left side: cosx - sinx = cosx - (1 - cos 2x) = cosx - 1 + cos 2x. Simplifying further, we have cosx - sinx = 1 - sin 2x, which verifies the identity.

To prove sin(x+x) = -sinx, we use the sum-to-product identity for sine: sin(A+B) = sinAcosB + cosAsinB. Setting A = x and B = x, we have sin(2x) = sinxcosx + cosxsinx, which simplifies to sin(2x) = 2sinxcosx. Rearranging the equation, we get -2sinxcosx = sin(2x), and since sin(2x) = -sinx, we have shown sin(x+x) = -sinx.

To learn more about cosine click here:

brainly.com/question/29114352

#SPJ11

Question 1 Below is the function f(x). 7+ 5 4 2 1 -7 -6 -5 -4 -3 -2 -1 1 2 3 456 q Over which interval of a values is f' > 0? O (2, [infinity]) O [2, [infinity]) 0 (-[infinity], 2) O(-[infinity], 2] O(-[infinity]0, [infinity]] > Next
Over wh

Answers

The function f(x) has intervals where f'(x) is greater than zero. The correct interval is (-∞, 2], which means all values less than or equal to 2.

To determine the interval where f'(x) is greater than zero, we need to find the values of x for which the derivative of f(x) is positive. The derivative of a function measures its rate of change at each point. In this case, we can see that the given function f(x) is not explicitly defined, but rather a sequence of numbers. We can interpret this sequence as a step function, where the value of f(x) changes abruptly at each integer value of x.

Since the step function changes its value at each integer, the derivative of f(x) will be zero at those points. The derivative will be positive when we move from a negative integer to a positive integer. Therefore, the interval where f'(x) is greater than zero is (-∞, 2]. This means that all values less than or equal to 2 will result in a positive derivative.

In conclusion, the correct answer is (-∞, 2]. Within this interval, f'(x) is greater than zero, indicating an increasing trend in the function.

learn more about function here:

https://brainly.com/question/31062578

#SPJ11

4 The perimeter of a certain pentagon is 10.5 centimeters. Four sides of
this pentagon have the same length in centimeters, h, and the other side
has a length of 1.7 centimeters, as shown below. Find the value of h

Show your work.

(And please show how to solve for h)

Answers

Answer:

2.2 cm

----------------------

The perimeter is the sum of all 5 sides.

Set up equation and solve for h:

10.5 = 4h + 1.74h = 10.5 - 1.74h = 8.8h = 2.2

The function f(t) = 7000 e represents the rate of flow of money in dollars per year. Assume a 10-year period at 5% compounded continuously. Find (a) the present value, and (b) the accumulated

Answers

The present value of the cash flow over a 10-year period at 5% compounded continuously is approximately $51,567.53, and the accumulated value is approximately $89,340.91.

What are the present value and accumulated value of the cash flow over a 10-year period at 5% compounded continuously?

To calculate the present value, we use the formula P = A / e^(rt), where P represents the present value, A is the future value or cash flow, r is the interest rate, and t is the time period. By substituting the given values into the formula, we can determine the present value.

The accumulated value is given by the formula A = P * e^(rt), where A represents the accumulated value, P is the present value, r is the interest rate, and t is the time period. By substituting the calculated present value into the formula, we can find the accumulated value.

Learn more about cash flow.

brainly.com/question/27994727

#SPJ11

Please provide an explanation of the steps involved.
Find the volume of the solid resulting from the region enclosed by the curves y = 6 - 2 and y = 2 being rotated about the x-axis.

Answers

According to the information, the volume of the solid resulting from the region enclosed by the curves y = 6 - 2x and y = 2 being rotated about the x-axis is (128π/3) cubic units.

How to find the volume of the solid?

To find the volume of the solid formed by rotating the region enclosed by the curves about the x-axis, we can use the method of cylindrical shells.

First, determine the limits of integration. In this case, we need to find the x-values at which the two curves intersect. Setting the equations y = 6 - 2x and y = 2 equal to each other, we can solve for x:

6 - 2x = 2-2x = -4x = 2

So, the limits of integration are x = 0 to x = 2.

Secondly, set up the integral. The volume of each cylindrical shell can be calculated as V = 2πrh, where r is the distance from the axis of rotation (x-axis) to the shell, and h is the height of the shell (the difference in y-values between the curves).

The radius r is simply x, and the height h is given by h = (6 - 2x) - 2 = 4 - 2x.

Thirdly, integrate the expression. The integral that represents the volume of the solid is:

V = ∫(from 0 to 2) 2πx(4 - 2x) dx

Simplifying this expression and integrating, we get:

V = 2π ∫(from 0 to 2) (4x - 2x²) dx= 2π [2x² - (2/3)x³] (from 0 to 2)= 2π [(2(2)² - (2/3)(2)³) - (2(0)² - (2/3)(0)³)]= 2π [(8 - (16/3)) - (0 - 0)]= 2π [(24/3 - 16/3)]= 2π (8/3)= (16π/3)

So, the volume of the solid is (16π/3) cubic units, or approximately 16.8 cubic units.

Learn more about solid in: https://brainly.com/question/28620902

#SPJ1

Set up the double or triple that would give the volume of the solid that is bounded above by z= 4 - x2 - y2 and below by z = 0 a) Using rectangular coordinates (do not evaluate) b) Convert to polar coordinates and evaluate the volume.

Answers

The double integral that would give the volume of the solid is: V = ∬ R (4 - x² - y²) dA

How to find the volume?

The volume of the solid bounded above by z = 4 - x² - y² and below by z = 0, using polar coordinates, is given by the expression: V = 2/3 a³ - (1/15) a⁵

a) Using rectangular coordinates, the double integral that would give the volume of the solid is:

V = ∬ R (4 - x² - y²) dA

where R is the region in the xy-plane that bounds the solid.

b) To convert to polar coordinates, we can express x and y in terms of r and θ:

x = r cos(θ)

y = r sin(θ)

The limits of integration for r and θ depend on the region R. Assuming the region R is a circle with radius a centered at the origin, we have:

0 ≤ r ≤ a

0 ≤ θ ≤ 2π

The volume in polar coordinates is then given by the double integral:

V = ∬ R (4 - r²) r dr dθ

where the limits of integration are as mentioned above.

Let's evaluate the volume of the solid using polar coordinates.

The double integral for the volume in polar coordinates is:

V = ∬ R (4 - r²) r dr dθ

where R is the region in the xy-plane that bounds the solid.

Assuming the region R is a circle with radius a centered at the origin, the limits of integration are:

0 ≤ r ≤ a

0 ≤ θ ≤ 2π

Now, let's evaluate the integral:

V = ∫₀²π ∫₀ʳ (4 - r²) r dr dθ

Integrating with respect to r:

V = ∫₀²π [2r² - (1/3)r⁴]₀ʳ dθ

V = ∫₀²π (2r² - (1/3)r⁴) dθ

Integrating with respect to θ:

V = [2/3 r³ - (1/15) r⁵]₀²π

V = (2/3 (a³) - (1/15) (a⁵)) - (2/3 (0³) - (1/15) (0⁵))

V = (2/3 a³ - (1/15) a⁵) - 0

V = 2/3 a³ - (1/15) a⁵

So, the volume of the solid bounded above by z = 4 - x² - y² and below by z = 0, using polar coordinates, is given by the expression:

                                          V = 2/3 a³ - (1/15) a⁵

where 'a' is the radius of the circular region in the xy-plane.

To know more about multivariable calculus, refer here:

https://brainly.com/question/31461715

#SPJ4

1. Using tife definition of derivative, check whether the given function is differentiable at the point xo=0: 1 1 a) f(x) = x[x] b) f(x) = c) f(x) = for x = 0; for x = 0 for x = 0 w* ={usin for x = 0;

Answers

Answer:

f(x) = { u√(sin(1/x)) for x ≠ 0; 0 for x = 0 is not differentiable at x₀ = 0.

Step-by-step explanation:

To check the differentiability of the given functions at the point x₀ = 0 using the definition of derivative, we need to examine if the limit of the difference quotient exists as x approaches 0.

a) f(x) = x[x]

To check the differentiability of f(x) = x[x] at x₀ = 0, we evaluate the difference quotient:

f'(0) = lim┬(x→0)⁡〖(f(x) - f(0))/(x - 0)〗

      = lim┬(x→0)⁡〖(x[x] - 0)/(x - 0)〗

      = lim┬(x→0)⁡〖x[x]/x〗

      = lim┬(x→0)⁡〖[x]〗

As x approaches 0, the value of [x] changes discontinuously. Since the limit of [x] as x approaches 0 does not exist, the limit of the difference quotient does not exist as well. Therefore, f(x) = x[x] is not differentiable at x₀ = 0.

b) f(x) = |x|

To check the differentiability of f(x) = |x| at x₀ = 0, we evaluate the difference quotient:

f'(0) = lim┬(x→0)⁡〖(f(x) - f(0))/(x - 0)〗

      = lim┬(x→0)⁡(|x| - |0|)/(x - 0)〗

      = lim┬(x→0)⁡〖|x|/x〗

As x approaches 0 from the left (negative side), |x|/x = -1, and as x approaches 0 from the right (positive side), |x|/x = 1. Since the limit of |x|/x as x approaches 0 from both sides is different, the limit of the difference quotient does not exist. Therefore, f(x) = |x| is not differentiable at x₀ = 0.

c) f(x) = √(x)

To check the differentiability of f(x) = √(x) at x₀ = 0, we evaluate the difference quotient:

f'(0) = lim┬(x→0)⁡〖(f(x) - f(0))/(x - 0)〗

      = lim┬(x→0)⁡(√(x) - √(0))/(x - 0)〗

      = lim┬(x→0)⁡〖√(x)/x〗

To evaluate this limit, we can use the property of limits:

lim┬(x→0)⁡√(x)/x = lim┬(x→0)⁡(1/√(x)) / (1/x)

                = lim┬(x→0)⁡(1/√(x)) * (x/1)

                = lim┬(x→0)⁡√(x)

                = √(0)

                = 0

Therefore, f(x) = √(x) is differentiable at x₀ = 0, and the derivative f'(x) at x₀ = 0 is 0.

d) f(x) = { u√(sin(1/x)) for x ≠ 0; 0 for x = 0

To check the differentiability of

f(x) = { u√(sin(1/x)) for x ≠ 0; 0 for x = 0 at x₀ = 0, we evaluate the difference quotient:

f'(0) = lim┬(x→0)⁡〖(f(x) - f(0))/(x - 0)〗

      = lim┬(x→0)⁡{ u√(sin(1/x)) - 0)/(x - 0)〗

      = lim┬(x→0)⁡〖u√(sin(1/x))/x〗

As x approaches 0, sin(1/x) oscillates between -1 and 1, and u√(sin(1/x))/x takes various values depending on the path approaching 0. Therefore, the limit of the difference quotient does not exist.

Hence, f(x) = { u√(sin(1/x)) for x ≠ 0; 0 for x = 0 is not differentiable at x₀ = 0.

Learn more about function:https://brainly.com/question/11624077

#SPJ11

Determine whether the equality is always true -10 1 y2 + 9 -9 -6 'O "y +9 S'ofvx-9 Sºr(x,y,z)dz dy dx = ["L!*** Sºr(x,y,z)dz dxdy. Select one: O True False

Answers

The equality you provided is not clear due to the formatting. However, based on the given expression, it appears to involve triple integrals in different orders of integration.

To determine whether the equality is always true, we need to ensure that the limits of integration and the integrand are the same on both sides of the equation.

Without specific information on the limits of integration and the integrand, it is not possible to determine if the equality is true or false. To properly evaluate the equality, we would need to have the complete expressions for both sides of the equation, including the limits of integration and the function being integrate (integrand).

If you can provide more specific information or clarify the given expression, I would be happy to assist you further in determining the validity of the equality.

Learn more about integrate here:

https://brainly.com/question/30217024

#SPJ11

(5) Determine the upward flux of F = (4.), 2) on the paraboloid that is the part of the graph of : = 9 - 12 - y above the xy-plane. Round to the nearest tenth.

Answers

The upward flux of the vector field F = (4, 2) on the paraboloid that is the part of the graph of [tex]z = 9 - x^2 - y^2[/tex] above the xy-plane is approximately [insert value] (rounded to the nearest tenth).

The upward flux of a vector field across a surface is given by the surface integral of the dot product between the vector field and the surface normal. In this case, the surface is the part of the graph of [tex]z = 9 - x^2 - y^2[/tex] that lies above the xy-plane. To find the surface normal, we take the gradient of the equation of the surface, which is ∇z = (-2x, -2y, 1).

The dot product between F and the surface normal is [tex]F · ∇z = 4(-2x) + 2(-2y) + 0(1) = -8x - 4y[/tex].

To evaluate the surface integral, we need to parametrize the surface. Let's use spherical coordinates: x = rcosθ, y = rsinθ, and [tex]z = 9 - r^2[/tex]. The outward unit normal vector is then N = (-∂z/∂r, -1/√(1 + (∂z/∂r)^2 + (∂z/∂θ)^2), -∂z/∂θ) = (-2rcosθ, 1/√(1 + 4r^2), -2rsinθ).

The surface integral becomes ∬S F · N dS = ∬D (-8rcosθ - 4rsinθ) (1/√(1 + 4r^2)) rdrdθ, where D is the projection of the surface onto the xy-plane.

Evaluating this integral is quite involved and requires integration by parts and trigonometric substitutions. Unfortunately, due to the limitations of plain text, I cannot provide the detailed step-by-step calculations. However, once the integral is evaluated, you can round the result to the nearest tenth to obtain the approximate value of the upward flux.

To learn more about paraboloid refer:

https://brainly.com/question/30655029

#SPJ11

find an equation of the sphere with center (3, −11, 6) and radius 10. Use an equation to describe its intersection with each of the coordinate planes. (If the sphere does not intersect with the plane, enter DNE.)

Answers

The equation of the sphere with center (3, -11, 6) and radius 10 is[tex](x - 3)^2 + (y + 11)^2 + (z - 6)^2 = 100[/tex]. The intersection of this sphere with each coordinate plane can be described as follows:

The equation of a sphere in three-dimensional space with center (a, b, c) and radius r is given by [tex](x - a)^2 + (y - b)^2 + (z - c)^2 = r^2[/tex]. Using this formula, we can substitute the given values into the equation to obtain[tex](x - 3)^2 + (y + 11)^2 + (z - 6)^2 = 100[/tex].

To find the intersection of the sphere with each coordinate plane, we set one of the variables (x, y, or z) to a constant value while solving for the remaining variables.

1. Intersection with the xy-plane (z = 0):

Substituting z = 0 into the equation of the sphere, we have[tex](x - 3)^2 + (y + 11)^2 + (0 - 6)^2 = 100[/tex]. Simplifying, we get [tex](x - 3)^2 + (y + 11)^2 = 64[/tex]. This represents a circle with center (3, -11) and radius 8.

2. Intersection with the xz-plane (y = 0):

Substituting y = 0, we have [tex](x - 3)^2 + (0 + 11)^2 + (z - 6)^2 = 100[/tex]. Simplifying, we get [tex](x - 3)^2 + (z - 6)^2 = 89[/tex]. This equation represents a circle with center (3, 6) and radius √89.

3. Intersection with the yz-plane (x = 0):

Substituting x = 0, we have [tex](0 - 3)^2 + (y + 11)^2 + (z - 6)^2 = 100[/tex]. Simplifying, we get [tex](y + 11)^2 + (z - 6)^2 = 85[/tex]. This equation represents a circle with center (0, -11) and radius √85.

If the sphere does not intersect with a particular coordinate plane, the corresponding equation will not have a solution, and it will be indicated as "DNE" (Does Not Exist).

Learn more about radius here: https://brainly.com/question/30106091

#SPJ11

Pr. #1) Calculate the limit without using L'Hospital's Rule. Ax3 – Br6 +5 lim 3--00 Cx3 + 1 (A,B,C > 0)

Answers

The limit without using L'Hôpital's Rule is A/C.

To calculate the limit without using L'Hôpital's Rule, we can simplify the expression and evaluate it directly. Let's break it down step by step:

The given expression is:

lim(x->∞) [(Ax^3 - Br^6 + 5) / (Cx^3 + 1)]

As x approaches infinity, we can focus on the terms with the highest power of x in both the numerator and denominator since they dominate the behavior of the expression. In this case, it is the terms with x^3.

Taking that into account, we can rewrite the expression as:

lim(x->∞) [(Ax^3 / Cx^3) * (1 - (B/C)(r^6/x^3)) + 5 / (Cx^3)]

Now, let's analyze the behavior of each term separately.

1) (Ax^3 / Cx^3):

As x approaches infinity, the ratio Ax^3 / Cx^3 simplifies to A/C. So, this term becomes A/C.

2) (1 - (B/C)(r^6/x^3)):

As x approaches infinity, the term r^6/x^3 tends to 0. Therefore, the expression becomes (1 - 0) = 1.

3) 5 / (Cx^3):

As x approaches infinity, the term 5 / (Cx^3) approaches 0 since the denominator grows much faster than the numerator.

Putting everything together, we have:

lim(x->∞) [(Ax^3 - Br^6 + 5) / (Cx^3 + 1)] = (A/C) * 1 + 0 = A/C.

The limit without applying L'Hôpital's Rule is therefore A/C.

To know more about L'Hôpital's Rule refer here:

https://brainly.com/question/29252522#

#SPJ11

Correct answer gets brainliest!!!

Answers

The correct statements about a line segment are; they connect two endpoints and they are one dimensional.

option C and D.

What is a line segment?

A line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints.

The following are characteristics of line segments;

A line segment has two definite endpoints in a line. The length of the line segment is fixed.The measure of a line segment is its lengthThe have one unit of measure, either meters, or centimeters etc.

From the given options we can see that the following options are correct about a line segment;

They connect two endpoints

They are one dimensional

Learn more about line segments here: https://brainly.com/question/2437195

#SPJ1

The time required to double the amount of an investment at an interest rate r compounded continuously is given by t = ln(2) r Find the time required to double an investment at 4%, 5%, and 6%. (Round y

Answers

The time required to double an investment at interest rates of 4%, 5%, and 6% compounded continuously is approximately 17.32 years, 13.86 years, and 11.55 years, respectively.

The formula given, t = ln(2) / r, represents the time required to double an investment at an interest rate r compounded continuously. To find the time required at different interest rates, we can substitute the values of r and calculate the corresponding values of t.

For an interest rate of 4%, we substitute r = 0.04 into the formula:

t = ln(2) / 0.04 ≈ 17.32 years

For an interest rate of 5%, we substitute r = 0.05 into the formula:

t = ln(2) / 0.05 ≈ 13.86 years

Lastly, for an interest rate of 6%, we substitute r = 0.06 into the formula:

t = ln(2) / 0.06 ≈ 11.55 years

Therefore, it would take approximately 17.32 years to double an investment at a 4% interest rate, 13.86 years at a 5% interest rate, and 11.55 years at a 6% interest rate, assuming continuous compounding.

Learn more about compound interest :

https://brainly.com/question/14295570

"Let u=
−2
12
4
and A=
4
−2
−3
5
1
1
. Is u in the plane in
ℝ3
spanned by the columns of​ A? Why or why​ not?

Answers

The answer is that u does not lie in the plane in [tex]$\mathbb{R}^3$[/tex] spanned by the columns of A.

Given that

[tex]$u = \begin{bmatrix} -2 \\ 12 \\ 4 \end{bmatrix}$ and $A = \begin{bmatrix} 4 & -2 & -3 \\ 5 & 1 & 1 \end{bmatrix}$[/tex].

We are required to determine whether $u$ lies in the plane in $\mathbb{R}^3$ spanned by the columns of $A$ or not.

A plane in [tex]$\mathbb{R}^3$[/tex] is formed by three non-collinear vectors. In this case, we can obtain two linearly independent vectors from the matrix A and then find a third non-collinear vector by taking the cross product of the two linearly independent vectors.

The resulting vector would then span the plane formed by the other two vectors.

Therefore,[tex]$$A = \begin{bmatrix} 4 & -2 & -3 \\ 5 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$[/tex]

If we perform Gaussian elimination on A, we obtain

[tex]$$\begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & -7/3 \\ 0 & 0 & 0 \end{bmatrix}$$[/tex]

The matrix has rank 2, which means the columns of A are linearly independent. Therefore, A spans a plane in [tex]$\mathbb{R}^3$[/tex] .

We can now take the cross product of the two vectors [tex]$\begin{bmatrix} 4 \\ 5 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$[/tex] that form the plane. Doing this, we obtain

[tex]$$\begin{bmatrix} 0 \\ 0 \\ 13 \end{bmatrix}$$[/tex]

This vector is orthogonal to the plane. Therefore, if u lies in the plane in [tex]$\mathbb{R}^3$[/tex] spanned by the columns of A, then u must be orthogonal to this vector. But we can see that [tex]$\begin{bmatrix} -2 \\ 12 \\ 4 \end{bmatrix}$ is not orthogonal to $\begin{bmatrix} 0 \\ 0 \\ 13 \end{bmatrix}$[/tex].

Therefore, u does not lie in the plane in [tex]$\mathbb{R}^3$[/tex] spanned by the columns of A.Hence, the answer is that u does not lie in the plane in [tex]$\mathbb{R}^3$[/tex] spanned by the columns of A.

Learn more about vectors :

https://brainly.com/question/24256726

#SPJ11

show all work
5. Find the point on the line y = 4x+1 that is closest to the point (2,5).

Answers

The point on the line y = 4x + 1 that is closest to the point (2, 5) is approximately (18/17, 89/17).

To find the point on the line y = 4x + 1 that is closest to the point (2, 5), we can use the concept of perpendicular distance.

Let's consider a point (x, y) on the line y = 4x + 1. The distance between this point and the point (2, 5) can be represented as the length of the line segment connecting them.

The equation of the line segment can be written as:

d = sqrt((x - 2)^2 + (y - 5)^2)

To find the point on the line that minimizes this distance, we need to minimize the value of d. Instead of minimizing d directly, we can minimize the square of the distance to simplify the calculations.

So, we minimize:

d^2 = (x - 2)^2 + (y - 5)^2

Now, substitute y = 4x + 1 into the equation:

d^2 = (x - 2)^2 + ((4x + 1) - 5)^2

= (x - 2)^2 + (4x - 4)^2

= x^2 - 4x + 4 + 16x^2 - 32x + 16

= 17x^2 - 36x + 20

To find the minimum point, we take the derivative of d^2 with respect to x and set it equal to zero:

d^2' = 34x - 36 = 0

34x = 36

x = 36/34

x = 18/17

Now, substitute this value of x back into y = 4x + 1 to find the corresponding y-coordinate:

y = 4(18/17) + 1

y = 72/17 + 1

y = (72 + 17) / 17

y = 89/17

Learn more about The point here:

https://brainly.com/question/24226752

#SPJ11

The marketing manager of a department store has determined that revenue, in dollars, is related to the number of units of television advertising and the number of units of newspaper advertising y by the function R(x,y) = 950(64x - 4y2 + 4xy – 3x?). Each unit of television advertising costs $1400, and each unit of newspaper advertising costs $700. If the amount spent on advertising is 59100 find the maximum revenue. + Answer How to enter your answer (Opens in new window) Tables Keypad Keyboard Shortcuts

Answers

The maximum revenue that can be achieved when the amount spent on advertising is $9100 is -($507,100).

What is the maximum revenue when amount is spent on advertising?

Given:

[tex]R(x, y) = 950(64x - 4y^2 + 4xy - 3x^2)[/tex]

Cost of each unit of television advertising = $1400

Cost of each unit of newspaper advertising = $700

Amount spent on advertising = $9100

We will find maximum revenue by knowing the values of x and y that maximize the function R(x, y) while satisfying the given conditions.

The amount spent on advertising can be expressed as:

1400x + 700y = 9100 (Equation 1)

To know maximum revenue, we must optimize the function R(x, y). Taking the partial derivatives of R(x, y) with respect to x and y:

∂R/∂x = 950(64 - 6x + 4y)

∂R/∂y = 950(-8y + 4x)

Setting both partial derivatives equal to 0, we can solve the system of equations:

∂R/∂x = 0

∂R/∂y = 0

950(64 - 6x + 4y) = 0 (Equation 2)

950(-8y + 4x) = 0 (Equation 3)

Solving Equation 2:

64 - 6x + 4y = 0

4y = 6x - 64

y = (3/2)x - 16

Solving Equation 3:

-8y + 4x = 0

-8y = -4x

y = (1/2)x

Now, substitute the values of y into Equ 1:

1400x + 700[(3/2)x - 16] = 9100

Simplifying the equation:

1400x + 1050x - 11200 = 9100

2450x = 20300

x = 8.28

Substituting value of x back into [tex]y = (3/2)x - 16[/tex]:

y = (3/2)(8.28) - 16

y = 4.92 - 16

y = -11.08

Substitute values of x and y into the revenue function R(x, y):

[tex]R(8.28, -11.08) = 950*(64*(8.28) - 4*(-11.08)^2 + 4*(8.28)*(-11.08) - 3*(8.28)^2)[/tex]

[tex]R(8.28, -11.08) = -($507,100).[/tex]

Read more about maximum revenue

brainly.com/question/29753444

#SPJ4

ill
thumbs up
Let f(2) 4 increasing and decreasing. 4.23 3 + 2xDetermine the intervals on which f is

Answers

The intervals on which f(x) is decreasing are (-∞, -3.83) and the intervals on which f(x) is increasing are (-3.83, 0) and (0, ∞).

Given the function f(x) = 4x3 + 23x2 + 3.

We need to determine the intervals on which f(x) is increasing and decreasing. We know that if a function is increasing in an interval, then its derivative is positive in that interval.

Similarly, if a function is decreasing in an interval, then its derivative is negative in that interval.

Therefore, we need to find the derivative of the function f(x).

f(x) = 4x3 + 23x2 + 3So, f'(x) = 12x2 + 46x

The critical points of the function f(x) are the values of x for which f'(x) = 0 or f'(x) does not exist.

f'(x) = 0 ⇒ 12x2 + 46x = 0 ⇒ x(12x + 46) = 0⇒ x = 0 or x = -46/12 = -3.83 (approx.)

Therefore, the critical points of f(x) are x = 0 and x ≈ -3.83.

The sign of the derivative in the intervals between these critical points will determine the intervals on which f(x) is increasing or decreasing.

We can use a sign table to determine the sign of f'(x) in each interval.x-∞-3.83 00 ∞f'(x)+-0+So, f(x) is decreasing on the interval (-∞, -3.83) and increasing on the interval (-3.83, 0) and (0, ∞).

Thus, the intervals on which f(x) is decreasing are (-∞, -3.83) and the intervals on which f(x) is increasing are (-3.83, 0) and (0, ∞).

Learn more about derivative :

https://brainly.com/question/29144258

#SPJ11

The complete question is:

Let [tex]f(x)= x^4/4-4x^3/3+2x^2[/tex] . Determine the intervals on which f is increasing and decreasing.

Given tan 0 9 4) where 0º < 0 < 360°, a) draw a sketch of the angles. Clearly show which quadrants the terminal arm of O lies in and label the principle angle and the related a

Answers

In the given trigonometric expression, tan(θ) = 9/4, where 0° < θ < 360°, we need to sketch the angles and determine in which quadrants the terminal arm of θ lies.

We also need to label the principal angle and the related acute angle.

The tangent function represents the ratio of the opposite side to the adjacent side in a right triangle. The given ratio of 9/4 means that the opposite side is 9 units long, while the adjacent side is 4 units long.

To determine the quadrants, we can consider the signs of the trigonometric ratios. In the first quadrant (0° < θ < 90°), both the sine and tangent functions are positive. Since tan(θ) = 9/4 is positive, θ could be in the first or third quadrant.

To find the principal angle, we can use the inverse tangent function. The principal angle is the angle whose tangent equals 9/4. Taking the inverse tangent of 9/4, we get θ = arctan(9/4) ≈ 67.38°.

Now, let's determine the related acute angle. Since the tangent function is positive, the related acute angle is the angle between the terminal arm and the x-axis in the first quadrant. It is equal to the principal angle, which is approximately 67.38°.

In summary, the sketch of the angles shows that the terminal arm of θ lies in either the first or third quadrant. The principal angle is approximately 67.38°, and the related acute angle is also approximately 67.38°.

To learn more about trigonometric click here:

brainly.com/question/29156330

#SPJ11

a 6 foot tall man walks toward a street light that is 16 feet above the ground at the rate of 5 ft/s. at what rate is the tip of the shadow moving?

Answers

The tip of the shadow is moving at a rate of approximately 1.36 ft/s.

Definition of the rate?

In general terms, rate refers to the measurement of how one quantity changes in relation to another quantity. It quantifies the amount of change per unit of time, distance, volume, or any other relevant unit.

Rate can be expressed as a ratio or a fraction, indicating the relationship between two different quantities. It is often denoted using units, such as miles per hour (mph), meters per second (m/s), gallons per minute (gpm), or dollars per hour ($/hr), depending on the context.

To find the rate at which the tip of the shadow is moving, we can use similar triangles.

Let's denote:

H as the height of the man (6 feet),L as the distance from the man to the street light (unknown),h as the height of the street light (16 feet),x as the distance from the man's feet to the tip of the shadow (unknown).

Based on similar triangles, we have the following ratio:

[tex]\frac{(L + x)}{ x} = \frac{(H + h)}{ H}[/tex]

Substituting the given values, we have:

[tex]\frac{(L + x)}{ x} = \frac{(6 + 16)}{ 6}=\frac{22}{6}[/tex]

To find the rate at which the tip of the shadow is moving, we need to differentiate this equation with respect to time t:

[tex]\frac{d}{dt}[\frac{(L + x)}{ x}]= \frac{d}{dt}[\frac{22}{ 6}][/tex]

To simplify the equation, we assume that L and x are functions of time t.

Let's differentiate the equation with respect to t:

[tex]\frac{[(\frac{dL}{dt} + \frac{dx}{dt})*x-(\frac{dL}{dt} + \frac{dx}{dt})*(L+x)]}{x^2}=0[/tex]

Simplifying further:

[tex](\frac{dL}{dt} + \frac{dx}{dt})= (L+x)*\frac{\frac{dx}{dt}}{x}[/tex]

We know that [tex]\frac{dx}{dt}[/tex] is given as 5 ft/s (the rate at which the man is walking towards the street light)

Now we can solve for [tex]\frac{dL}{dt}[/tex], which represents the rate at which the tip of the shadow is moving:

[tex]\frac{dL}{dt}= (L+x)*\frac{\frac{dx}{dt}}{x}- \frac{dx}{dt}[/tex]

Substituting the given values and rearranging the equation, we have:

[tex]\frac{dL}{dt}= (L+x-x)\frac{\frac{dx}{dt}}{x}[/tex]

Substituting L = 6 feet, [tex]\frac{dx}{dt}[/tex] = 5 ft/s, and solving for x:

[tex]x =\frac{22}{6}*L\\ =\frac{22}{6}*6\\ =22[/tex]

Substituting these values into the equation for [tex]\frac{dL}{dt}[/tex]:

[tex]\frac{dL}{dt}=6*\frac{5}{22}\\=\frac{30}{22}[/tex]

≈ 1.36 ft/s

Therefore, the tip of the shadow is moving at a rate of approximately 1.36 feet per second.

To learn more about the rate  from the given link

brainly.com/question/4895463

#SPJ4

Calculate the following double integral. I = I = (Your answer should be entered as an integer or a fraction.) 3 x=0 (5 + 8xy) dx dy This feedback is based on your last submitted answer. Submit your ch

Answers

To calculate the double integral ∬ (5 + 8xy) dA, where the limits of integration are x = 0 to 3 and y = 0 to 1, we integrate the function with respect to both x and y.

Integrating with respect to x, we have ∫ (5x + 4x²y) dx = (5/2)x² + (4/3)x³y evaluated from x = 0 to x = 3.Substituting the limits of integration, we have (5/2)(3)² + (4/3)(3)³y - (5/2)(0)² - (4/3)(0)³y = 45/2 + 36y. Now, we integrate the result with respect to y, taking the limits of integration from y = 0 to y = 1: ∫ (45/2 + 36y) dy = (45/2)y + (36/2)y² evaluated from y = 0 to y = 1. Substituting the limits, we have (45/2)(1) + (36/2)(1)² - (45/2)(0) - (36/2)(0)² = 45/2 + 36/2 = 81/2. Therefore, the value of the double integral ∬ (5 + 8xy) dA, over the given limits, is 81/2.

Learn more about double integral here:

https://brainly.com/question/27360126

#SPJ11

Let p and q be two distinct prime numbers. Prove that Q[√P,√ is a degree four extension of Q and give an element a € Q[√P, √] such that Q[√P,√] = Q[a].

Answers

The field extension Q[√P,√] is a degree four extension of Q, and there exists an element a ∈ Q[√P,√] such that Q[√P,√] = Q[a]. Since p and q are distinct prime numbers.

To prove that Q[√P,√] is a degree four extension of Q, we can observe that each extension of the form Q[√P] is a degree two extension, as the minimal polynomial of √P over Q is x^2 - P. Similarly, Q[√P,√] is an extension of degree two over Q[√P], since the minimal polynomial of √ over Q[√P] is x^2 - √P.

Therefore, the composite extension Q[√P,√] is a degree four extension of Q.

To show that there exists an element a ∈ Q[√P,√] such that Q[√P,√] = Q[a], we can consider a = √P + √q. Since p and q are distinct prime numbers, √P and √q are linearly independent over Q. Thus, a is not in Q[√P] nor Q[√q]. By adjoining a to Q, we obtain Q[a], which is equal to Q[√P,√]. Hence, a is an element that generates the entire field extension Q[√P,√].

Learn more about Prime number click here :brainly.com/question/881160

#SPJ11

A student used f(x)=5.00 (1.012)x to show the balance in a savings account will increase over time.what does the 5.00 represent?

Answers

Answer:

What the student started out with...

Step-by-step explanation:

The 5 represents the initial balance of the savings account.

A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and speed (in m/s) when t = 5. f(t) = 11 + 42 t+1 m/s velocity speed m/s

Answers

A particle moves along a straight line with the equation of motion s = f(t), where s is measured in meters and t in seconds. When the particle reaches t = 5 seconds, its velocity is 7/6 m/s, and its speed is also 7/6 m/s.

The velocity and speed of the particle when t = 5, we need to differentiate the equation of motion s = f(t) with respect to t. The derivative of s with respect to t gives us the velocity, and the absolute value of the velocity gives us the speed.

The equation of motion s = f(t) = 11 + 42/(t + 1), let's differentiate it with respect to t:

f'(t) = 0 + 42/((t + 1)²) [Applying the power rule for differentiation]

Now we can substitute t = 5 into the derivative formula:

f'(5) = 42/((5 + 1)²)

f'(5) = 42/(6²)

f'(5) = 42/36

f'(5) = 7/6

Therefore, the velocity of the particle when t = 5 is 7/6 m/s. The speed is the absolute value of the velocity, so the speed is is 7/6 m/s.

In conclusion, when the particle reaches t = 5 seconds, its velocity is 7/6 m/s, and its speed is also 7/6 m/s.

To know more about motion refer here:

https://brainly.com/question/29255792#

#SPJ11

PLS SOLVE NUMBER 6
51 ce is mea, 6. Suppose A = (3, -2, 4), B = (-5. 7. 2) and C = (4. 6. -1), find A B. A+B-C.

Answers

To find the vectors A • B and A + B - C, given A = (3, -2, 4), B = (-5, 7, 2), and C = (4, 6, -1), we perform the following calculations:

A • B is the dot product of A and B, which can be found by multiplying the corresponding components of the vectors and summing the results:

A • B = (3 * -5) + (-2 * 7) + (4 * 2) = -15 - 14 + 8 = -21.

A + B - C is the vector addition of A and B followed by the subtraction of C:

A + B - C = (3, -2, 4) + (-5, 7, 2) - (4, 6, -1) = (-5 + 3 - 4, 7 - 2 - 6, 2 + 4 + 1) = (-6, -1, 7).

Therefore, A • B = -21 and A + B - C = (-6, -1, 7).

learn more about vectors here:

https://brainly.com/question/12937011

#SPJ11

find the perimeter and area of the regular polygon.
(do not round until the final answer order, then round to the nearest tenth as needed).

Answers

The perimeter of the regular polygon is approximately 43.5 m, and the area is approximately 110.4 m².

We have,

To find the perimeter and area of a regular polygon with 8 sides and a radius of 7 m, we can use the following formulas:

Perimeter of a regular polygon: P = 2 x n x r x sin(π/n)

Area of a regular polygon: A = (n x r² x sin(2π/n)) / 2

Where:

n is the number of sides of the polygon

r is the radius of the polygon

Substituting the given values:

n = 8 (number of sides)

r = 7 m (radius)

The perimeter of the polygon:

P = 2 x 8 x 7 x sin(π/8)

Area of the polygon:

A = (8 x 7² x sin(2π/8)) / 2

Now, let's calculate the values:

P = 2 x 8 x 7 x sin(π/8) ≈ 43.5 m (rounded to the nearest tenth)

A = (8 x 7² x sin(2π/8)) / 2 ≈ 110.4 m² (rounded to the nearest tenth)

Therefore,

The perimeter of the regular polygon is approximately 43.5 m, and the area is approximately 110.4 m².

Learn more about polygons here:

https://brainly.com/question/23846997

#SPJ1

Other Questions
Please help me. Need help. Which is not an influencer of corporate social responsibility?A. None of the answers providedB. Flow of informationC. Power of the brandD. EnvironmentE. Globalization Find a power series representation for the function. (Give your power series representation centered at x = 0.) = 8 f(x) = 0 9 X 00 f(x) = n = 0 Determine the interval of convergence. (Enter your answer using interval notation.) Write an equation relating the magnetic flux through the small coil, when it is stationary and at some angle to the magnetic field, to the strength of the magnetic field.Write an equation for the magnetic field produced by the current in the Helmholtz coils, assuming the current through the Helmholtz coils varies with time as a sine function.Write an expression for the change in magnetic flux through the small coil. Combine the expressions you have written to write an expression for the time varying potential difference across the ends of the small coil at some angle to the magnetic field. IMPLEMENTATION #1. In an effort to improve trust in doctors at my local hospital, I start a weekly meet-your-doctors Q&A session. I randomly invite half of the patients at my hospital to attend these weekly sessions. The other half are not invited and are not eligible to attend. They are my control group. I administer a trust-in-doctors measure to all patients at the hospital at the conclusion of the weekly Q&A sessions to compare levels of trust between groups. Because I have access to patient files, I can identify which of the patients at the weekly meetings and which of the patients in my control group had a pre-existing mental illness that was known to the hospital. This allows me to compare the efficacy of these weekly meetings separately for people with and without a diagnosed mental illness. Identify the design type Briefly explain why you think this study is the design you think it is. True experimentPerson by treatment quasi-experimentCross-sectional differentialCross-sectional correlationalCross-sequentialNatural experiment Earthquakes are the major causes of deaths in Ecuador.Motivate your point For any of the following that can exist as isomers, state the type of isomerism. [co(nh3)5cl]br2 :A. Optical IsomersB. Geometrical IsomersC. Linkage IsomersD. Coordination IsomersE. No Isomers slow sustained stretching exercises held for several seconds are called For a letter sorting job, applicants are given a speed-reading test. Assume scores are normally distributed, with a mean of 73.9 and a standard deviation of 8.09. If only the top 21% of the applicants are selected, find the cutoff score. Draw apicture of the situation. the term used to describe bacteria that are rod-shaped is group of answer choices coccobacillus. vibrio. bacillus. coccus. Set up the integral that would determine the volume of revolution from revolving the region enclosed by y = x (3 - x) and the x-axis about the y-axis. mr. f's body is trying to increase his fluid levels. it could be responding to abnormal blood osmolarity or to abnormal blood pressure. how will you tell which problem he has? the answer is in the feedback loops. Find all the local maxima, local minima, and saddle points of the function. f(x,y) = xy - x'- Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A. A local minimum occurs at (Type an ordered pair. Use a comma to separate answers as needed.) The local minimum value(s) is/are (Type an exact answer. Use a comma to separate answers as needed.) B. There are no local minima. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A. A local maximum occurs at (Type an ordered pair. Use a comma to separate answers as needed.) The local maximum value(s) is/are (Type an exact answer. Use a comma to separate answers as needed.) B. There are no local maxima. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. O A. A saddle point occurs at (Type an ordered pair. Use a comma to separate answers as needed.) B. There are no saddle points. 7. DETAILS MY NOTES The price per square foot in dollars of prime space in a big city from 2010 through 2015 is approximated by the function R(t) = -0.509t +2.604t + 5.067t + 236.5 (0 t 5) The symptoms one experiences during cataplexy are considered normal when they occur.. a. during stage 1. b. during stage 4. c. during REM. d. during stage 2. e. during stage 3 Which of the following is correct as it relates to mutually exclusive investments? Evaluate the difference between investment (marginal investment) and decide if the marginal investment is acceptable before choosing, Choose the investment with the highest net present value that is also greater than zero. O Choose the investment with the highest internal rate of return that is also greater than the cost of capital area where activated immunocompetent b and t cells recirculate .Which statement accurately identifies the order of tissues pictures left to right in the microscopic image?a) Epithelial cells, smooth muscle, connective tissueb) Connective tissue, epithelial cells, smooth musclec) Epithelial cells, connective tissue, smooth muscled) Connective tissue, smooth muscle, epithelial cells Computers makes5,300units of a circuit board, CB76 at a cost of$290each. Variable cost per unit is$140and fixed cost per unit is$150.Peach Electronics offers to supply5,300units of CB76 for$270.IfDavanitbuys from Peach it will be able to save$15per unit in fixed costs but continue to incur the remaining$135per unit. ShouldDavanitaccept Peach's offer? Explain. my cuiosity was stronger than my fear what does it mean- treasue island Steam Workshop Downloader