Answer:
4/15
Step-by-step explanation:
4/15 = 0.26666666...
H +6g when 9=g and h=4
Hey there!
[tex]g+6g\\g=9,h=4[/tex]
[tex]4(h)+6(9(g))[/tex]
[tex]4+6(9)[/tex]
[tex]=58[/tex]
Hope this helps!
Need help with is math.
For the given polynomial the roots can't have multiplicity, and the polynomial is:
p(x) = (x - 2)*(x - 3)*(x - 5).
How to find the polynomial?Here we know that we have a cubic polynomial (of degree 3) with the following zeros:
2, 3, and 5.
Can any of the roots have multiplicity?
No, because a cubic polynomial can have at maximum 3 zeroes, and here we already have 3.
Now let's get the polynomial
Remember that a cubic polynomial with zeros a, b, and c can be written as:
p(x) = (x - a)*(x - b)*(x - c)
Then the polynomial in this case is:
p(x) = (x - 2)*(x - 3)*(x - 5).
Learn more about polynomials:
https://brainly.com/question/4142886
#SPJ1
(1 3/4 - 1/8)+(5/6 ÷ 2/3)
ANSWER
23/8
EXPLANATION
To solve this, first, we have to do the operations in the parenthesis. The first one is a subtraction between a mixed number and a fraction, so before doing the subtraction, we have to convert the number to an improper fraction by adding the parts,
[tex]1\frac{3}{4}=1+\frac{3}{4}=\frac{7}{4}[/tex]So the subtraction is,
[tex]1\frac{3}{4}-\frac{1}{8}=\frac{7}{4}-\frac{1}{8}=\frac{2\cdot7-1}{8}=\frac{14-1}{8}=\frac{13}{8}[/tex]Then we divide the second term using the KCF rule:
• K,eep the first fraction
,• C,hange the division sign for a multiplication sign
,• F,lip the second fraction
[tex]\frac{5}{6}\div\frac{2}{3}=\frac{5}{6}\times\frac{3}{2}=\frac{15}{12}=\frac{5}{4}[/tex]Now, we add these two results,
[tex]\frac{13}{8}+\frac{5}{4}=\frac{13+5\cdot2}{8}=\frac{13+10}{8}=\frac{23}{8}[/tex]Hence, the answer is 23/8.
Given the special right triangle, find the value of x and y. Express your answer in simplest radical form.
perpendicular lines homework
Watch help videoGiven the matrices A and B shown below, find – B - A.318154B12be-12
Given two matrices
[tex]A=\begin{bmatrix}{-18} & {3} & {} \\ {-15} & {-6} & {} \\ {} & {} & {}\end{bmatrix},B=\begin{bmatrix}{-4} & {12} & {} \\ {8} & {-12} & {} \\ {} & {} & {}\end{bmatrix}[/tex]We will solve for the resultant matrix -B - 1/2A.
This operation is represented as
[tex]-B-\frac{1}{2}A=-\begin{bmatrix}{-4} & {12} & {} \\ {8} & {-12} & {} \\ {} & {} & {}\end{bmatrix}-\frac{1}{2}\begin{bmatrix}{-18} & {3} & {} \\ {-15} & {-6} & {} \\ {} & {} & {}\end{bmatrix}[/tex]Let's simplify the matrices further based on scalar operations that can be done here. The B matrix will be multiplied by -1 while the A matrix will be multiplied by 1/2. We now have
[tex]-B-\frac{1}{2}A=\begin{bmatrix}{4} & {-12} & {} \\ {-8} & {12} & {} \\ {} & {} & {}\end{bmatrix}-\begin{bmatrix}{-9} & {\frac{3}{2}} & {} \\ {\frac{-15}{2}} & {-3} & {} \\ {} & {} & {}\end{bmatrix}[/tex]Now, we apply the subtraction of matrices to the simplified matrix operation above. We have
[tex]\begin{gathered} -B-\frac{1}{2}A=\begin{bmatrix}{4-(-9)} & {-12-\frac{3}{2}} & {} \\ {-8-(-\frac{15}{2})} & {12-(-3)} & {} \\ {} & {} & {}\end{bmatrix} \\ -B-\frac{1}{2}A=\begin{bmatrix}{4+9} & {-12-\frac{3}{2}} & {} \\ {-8+\frac{15}{2}} & {12+3} & {} \\ {} & {} & {}\end{bmatrix} \\ -B-\frac{1}{2}A=\begin{bmatrix}{13} & {\frac{-27}{2}} & {} \\ {-\frac{1}{2}} & {15} & {} \\ {} & {} & {}\end{bmatrix} \end{gathered}[/tex]Hence, the resulting matrix for the operation -B - 1/2A is
[tex]-B-\frac{1}{2}A=\begin{bmatrix}{13} & {\frac{-27}{2}} & {} \\ {-\frac{1}{2}} & {15} & {} \\ {} & {} & {}\end{bmatrix}[/tex]A country's population in 1994 was 182 million.In 2002 it was 186 million. Estimatethe population in 2004 using the exponentialgrowth formula. Round your answer to thenearest million.
we have the exponential formula
[tex]P=Ae^{(kt)}[/tex]so
we have
A=182 million ------> initial value (value of P when the value of t=0)
The year 1994 is when the value ot t=0
so
year 2002 -----> t=2002-1994=8 years
For t=8 years, P=186 million
substitute the value of A in the formula
[tex]P=182e^{(kt)}[/tex]Now
substitute the values of t=8 years, P=186 million
[tex]\begin{gathered} 186=182e^{(8k)} \\ e^{(8k)}=\frac{186}{182} \\ \text{apply ln both sides} \\ 8k=\ln (\frac{186}{182}) \\ k=0.0027 \end{gathered}[/tex]the formula is equal to
[tex]P=182e^{(0.0027t)}[/tex]Estimate the population in 2004
t=2004-1994=10 years
substitute the value of t in the formula
[tex]\begin{gathered} P=182e^{(0.0027\cdot10)} \\ P=187 \end{gathered}[/tex]therefore
the answer is 187 milliona local business Club has 11 exclusive board members and 22 General members how many committees of 7 members can be chosen so that only General members are excluded
we have:
general members are excluded then
[tex]11C7=330[/tex]answer: 330
b) A survey on the nationality of the student in the St Thomas international school is conducted and the results are shown below:i) if two students are randomly selected, what is the probability that both of them are European (correct to 4 decimal places)ii) if one student is randomly selected, what is the probability that a student is not Asian. (correct to 4 decimal places)
Given:-
A survey on the nationality of the student in the St Thomas international school is conducted and the results are shown.
To find if two students are randomly selected, what is the probability that both of them are European and if one student is randomly selected, what is the probability that a student is not Asian.
So now the total number of students are,
[tex]230+110+85+25=450[/tex]So now the probability of getting European is,
[tex]\frac{110}{450}=\frac{11}{45}[/tex]So the probability is,
[tex]\frac{11}{45}[/tex]So now the probability is asian is,
[tex]\frac{230}{450}=\frac{23}{45}[/tex]So the probability that it is not asian is,
[tex]1-\frac{23}{45}=\frac{45-23}{45}=\frac{22}{45}[/tex]so the required probability is,
what are the terms in 7h+3
Input data
7h + 3
Procedure
A term is a single mathematical expression.
3 = is a single term.
It is simply a numerical term called a constant.
7h = is also a single term. , The coefficient of the first term is 7
Please help me answer the following question with the picture below.
Answer:
9x+b
Step-by-step explanation:
A quadratic function f(x)f is hidden from view. You must find all intervals where f(x) is positive. Choose the form of the quadratic function f(x) that you would like to see in order to answer the question most efficiently.
To find the positive intervals, we'll have:
[tex]-3x^2-18x-15>0[/tex]1. Divide both sides by -3:
(Remember that dividing or multiplying by a negative number turns the inequality around!)
[tex]\begin{gathered} -3x^2-18x-15>0 \\ \rightarrow x^2+6x+5<0 \end{gathered}[/tex]2. Factor the expression:
[tex]\begin{gathered} x^2+6x+3<0 \\ \rightarrow(x+5)(x+1)<0 \end{gathered}[/tex]3. Identify the interval we're looking for:
Therefore, the function is positive in the interval:
[tex]\begin{gathered} -5PLEASE HELP ME!! a shoe company is going to close one of its two stores and combine all the inventory from both stores these polynomials represented the inventory in each store. which expression represents the combined inventory of the two stories?
Add the two expressions together;
[tex]\begin{gathered} (\frac{1}{2}g^2+\frac{7}{2})+(3g^2-\frac{4}{5}g+\frac{1}{4}) \\ =\frac{1}{2}g^2+3g^2-\frac{4}{5}g+\frac{7}{2}+\frac{1}{4} \\ =3\frac{1}{2}g^2-\frac{4}{5}g+(\frac{14+1}{4}) \\ =\frac{7}{2}g^2-\frac{4}{5}g+\frac{15}{4} \end{gathered}[/tex]The first option is the correct answer
Which equation shows the commutative property? CLEAR SUBMIT (10+5) (30 + 6) = 15 x 36 36 x 15 = 15 X 36 (10 + 30) x (5 + 6) = 15 x 36 36 + 15 = 15 X 36
Explanation
The commutative property states that the numbers on which we operate can be moved or swapped from their position without making any difference to the answer. The property holds for Addition and Multiplication,hence
Let's check every option
Step 1
a)
[tex]\begin{gathered} (10+5)\cdot(30+6)=15\cdot36 \\ \end{gathered}[/tex]this does not show the commutative property
b)
[tex]\begin{gathered} 36\cdot15=15\cdot36 \\ \end{gathered}[/tex]as we can see the factor were moved, and by the commutative property the result is not afected, so
[tex]\begin{gathered} \\ 36\cdot15=15\cdot36 \end{gathered}[/tex]is the answer.
I hope this helps you
Jonathan is playing a game or a regular board that measures 60 centimeters long and 450 mm wide. which measurement is closest to the perimeter of the Jonathan's game board in meters?
According to the problem, the length is 60 cm and the width is 450 mm.
Let's transform 450mm to cm. We know that 1 cm is equivalent to 10 mm. So,
[tex]450\operatorname{mm}\times\frac{1\operatorname{cm}}{10\operatorname{mm}}=45\operatorname{cm}[/tex]Then, we use the perimeter formula for rectangles.
[tex]P=2(w+l)[/tex]Where w = 45 cm and l = 60 cm.
[tex]\begin{gathered} P=2(45\operatorname{cm}+60\operatorname{cm})=2(105cm) \\ P=210\operatorname{cm} \end{gathered}[/tex]The perimeter is 210 centimeters long.However, we know that 1 meter is equivalent to 100 centimeters.
[tex]P=210\operatorname{cm}\cdot\frac{1m}{100\operatorname{cm}}=2.1m[/tex]Hence, the perimeter, in meters, is 2.1 meters long.
Option A is the answer.What is a rational number between -0.45 and -0.46?
Answer:-0.4545555...,-0.453333...,-0.45222.....
hope i helped
Step-by-step explanation:
4. (09.01 MC) Let set A = {1, 3, 5, 7) and set B = {1, 2, 3, 4, 5, 6, 7, 8} Which notation shows the relationship between set A and set B? (2 points) O AUB O ASE O Ane OBCA
A set X is said to contain a set Y if every element in Y is an element in X.
[tex]X\supseteq Y\text{ or X}\subseteq Y[/tex]In this case
[tex]1\in B,\text{ 3 }\in B,5\in B,\text{ and 7}\in B[/tex][tex]\in\text{ means: is in}[/tex][tex]so\text{ m}\in N,\text{ means that m is in N}[/tex]Therefore,
[tex]B\supseteq A\text{ or A}\subseteq B[/tex]I need help with system B. I have one right. And if the answer is infinitely. It asks to satisfy and it has Y=
We have the next system of equations
[tex]\begin{gathered} -5x-y=5 \\ -5x+y=5 \end{gathered}[/tex]We can sum both equations we can eliminate one variable
[tex]\begin{gathered} -10x=10 \\ \end{gathered}[/tex]then we isolate the x
[tex]x=\frac{10}{-10}=-1[/tex]Therefore x=-1 then we substitute the value of x in order to find the value of y in the second equation
[tex]-5(-1)+y=5[/tex]Then we simplify
[tex]5+y=5[/tex]Then we isolate the y
[tex]y=5-5[/tex][tex]y=0[/tex]ANSWER
x=-1
y=0
What’s the correct answer answer asap for brainlist
Answer: serbia
Step-by-step explanation:
A very large bag contains more coins than you are willing to count. Instead, you draw a random sample of coins from the bag and record the following numbers of eachtype of coin in the sample before returning the sampled coins to the bag. If you randomly draw a single coin out of the bag, what is the probability that you will obtain apenny? Enter a fraction or round your answer to 4 decimal places, if necessary.Quarters27Coins in a BagDimes21Nickels24Pennies28
Given:
The number of quarters = 27
The number of dimes = 21
The number of Nickels = 24
The number of Pennies = 28
Required:
Find the probability to obtain a penny.
Explanation:
The total number of coins = 27 + 21 + 24 +28 = 100
The probability of an event is given by the formula:
[tex]P=\frac{Number\text{ of possible outcomes}}{Total\text{ number of outcomes}}[/tex]The number of penny = 28
[tex]\begin{gathered} P(penny)=\frac{28}{100} \\ P(penny)=0.28 \end{gathered}[/tex]Final Answer:
The probability of obtaining Penny is 0.28.
Comparing Two Linear Functions (Context - Graphically)
start identifying the slope and y-intercept for each high school.
The slope represents the growth for each year, in this case for high school A is 25 and for high school B is 50.
The y-intercept is the number of students that are enrolled currently, in this case for A is 400 and for B is 250.
The complete equations in the slope-intercept form are
[tex]\begin{gathered} A=25x+400 \\ B=50x+250 \end{gathered}[/tex]Continue to graph the equations
High school B is projected to have more students in 8 years.
For the function f(x) = 6e^x, calculate the following function values:f(-3) = f(-1)=f(0)= f(1)= f(3)=
Consider the given function,
[tex]f(x)=6e^x[/tex]Solve for x=-3 as,
[tex]\begin{gathered} f(-3)=6e^{-3} \\ f(-3)=6(0.049787) \\ f(-3)=0.2987 \end{gathered}[/tex]Thus, the value of f(-3) is 0.2987 approximately.
Solve for x=-1 as,
[tex]\begin{gathered} f(-1)=6e^{-1} \\ f(-1)=6(0.367879) \\ f(-1)=2.2073 \end{gathered}[/tex]Thus, the value of f(-1) is 2.2073 approximately.
Solve for x=0 as,
[tex]\begin{gathered} f(0)=6e^0 \\ f(0)=6(1) \\ f(0)=6 \end{gathered}[/tex]Thus, the value of f(0) is 6 .
Solve for x=1 as,
[tex]\begin{gathered} f(1)=6e^1 \\ f(1)=6(2.71828) \\ f(1)=16.3097 \end{gathered}[/tex]Thus, the value of f(1) is 16.3097 approximately.
Solve for x=3 as,
[tex]\begin{gathered} f(3)=6e^3 \\ f(3)=6(20.0855) \\ f(3)=120.5132 \end{gathered}[/tex]Thus, the value of f(3) is 120.5132 approximately.
29 graph in desmos and label points of inflection, critical points, local extremes, absolute extremes, asymptotes, etc
Given:
There are given the function:
[tex]f(x)=\frac{3x}{x^2-1}[/tex]Explanation:
According to the question:
We need to draw the graph of the given equation:
So,
The graph is:
vertical asymptotes are (-1,1)
And,
The horizontal asymptotes is
y = 0.
What is the solution to the equation below ? 0.5x = 6 A . 3 B . 12 C . 60
Given the equation:
[tex]0.5x=6[/tex]Multiplying both sides by 2
[tex]\begin{gathered} 2\cdot0.5x=2\cdot6 \\ x=12 \end{gathered}[/tex]So, the answer will be option B) 12
Boy earns 20.56 on Monday 32.90 on Tuesday and 20.78 on Wednesday he spends half what he earned during three days how much he have left
First, we need to calculate the total earned during the three days, so we need to sum 20.56, 32.90, and 20.78 as:
So, the total earned is 74.24, then half of 74.24 is calculated as:
[tex]\frac{74.24}{2}=37.12[/tex]If he spends the half, he has left the half. Therefore, he has left 37.12
Answer: 37.12
Order the numbers from least (1) to greatest (10).ITEM BANK-Move to Battom3.564.034.212V12mor
To order these numbers, we begin with the whole part of each number. In the case of having two numbers with equal whole part, we look for the greatest tenth. So, the order would be
[tex]3.56;4.03;4.2;12[/tex]Notice that, 4.03 is less than 4.2, because its tenth is less.
Decide whether the change is an increase or decrease and find the percent change. Original number = 45 New number = 18 Answer: 60% decrease 60% increase 150% increase 150% decrease
The percentage change can be found below
[tex]\begin{gathered} \text{percentage change = }\frac{\text{ new number}-\text{original number}}{\text{original number}}\times100 \\ \text{percentage change=}\frac{18-45}{45}\times100 \\ \text{percentage change}=-60 \\ \end{gathered}[/tex]Since the percentage is negative, this means there is a 60% decrease.
URGENT!! ILL GIVE
BRAINLIEST!!!!! AND 100
POINTS!!!!!
4 groups of 30 tens is 120 tens 6x20= 120
13. The population of Maryland was 5.17 million in 1999, and it grew to 6.05 million in 2019.(a) Assuming that the population is growing exponentially, find the growth rate r for Maryland's population. Give your answer as a percentage, rounded to the nearest hundredth of a percent.r = %(b) Write an exponential model to describe the population of Maryland from 1999 onward (let t=0 in 1999).Pt = (c) What is Maryland's population expected to be in 2030? Round your answer to one decimal place. million people(d) When do you expect that Maryland's population will reach 7.5 million? Give your answer as a calendar year (ex: 1999).During the year
Answer:
a) r = 0.79%
b)
[tex]P_t=5.17(1.0079)^t[/tex]c) 6.6 million people
d) 2046
Explanation:
We'll use the below formula for exponential growth;
[tex]P_t=a(1+r)^t[/tex]where a = initial amount
r = growth rate
t = number of time intervals
a) From the question, we have that
a = 5.17 million
P(t)= 6.05 million
t = 20 years
Let's go ahead and substitute these values into our formula, and solve for r as shown below;
[tex]\begin{gathered} 6.05=5.17(1+r)^{20} \\ \frac{6.05}{5.17}=(1+r)^{20} \\ (1+r)=\sqrt[20]{\frac{6.05}{5.17}} \\ r=\sqrt[20]{\frac{6.05}{5.17}}-1 \\ r=0.00789 \\ r=0.79\text{\%} \end{gathered}[/tex]b) The exponential model can be written as shown below;
[tex]\begin{gathered} P_t=5.17(1+0.0079)^t \\ P_t=5.17(1.0079)^t \end{gathered}[/tex]c) When t = 31 years, let's go ahead and find P as shown below;
[tex]\begin{gathered} P_t=5.17(1.0079)^{31} \\ P_t=6.6\text{ million people} \end{gathered}[/tex]d) When P = 7.5 million, let's go ahead and solve for t as shown below;
[tex]\begin{gathered} 7.5=5.17(1.0079)^t \\ 1.45=(1.0079)^t \\ \log 1.45=\log (1.0079)^t \\ \log 1.45=t\times\log (1.0079) \\ t=\frac{\log 1.45}{\log (1.0079} \\ t=47.2\text{years} \\ \end{gathered}[/tex]So to get the particular year all we need to do is add 47 years to the initial year. That will us 1999 + 47 = 2046