b) Find second order direct and cross partial derivatives of: G=-7lx;+85x+x2 + 12x; x3 – 17x," +19xź + 7x3x3 – 4xz + 120

Answers

Answer 1

The second-order cross partial derivatives ∂²G/∂x∂z = -4 and ∂²G/∂z∂x = 0.

To find the second-order partial derivatives of the given function G, we need to differentiate it twice with respect to each variable separately. Let's go step by step:

First, let's find the second-order partial derivatives with respect to x:

1. Partial derivative with respect to x:

∂G/∂x = -7 + 85 + 2x + 12x^2 - 17x^2 + 19x^2 + 7(3x^2) - 4z + 120

Simplifying this expression, we get:

∂G/∂x = 63 + 7x^2 - 4z + 120

2. Second-order partial derivative with respect to x:

∂²G/∂x² = d(∂G/∂x)/dx

Taking the derivative of the expression ∂G/∂x with respect to x, we get:

∂²G/∂x² = d(63 + 7x^2 - 4z + 120)/dx

∂²G/∂x² = 14x

So, the second-order partial derivative with respect to x is ∂²G/∂x² = 14x.

Next, let's find the second-order cross partial derivatives:

1. Partial derivative with respect to x and z:

∂²G/∂x∂z = d(∂G/∂x)/dz

Taking the derivative of the expression ∂G/∂x with respect to z, we get:

∂²G/∂x∂z = d(63 + 7x^2 - 4z + 120)/dz

∂²G/∂x∂z = -4

2. Partial derivative with respect to z and x:

∂²G/∂z∂x = d(∂G/∂z)/dx

Taking the derivative of the expression ∂G/∂z with respect to x, we get:

∂²G/∂z∂x = d(-4)/dx

∂²G/∂z∂x = 0

In summary, the second-order direct partial derivative is ∂²G/∂x² = 14x, and the second-order cross partial derivatives are ∂²G/∂x∂z = -4 and ∂²G/∂z∂x = 0.

To know more about partial derivatives, visit:

https://brainly.com/question/28751547#

#SPJ11


Related Questions

8 Sº f(x)da - ' [ f(a)dx = ° f(a)dx si 3 a where a = and b =

Answers

The given equation represents the Fundamental Theorem of Calculus, which provides a fundamental connection between the definite integral and the antiderivative of a function.

The given expression represents the equation of the Fundamental Theorem of Calculus, stating that the definite integral of a function f(x) with respect to x over the interval [a, b] is equal to the antiderivative of f(x) evaluated at b minus the antiderivative of f(x) evaluated at a. This theorem allows us to calculate definite integrals by evaluating the antiderivative of the integrand function at the endpoints. The Fundamental Theorem of Calculus relates the definite integral of a function to its antiderivative. The equation can be written as:

∫[a, b] f(x) dx = F(b) - F(a)

where F(x) is the antiderivative (or indefinite integral) of f(x).

The left-hand side of the equation represents the definite integral of f(x) with respect to x over the interval [a, b]. It calculates the net area under the curve of the function f(x) between the x-values a and b. The right-hand side of the equation involves evaluating the antiderivative of f(x) at the endpoints b and a, respectively. This is done by finding the antiderivative of f(x) and plugging in the values b and a. Subtracting the value of F(a) from F(b) gives us the net change in the antiderivative over the interval [a, b]. The equation essentially states that the net change in the antiderivative of f(x) over the interval [a, b] is equal to the area under the curve of f(x) over that same interval.

Learn more about Fundamental Theorem of Calculus here:

https://brainly.com/question/30761130

#SPJ11


find the derivative
31 iv. f(2)= 4.25 +1 V. f(x)= 352?+22–3 vi. f(x)= log2 (ta n(z? + 1))

Answers

iv. The derivative of f(x) = 4.25x + 1 with respect to x is 4.25.

v. The derivative of f(x) = 352x² + 22x - 3 with respect to x is 704x + 22.

vi. The derivative of f(x) = log₂(tan(z² + 1)) with respect to x is (2zsec²(z² + 1))/ln(2).

Determine how to find the derivative?

iv. For a linear function f(x) = mx + c,

where m is the slope, the derivative is simply the coefficient of x, which is 4.25 in this case.

v. For a quadratic function f(x) = ax² + bx + c, the derivative is given by 2ax + b.

Here, a = 352 and b = 22,

so the derivative is 704x + 22.

vi. For the function f(x) = log₂(tan(z² + 1)), we can use the chain rule to find its derivative. Let u = z² + 1.

Then f(x) = log₂(tan(u)).

Applying the chain rule, the derivative of f(x) with respect to x is given by (d/dx)(log₂(tan(u))) = (d/du)(log₂(tan(u))) * (du/dx).

The derivative of log₂(tan(u)) with respect to u can be computed using logarithmic differentiation techniques,

resulting in (1/ln(2)) * (1/(tan(u)ln(tan(u)))).

Multiplying this by du/dx, where u = z² + 1,

gives (1/ln(2)) * (1/(tan(z² + 1)ln(tan(z² + 1)))) * (2z).

Simplifying further,

we obtain (2zsec²(z² + 1))/ln(2) as the derivative of f(x) with respect to x.

To know more about logarithmic, refer here:

https://brainly.com/question/32351461#

#SPJ4

Consider the surface y?2+3x2 + 3xyz = 7. If Ay+ 6x +Bz =D is an equation of the tangent plane to the given surface at (1.1.1), Then the value of A+B+D

Answers

It is given that Ay+ 6x +Bz =D is an equation of the tangent plane to the given surface at (1.1.1). The value of A+B+D is 22.

To find the equation of the tangent plane, we need to find the partial derivatives of the given surface at (1,1,1).

∂/∂x (3x^2 + 3xyz - y^2) = 6x + 3yz

∂/∂y (3x^2 + 3xyz - y^2) = -2y + 3xz

∂/∂z (3x^2 + 3xyz - y^2) = 3xy

Plugging in the values for x=1, y=1, z=1, we get:

∂/∂x = 9

∂/∂y = 1

∂/∂z = 3

So the equation of the tangent plane is:

9(y-1) + (z-1) + 3(x-1) = 0

Simplifying, we get:

Ay + 6x + Bz = D, where A = 9, B = 1, D = 12

Therefore, A + B + D = 9 + 1 + 12 = 22.

Hence, the value of A + B + D is 22.

To know more about tangent plane refer here:

https://brainly.com/question/31433124#

#SPJ11

If f(x) and g(x) are continuous functions and c() = f(g(x)) : c use the table below to evaluate c'(2). on x f(x) g(x) f'(x) g'(x) -2 -5 2 1 -3 -1 1 1 2 -1 0 4. -4 0 3 1 -1 -3 -5 4. -4 -2 -4 2 بجان

Answers

To evaluate c'(2), we need to use the chain rule.

The chain rule states that if c(x) = f(g(x)), then the derivative of c(x) with respect to x, denoted as c'(x), is given by c'(x) = f'(g(x)) * g'(x).

From the given table, we can see the values of f(x), g(x), f'(x), and g'(x) for different values of x. We need to find the values at x = 2 to evaluate c'(2).

Let's denote f(x) = f, g(x) = g, f'(x) = f', and g'(x) = g' for simplicity.

From the table:

f(2) = -1

g(2) = 0

f'(2) = -4

g'(2) = 2

Now, we can evaluate c'(2) using the chain rule:

c'(2) = f'(g(2)) * g'(2)

     = f'(0) * 2

From the table, we don't have the value of f'(0) directly, but we can find it using the values of f'(x) and g(x) from the table.

Since g(2) = 0, we can find the corresponding value of x from the table, which is x = 4. Therefore, f'(0) = f'(4).

From the table:

f(4) = -4

g(4) = -2

f'(4) = 3

g'(4) = 1

Now we have the value of f'(0) = f'(4) = 3.

Substituting this into the expression for c'(2):

c'(2) = f'(g(2)) * g'(2)

     = f'(0) * 2

     = 3 * 2

     = 6

Therefore, c'(2) = 6.

to know more about derivative visit:

brainly.com/question/29144258

#SPJ11

What is the volume of a right circular cone with a radius of 4 cm and a height of 12 cm?

Answers

Answer:

201.06 cm^3

Step-by-step explanation:

To calculate the volume of a right circular cone, you can use the formula:

Volume = (1/3) * π * r^2 * h

where:

π is the mathematical constant pi (approximately 3.14159)

r is the radius of the cone

h is the height of the cone

Substituting the given values into the formula:

Volume = (1/3) * π * (4 cm)^2 * 12 cm

Calculating the values inside the formula:

Volume = (1/3) * π * 16 cm^2 * 12 cm

Volume = (1/3) * 3.14159 * 16 cm^2 * 12 cm

Volume ≈ 201.06192 cm^3

Therefore, the volume of the right circular cone is approximately 201.06 cm^3.

Answer:

[tex]\displaystyle 201,0619298297...\:cm.^3[/tex]

Step-by-step explanation:

[tex]\displaystyle {\pi}r^2\frac{h}{3} = V \\ \\ 4^2\pi\frac{12}{3} \hookrightarrow 16\pi[4] = V; 64\pi = V \\ \\ \\ 201,0619298297... = V[/tex]

I am joyous to assist you at any time.

If n > 1, the graphs of u = sin z and
u. = ne " intersect for a > 0. Find the smallest value of n for which the
graphs are tangent.

Answers

The smallest value of n for which the graphs of u = sin(z) and u' = ne^a are tangent is n = 1/sqrt(2).

To find the smallest value of n for which the graphs of u = sin(z) and u' = ne^a intersect and are tangent, we need to find the value of n that satisfies the conditions of intersection and tangency. The equation u' = ne^a represents the derivative of u with respect to z, which gives us the slope of the tangent line to the graph of u = sin(z) at any given point.

Intersection: For the graphs to intersect, the values of u (sin(z)) and u' (ne^a) must be equal at some point. Therefore, we have the equation sin(z) = ne^a. Tangency: For the graphs to be tangent, the slopes of the two curves at the point of intersection must be equal. In other words, the derivative of sin(z) and u' (ne^a) evaluated at the point of intersection must be equal. Therefore, we have the equation cos(z) = ne^a.

We can solve these two equations simultaneously to find the value of n and a that satisfy both conditions. From sin(z) = ne^a, we can isolate z by taking the inverse sine: z = arcsin(ne^a). Substituting this value of z into cos(z) = ne^a, we have: cos(arcsin(ne^a)) = ne^a. Using the trigonometric identity cos(arcsin(x)) = √(1 - x^2), we can rewrite the equation as: √(1 - (ne^a)^2) = ne^a. Squaring both sides, we get: 1 - n^2e^2a = n^2e^2a. Rearranging the equation, we have: 2n^2e^2a = 1. Simplifying further, we find: n^2e^2a = 1/2. Taking the natural logarithm of both sides, we get: 2a + 2ln(n) = ln(1/2). Solving for a, we have: a = (ln(1/2) - 2ln(n))/2

To find the smallest value of n for which the graphs are tangent, we need to minimize the value of a. Since a > 0, the smallest value of a occurs when ln(1/2) - 2ln(n) = 0. Simplifying this equation, we get: ln(1/2) = 2ln(n). Dividing both sides by 2, we have: ln(1/2) / 2 = ln(n). Using the property of logarithms, we can rewrite the equation as: ln(sqrt(1/2)) = ln(n). Taking the exponential of both sides, we find: sqrt(1/2) = n. Simplifying the square root, we obtain: 1/sqrt(2) = n. Therefore, the smallest value of n for which the graphs of u = sin(z) and u' = ne^a are tangent is n = 1/sqrt(2).

To learn more about derivative, click here: brainly.com/question/2159625

#SPJ11

A 16-foot monument is composed of a rectangular prism and a square pyramid, as shown. What is the surface area of the monument rounded to the nearest whole number

Answers

The Rounding this number to the nearest whole number, the surface area of the monument is approximately 1280 square feet.To find the surface area of the monument, we need to calculate the surface area of each component and then add them together.

The rectangular prism has a length, width, and height of 16 feet. Its surface area can be found using the formula:

Surface area of rectangular prism = 2lw + 2lh + 2wh

Plugging in the values, we get:

Surface area of rectangular prism = 2(16)(16) + 2(16)(16) + 2(16)(16) = 512 square feet.

The square pyramid has a base length of 16 feet and a slant height of 16 feet as well. The formula for the surface area of a square pyramid is:

Surface area of square pyramid = base area + (1/2)(perimeter of base)(slant height)

The base area is (16)(16) = 256 square feet, and the perimeter of the base is 4 times the length of one side, which is 4(16) = 64 feet. Plugging in these values, we get:

Surface area of square pyramid = 256 + (1/2)(64)(16) = 768 square feet.

Adding the surface areas of the rectangular prism and the square pyramid, we get:

Total surface area of the monument = 512 + 768 = 1280 square feet.

For more such questions on Whole number:

https://brainly.com/question/9879870

#SPJ8

Note the full question may be :

A swimming pool in the shape of a rectangular prism measures 10 meters in length, 5 meters in width, and 2 meters in height. The pool is surrounded by a deck that extends 1 meter from each side of the pool. What is the total surface area of the pool and the deck combined, rounded to the nearest whole number?

Please calculate the total surface area of the pool and deck, including all sides.

Find the number of the observations in a regression model that has 6 independent variables and the degrees of freedom is 14

Answers

The number of observations in the regression model is 21.

the number of observations in the regression model with 6 independent variables and 14 degrees of freedom is 21.

explanation: in a regression model, the degrees of freedom (df) for the error term is calculated as the difference between the total number of observations (n) and the number of independent variables (k), minus 1.

df = n - k - 1

given that the degrees of freedom is 14 and the number of independent variables is 6, we can solve the equation:

14 = n - 6 - 1

rearranging the equation:

n = 14 + 6 + 1n = 21

Learn more about variables here:

https://brainly.com/question/31866372

#SPJ11

MY NOTES ASK YOUR TEACHER PRACTICE ANO In this problem, y-Cece is a two-parameter family of solutions of the second-order DE y-y-0, Find a solution of the second-order IVP consisting of this differential equation and the given initial conciona (-1)-0, -1)--6

Answers

Based on the information provided, the second-order differential equation is given as:

y'' - y' = 0

To find a solution of the second-order initial value problem (IVP), we need to determine the specific values of the parameters that satisfy the initial conditions.

The given initial conditions are:

y(-1) = 0

y'(-1) = -6

Let's start by finding the general solution to the differential equation. The characteristic equation is:

r^2 - r = 0

Factoring out an r:

r(r - 1) = 0

This gives us two possible roots: r = 0 and r = 1.

Therefore, the general solution is of the form:

y = c1 * e^0 + c2 * e^x

y = c1 + c2 * e^x

To find the specific solution that satisfies the initial conditions, we substitute the values of x and y into the general solution:

y(-1) = c1 + c2 * e^(-1) = 0          (equation 1)

y'(-1) = c2 * e^(-1) = -6              (equation 2)

From equation 2, we can solve for c2:

c2 = -6 * e

Substituting this value of c2 into equation 1:

c1 + (-6 * e) * e^(-1) = 0

c1 - 6 = 0

c1 = 6

Therefore, the specific solution to the IVP is:

y = 6 - 6e^x

This is the solution that satisfies the second-order differential equation y'' - y' = 0 with the given initial conditions y(-1) = 0 and y'(-1) = -6.

Visit here to learn more about differential equation:

brainly.com/question/25731911

#SPJ11

Problem 17. (1 point) 14 13 12 11 10 9 80 7 60 5 3 2 1 2 Find the following. If the limit does not exist, or if the function value is undefined, write: DNE f(5) = lim; +5 - lim +5+ = lim -+5= f(0) = =

Answers

In the limit does not exist, or if the function value is undefined, write: DNE f(5) = lim; +5 - lim +5+ = lim -+5= f(0) = DNE (the limit does not exist).

To find the limits and function values for the given sequence of numbers, we can analyze the behavior of the sequence as it approaches the specified values. Let's go through each case:

f(5):Since the sequence is given as discrete values and not in a specific function form, we can only determine the limit by examining the trend of the values as they approach 5 from both sides. However, in this case, the information provided is insufficient to determine the limit. Therefore, we can write f(5) = lim; +5 - lim +5+ = lim -+5= DNE (the limit does not exist).

f(0):Similarly, since we don't have an explicit function and only have a sequence of numbers, we cannot determine the limit as the input approaches 0. Therefore, we can write f(0) = DNE (the limit does not exist).

To summarize:

f(5) = lim; +5 - lim +5+ = lim -+5= DNE (the limit does not exist).

f(0) = DNE (the limit does not exist).

To learn more about limit visit: https://brainly.com/question/30339394

#SPJ11

5^3x=(1/25)^x-5
Answers should be X=2
URGENT
SHOW WORK

Answers

Answer:

5^3x=(1/25)^x-5

5^3x=5^-2(x-5)

3x=-2x+10

3x+2x=10

5x=10

x=2

(shown)




Consider the point. (1, 2,5) What is the projection of the point on the xy-plane? (x, y, z) = What is the projection of the point on the yz-plane? (x,y,z)= What is the projection of the point on the x

Answers

The projection of the point (1, 2, 5) on the xy-plane is (1, 2, 0), on the yz-plane is (0, 2, 5), and on the xz-plane is (1, 0, 5).

The projection of a point onto a plane can be obtained by setting the coordinate that is perpendicular to the plane to zero.

For the projection of the point (1, 2, 5) on the xy-plane, the z-coordinate is set to zero, resulting in the point (1, 2, 0). This means that the projection lies on the xy-plane, where the z-coordinate is always zero.

Similarly, for the projection on the yz-plane, the x-coordinate is set to zero, giving us the point (0, 2, 5). The projection lies on the yz-plane, where the x-coordinate is always zero.

For the projection on the xz-plane, the y-coordinate is set to zero, resulting in (1, 0, 5). This projection lies on the xz-plane, where the y-coordinate is always zero.

In summary, the projection of the point (1, 2, 5) on the xy-plane is (1, 2, 0), on the yz-plane is (0, 2, 5), and on the xz-plane is (1, 0, 5).

Learn more about x-coordinate here:

https://brainly.com/question/28913580

#SPJ11

I dont know the answer to this :/

Answers

The statement that completes the two column proof is

Statement                  Reason

KM ≅ MK                  reflexive property

What is reflexive property?

The reflexive property is a fundamental concept in mathematics and logic that describes a relationship a particular element has with itself. It states that for any element or object x, x is related to itself.

In other words, every element is related to itself by the given relation.

the KM ≅ MK  means KM is congruent to or equal to MK. hence relating itself

This property holds true since the two triangles shares this part in common

Learn more about reflexive property at

https://brainly.com/question/29792711

#SPJ1

A population is currently 150 and growing at a rate of 3% per year. (a) Write a formula for the population P as a function of time t in years: P(t) = (b) If the population continues this trend, what will it be in ten years? (Round off to the nearest whole person.) (c) If the population continues this trend, how many full years does it take to at least double? # ⠀

Answers

If the population continues to grow at a rate of 3% per year, it will be approximately 195 people in ten years. It takes approximately 24 years for the population to at least double if the growth rate remains constant.

Explanation: The formula for exponential growth can be expressed as P(t) = P0 * [tex](1+r)^{t}[/tex], where P(t) represents the population at time t, P0 is the initial population, r is the growth rate per time period, and t is the number of time periods. In this case, the initial population P0 is 150, and the growth rate r is 3% or 0.03. Therefore, the formula for the population as a function of time is P(t) = 150 *[tex](1 + 0.03)^{t}.[/tex]

To find the population in ten years, we substitute t = 10 into the formula: P(10) = 150 * [tex](1 + 0.03)^{10}[/tex]. Evaluating this expression gives us P(10) ≈ 195. Thus, if the population continues to grow at a rate of 3% per year, it will be approximately 195 people in ten years.

To determine the number of full years it takes to at least double the population, we need to find the value of t when P(t) = 2 * P0. In this case, P0 is 150. So, we set up the equation 2 * 150 = 150 * [tex](1 + 0.03)^{t}[/tex] and solve for t. Simplifying the equation, we get 2 = [tex](1 + 0.03)^{t}[/tex]. Taking the natural logarithm of both sides, we have ln(2) = t * ln(1 + 0.03). Dividing both sides by ln(1 + 0.03), we find t ≈ ln(2) / ln(1.03) ≈ 23.45. Therefore, it takes approximately 24 years for the population to at least double if the growth rate remains constant.

Learn more about growth rate here:

https://brainly.com/question/3282597

#SPJ11

Which of the following polar pairs could also be a representation of (3, 120°) ? Select all that apply.S. A. (3,480) B. (3,-240) C. (-3, 240) D. (-3, -60°) E. (3, -60°)

Answers

The correct polar pairs that could represent (3, 120°) are:

B. (3, -240)

C. (-3, 240)

E. (3, -60°)

The polar pair (3, 120°) can be represented by the polar pairs (3, -240), (-3, 240), and (3, -60°).

To convert from polar coordinates (r, θ) to rectangular coordinates (x, y), we use the following formulas:

x = r * cos(θ)

y = r * sin(θ)

Given the polar coordinates (3, 120°), we can calculate the rectangular coordinates as follows:

x = 3 * cos(120°) ≈ -1.5

y = 3 * sin(120°) ≈ 2.598

So, the rectangular coordinates are approximately (-1.5, 2.598). Now, let's convert these rectangular coordinates back to polar coordinates:

r = sqrt(x^2 + y^2) ≈ sqrt((-1.5)^2 + 2.598^2) ≈ 3

θ = arctan(y/x) ≈ arctan(2.598/(-1.5)) ≈ -60°

Therefore, the polar representation of the rectangular coordinates (-1.5, 2.598) is approximately (3, -60°). Comparing this with the given options, we can see that options B, C, and E match the polar representation (3, 120°).

To learn more about coordinates click here brainly.com/question/22261383

#SPJ11

Which inequality correctly orders the numbers

Answers

The inequality which correctly orders the numbers is -5 < -8/5 < 0.58.

The correct answer choice is option C.

Which inequality correctly orders the numbers?

-8/5

-5

0.58

From least to greatest

-5, -8/5, -0.58

So,

-5 < -8/5 < 0.58

The symbols of inequality are;

Greater than >

Less than <

Greater than or equal to ≥

Less than or equal to ≤

Equal to =

Hence, -5 < -8/5 < 0.58 is the inequality which represents the correct order of the numbers.

Read more on inequality:

https://brainly.com/question/25275758

#SPJ1

Sketch AABC in which A = 43°, B = 101° and a = 7.5 cm.
Find b and c, in cm correct to two decimal places.

Answers

We know the angles A and B and the length of side a we found the lengths of sides b = 10.79 cm and c = 6.46 cm :

Start by drawing a line segment of length 7.5 cm as side a.

At one end of side a, draw an angle of 43°, which is angle A.

At the other end of side a, draw an angle of 101°, which is angle B. Make sure the angle is wide enough to intersect with the other side.

The intersection of the two angles will be point C, completing the triangle.

To find the lengths of sides b and c, you can use the law of sines. The law of sines states that the ratio of the length of a side to the sine of its opposite angle is the same for all sides of a triangle.

Using the law of sines: b / sin(B) = a / sin(A)

b / sin(101°) = 7.5 cm / sin(43°)

Now, you can solve for b: b = sin(101°) * (7.5 cm / sin(43°))

b = 10.79 cm

Similarly, you can find c using the law of sines: c / sin(C) = a / sin(A)

c / sin(180° - A - B) = 7.5 cm / sin(43°)

Solve for c: c = sin(180° - A - B) * (7.5 cm / sin(43°))

c = 6.46 cm

LEARN MORE ABOUT triangle here: brainly.com/question/2773823

#SPJ11

Suppose F(x, y) = r²i+y²j and C is the line segment segment from point P = (0, -2) to Q =(4,2). (a) Find a vector parametric equation r(t) for the line segment C so that points P and Q correspond to t = 0 and t = 1, respectively. r(t) = (b) Using the parametrization in part (a), the line integral of F along Cis b [ F. dr = [° F ( F(F(t)) - 7' (t) dt = [ dt with limits of integration a = 535 (c) Evaluate the line integral in part (b). Joll and b= Cookies help us deliver our convings Ru uning =

Answers

a) The vector parametric equation for the line segment C is: r(t) = (4t, -2 + 4t). b) [tex]\int\ [C] F dr = \int\limits^a_b (16t^2i + (-2 + 4t)^2j) (4, 4) dt= \int\limits^a_b (64t^2 + (-2 + 4t)^2) dt[/tex]  c) The evaluated value of the line integral is 80/3 - 4.

(a) To find a vector parametric equation r(t) for the line segment C, we can use the points P and Q as the initial and final points of the parametrization.

Let's consider the position vector r(t) = (x(t), y(t)). Since the line segment starts at point P = (0, -2) when t = 0, and ends at point Q = (4, 2) when t = 1, we can set up the following equations:

When t = 0:

r(0) = (x(0), y(0)) = (0, -2)

When t = 1:

r(1) = (x(1), y(1)) = (4, 2)

To obtain the vector parametric equation, we can express x(t) and y(t) separately:

x(t) = 4t

y(t) = -2 + 4t

Therefore, the vector parametric equation for the line segment C is:

r(t) = (4t, -2 + 4t)

(b) Using the vector parametric equation r(t), we can find the line integral of F along C.

The line integral of F along C is given by:

∫[C] F · dr = ∫[a to b] F(r(t)) · r'(t) dt

In this case, [tex]F(x, y) = r^2i + y^2j, so F(r(t)) = (4t)^2i + (-2 + 4t)^2j.[/tex]

The derivative of r(t) with respect to t is r'(t) = (4, 4).

Substituting these values, we have:

[tex]\int\ [C] F dr = \int\limits^a_b (16t^2i + (-2 + 4t)^2j) (4, 4) dt\\= \int\limits^a_b (64t^2 + (-2 + 4t)^2) dt[/tex]

(c) To evaluate the line integral, we need to substitute the limits of integration (a and b) into the integral expression and evaluate it.

Given that a = 0 and b = 1, we can evaluate the line integral:

[tex]\int\ [C] F dr = \int\limits^0_1(64t^2 + (-2 + 4t)^2) dt[/tex]

Simplifying the integral expression and evaluating it, we find the result of the line integral along C.

[tex](64t^2 + (-2 + 4t)^2) = 64t^2 + (4t - 2)^2\\= 64t^2 + (16t^2 - 16t + 4)\\= 80t^2 - 16t + 4[/tex]

Now, we can integrate this expression:

[tex]\int\limits^0_1(80t^2 - 16t + 4) dt\\= [80 * (1/3)t^3 - 8t^2 + 4t] evaluated from 0 to 1\\= (80 * (1/3)(1)^3 - 8(1)^2 + 4(1)) - (80 * (1/3)(0)^3 - 8(0)^2 + 4(0))\\= (80/3 - 8 + 4) - (0)\\= 80/3 - 4[/tex]

Therefore, the evaluated value of the line integral is 80/3 - 4.

Learn more about integral line in:

brainly.com/question/27983581

#SPJ4

Find the volume of the composite figures (pls)

Answers

For figure 1: ⇒ volume = 254.6 mi³

For figure 2: ⇒ volume = 1017.36 cubic cm

For figure 3: ⇒ volume = 864  m³

For figure 1:

It contains a cylinder,

Height = 7 mi

radius =  r = 3 mi

And a hemisphere of radius = 3 mi

Since we know that,

Volume of cylinder = πr²h  

And volume of hemisphere = (2/3)πr³

Therefore put the values we get ;

Volume of cylinder = π(3)²x7

                                = 197.80 mi³

And volume of hemisphere = (2/3)π(3)³

                                              = 56.80 mi³

Therefore total volume = 197.80 + 56.80

                                       = 254.6 mi³

For figure 2:

It contains a cylinder,

Height = 9 cm

radius =  r = 6 cm

And a cone,

radius  =  6 cm

Height =  5 cm

Volume of cylinder =  π(6)²x9

                                = 1017.36 cubic cm

Volume of cone = πr²h/3

                           = 3.14 x 36 x 5/3

                           = 188.4 cubic cm

Therefore,

Total volume = 1017.36 + 188.4

                      = 1205.76 cubic cm

For figure 3:

It contains a rectangular prism,

length = l = 12 m

Width  = w = 9 m

Height = h = 5 m

Volume of   rectangular prism = lwh

                                                  = 12x9x5

                                                  =  540 m³

And a triangular prism,

 

Height = h = 6 m

base    = b = 9 m

length = l = 12 m

We know that volume of triangular prism = (1/2) x b x h x l

                                                                     = 0.5 x 9 x 6 x 12

                                                                     = 324 m³

Total volume = 540 + 324

                      = 864  m³

To learn more about prism visit:

https://brainly.com/question/2918181

#SPJ1

Find the derivative of the function f (x) = 6x x² + 1 using the Product or Quotient Rule. Evaluate f(1) and f'(1). What do each of these values represent? How can we interpret them?

Answers

f(1) represents the value of the function f(x) at x = 1. In this case, f(1) = 3, which means that when x is 1, the value of the function is 3.

What is Derivative?

In mathematics, the derivative is a way of showing the rate of change: that is, the amount by which a function changes at one given point. For functions that act on real numbers, it is the slope of the tangent line at a point on the graph.

To find the derivative of the function f(x) = 6x / (x² + 1), we can use the quotient rule. The quotient rule states that if we have a function u(x) = g(x) / h(x), then the derivative of u(x) with respect to x is given by:

u'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))²

In this case, g(x) = 6x and h(x) = x² + 1. Let's differentiate g(x) and h(x) to apply the quotient rule:

g'(x) = 6

h'(x) = 2x

Now we can apply the quotient rule:

f'(x) = (g'(x)h(x) - g(x)h'(x)) / (h(x))²

= (6(x² + 1) - 6x(2x)) / (x² + 1)²

= (6x² + 6 - 12x²) / (x² + 1)²

= (-6x² + 6) / (x² + 1)²

Now, let's evaluate f(1) and f'(1):

To find f(1), we substitute x = 1 into the original function:

f(1) = 6(1) / (1² + 1)

= 6 / 2

= 3

To find f'(1), we substitute x = 1 into the derivative we just found:

f'(1) = (-6(1)² + 6) / (1² + 1)²

= 0 / 4

= 0

Interpretation:

f(1) represents the value of the function f(x) at x = 1. In this case, f(1) = 3, which means that when x is 1, the value of the function is 3.

f'(1) represents the instantaneous rate of change of the function f(x) at x = 1. In this case, f'(1) = 0, which means that at x = 1, the function has a horizontal tangent, and its rate of change is zero at that point. This indicates a possible extremum or a point of inflection.

Overall, f(1) represents the value of the function at a specific point, while f'(1) represents the rate of change of the function at that point.

To learn more about Derivative from the given link

https://brainly.com/question/30403647

#SPJ4








Let 4(x,y) = e3ay+159" and let F be the gradient of p. Find the circulation of F around the circle of radius 3 with center at the point (5, 6). Circulation =

Answers

To find the circulation of vector field F around the circle of radius 3 with center (5, 6), we need to evaluate the line integral of F along the circle. Answer : ∫[0, 2π] (3a * e^(3a(6+3sin(t))+159)) * (-3sin(t), 3cos(t)) dt

First, let's find the gradient of p, denoted as ∇p.

Given that p(x, y) = e^(3ay+159), we can find ∇p as follows:

∂p/∂x = 0  (since there is no x in the expression)

∂p/∂y = 3a * e^(3ay+159)

So, ∇p = (0, 3a * e^(3ay+159)).

Next, let's parameterize the circle of radius 3 centered at (5, 6). We can use polar coordinates:

x = 5 + 3 * cos(t)

y = 6 + 3 * sin(t)

where t varies from 0 to 2π to cover the entire circle.

Now, the circulation of F around the circle can be calculated as the line integral:

Circulation = ∮ F · dr

where dr is the differential arc length along the circle parameterized by t.

Since F is the gradient of p, we have F = ∇p.

So, the circulation simplifies to:

Circulation = ∮ ∇p · dr

Now, let's calculate the line integral:

Circulation = ∮ ∇p · dr

           = ∮ (0, 3a * e^(3ay+159)) · (dx, dy)

           = ∫[0, 2π] (3a * e^(3ay+159)) * (dx/dt, dy/dt) dt

Substituting the parameterization of the circle into the integral, we get:

Circulation = ∫[0, 2π] (3a * e^(3a(6+3sin(t))+159)) * (-3sin(t), 3cos(t)) dt

Now, you can evaluate this integral to find the circulation of F around the circle of radius 3 centered at (5, 6).

Learn more about  circle : brainly.com/question/15424530

#SPJ11

Help me with this question!

Answers

Among the given functions three will form exponential graph and two will form linear curve.

1)

The temperature outside cools by 1.5° each hour.

Let the temperature be 50°.

Then it will depreciate in the manner,

50° , 48.5° , 47° , 45.5° , .......

Hence with the difference among them is constant it can be plotted in linear curve.

2)

The total rainfall increases by 0.15in each week.

So,

Let us assume Rainfall is 50in.

It will increase in the manner,

50 , 50.15. 50.30, ......

Hence with the difference among them is constant it can be plotted in linear curve.

3)

An investment loses 5% of its value each month.

Let us take the investment to be $100.

It will decrease in the manner,

$100 , $95, $90.25 , .....

Hence as the difference among them is not constant it can be plotted in exponential curve.

4)

The value of home appreciates 4% every year.

Let us take the value of home to be $100.

It will appreciate in the form,

$100 , $104 , $108.16, ......

Hence as the difference among them is not constant it can be plotted in exponential curve.

5)

The speed of bus as it stops along its route.

The speed of bus will not remain constant throughout the route and can be plotted in exponential curve.

Know more about Curve,

https://brainly.com/question/2890194

#SPJ1

3.2 The velocity of a bullet from a rifle can be approximated by v(t) = 6400t2 – 6505t + 2686 where t is seconds after the shot and v is the velocity measured in feet per second. This equation only models the velocity for the first half-second after the shot. What is the average velocity of the first half second?

Answers

The average velocity of the first half-second. Calculate the change in displacement and divide it by the change in time to obtain .

By integrating the supplied velocity function throughout the range [0, 0.5], the displacement can be calculated. Now let's figure out the displacement:

∫(6400t^2 - 6505t + 2686) dt

When we combine each term independently, we obtain:

[tex](6400/3)t3 - (6505/2)t2 + 2686t = (6400t2) dt - (6505t) dt + (2686t)[/tex]

The displacement function will now be assessed at t = 0.5 and t = 0:

Moving at time[tex]t = 0.5: (6400/3)(0.5)^3 - (6505/2)(0.5)^2 + 2686(0.5)[/tex]

Displacement at time zero: (6505/2)(0) + 2686(0) - (6400/3)(0)

We only need to determine the displacement at t = 0.5 because the displacement at t = 0 is 0 (assuming the bullet is launched from the origin):

Moving at time [tex]t = 0.5: (6400/3)(0.5)^3 - (6505/2)(0.5)^2 + 2686(0.5)[/tex]

Streamlining .

Learn more about average velocity here:

https://brainly.com/question/14003954

#SPJ11

The height of an object at t seconds, can be modelled by h(t)=-sin(2t)+t2 for 0 St Sat, where h is in cm. What is the objects maximum velocity and when does it occur?

Answers

The object's maximum velocity is approximately 1.32 cm/s, and it occurs at around t ≈ 1.57 seconds.

To find the object's maximum velocity, we need to determine the derivative of the height function h(t) with respect to time, which represents the rate of change of height over time. The derivative of h(t) is given by:

h'(t) = d/dt [-sin(2t) + t²]

Using the chain rule and power rule, we can simplify the derivative:

h'(t) = -2cos(2t) + 2t

To find the maximum velocity, we need to find the critical points of the derivative. Setting h'(t) = 0, we have:

-2cos(2t) + 2t = 0

Solving this equation is not straightforward, but we can approximate the value using numerical methods. In this case, the maximum velocity occurs at t ≈ 1.57 seconds, and the corresponding velocity is approximately 1.32 cm/s.

Note: The exact solution would require more precise numerical methods or algebraic manipulation, but the approximation provided is sufficient for practical purposes.

learn more about power rule here:

https://brainly.com/question/24920520

#SPJ11

If/As_ g(x) = *=dt 13 x € (0, [infinity]) dt show that/wys dat g(7x) = g(x) + C for all

Answers

g(7x) = g(x) + C for all x in (0, [infinity]). If g(x) = ∫dt 13 x € (0, [infinity]), then we can rewrite the integral as:

g(x) = ∫dt 13 x € (0, [infinity])
g(x) = ∫dt 13 x € (0, 7x) + ∫dt 13 x € (7x, [infinity])
g(x) = ∫dt 13 x € (0, 7x) + g(7x)


Now, if we substitute 7x for x in the original equation for g(x), we get:

g(7x) = ∫dt 13 7x € (0, [infinity])

We can rewrite this integral as:

g(7x) = ∫dt 13 7x € (0, 7x) + ∫dt 13 7x € (7x, [infinity])

We can simplify the first integral using a change of variable, u = t/7, dt = 7du, which gives:

g(7x) = ∫7du 13 x € (0, x) + ∫dt 13 7x € (7x, [infinity])

We can simplify the first integral further:

g(7x) = 7∫du 13 x € (0, x) + ∫dt 13 7x € (7x, [infinity])

We can now substitute g(x) + C for the second integral:

g(7x) = 7∫du 13 x € (0, x) + g(x) + C

Finally, we can simplify the first integral using a change of variable, v = u/7, du = 7dv, which gives:

g(7x) = ∫7dv 13 x/7 € (0, x/7) + g(x) + C

g(7x) = g(x/7) + g(x) + C

Therefore, g(7x) = g(x) + C for all x in (0, [infinity]).

Learn more about integral here:

brainly.com/question/31059545

#SPJ11

A plant is 4 inches tall. it grows 5 inches per year. which equation model is the height y of the plant after x years  

Answers

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5x

We have to given that,

A plant is 4 inches tall.

And, it grows 5 inches per year.

Since, Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.

Now, We can formulate;

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5 × x

⇒ y = 4 + 5x

Therefore, We get;

The equation which model the height y of the plant after x years is,

⇒ y = 4 + 5x

Learn more about the mathematical expression visit:

brainly.com/question/1859113

#SPJ1

two cyclists leave towns 210 kilometers apart at the same time and travel toward each other. one cyclist travels 10 km slower than the other. if they meet in 5 hours, what is the rate of each cyclist?

Answers

The faster cyclist's speed is 46 km/hr and the slower cyclist's speed is 36 km/hr.

Let the speed of the faster cyclist be x km/hr. Then the speed of the slower cyclist is x-10 km/hr.
As they are travelling towards each other, their relative speed will be the sum of their speeds. So,
Relative speed = x + (x-10) = 2x - 10 km/hr
Time taken to meet = 5 hours
Distance travelled = relative speed x time taken
210 = (2x-10) x 5
Solving for x, we get x = 46 km/hr (approx.)
Therefore, the faster cyclist's speed is 46 km/hr and the slower cyclist's speed is 36 km/hr.

To solve this problem, we need to use the formula Distance = Speed x Time. Since the two cyclists are travelling towards each other, we need to find their relative speed by adding their speeds. Then we can use the distance and time given to calculate their speeds individually using the formula Speed = Distance / Time.

The faster cyclist is travelling at a speed of 46 km/hr, while the slower cyclist is travelling at a speed of 36 km/hr.

To know more about Speed visit:

https://brainly.com/question/17661499

#SPJ11

20, 7.6.55-PS HW Score: 41.14%, 8.23 of 20 points Points: 0 of 1 Save Under ideal conditions, il a person driving a car slama on the brakes and kids to a stop the length of the skid man's (in foot) is given by the following formula, where x is the weight of the car (in pounds) and y is the speed of the cat (in miles per hour) L=0.0000133xy? What is the average songth of the said marks for cars weighing between 2,100 and 3.000 pounds and traveling at speeds between 45 and 55 miles per hour? Set up a double integral and evaluate it The average length of the skid marksis (Do not round until the final answer. Then round to two decimal places as needed)

Answers

To find the average length of the skid marks for cars weighing between 2,100 and 3,000 pounds and traveling at speeds between 45 and 55 miles per hour, we need to set up a double integral and evaluate it.

Let's set up the double integral over the given range. The average length of the skid marks can be calculated by finding the average value of the function L(x, y) = 0.0000133xy^2 over the specified weight and speed ranges.

We can express the weight range as 2,100 ≤ x ≤ 3,000 pounds and the speed range as 45 ≤ y ≤ 55 miles per hour.

The double integral is given by:

∬R L(x, y) dA

Where R represents the rectangular region defined by the weight and speed ranges.

Now, we need to evaluate this double integral to find the average length of the skid marks. However, without specific limits of integration, it is not possible to provide a numerical value for the integral.

To complete the calculation and find the average length of the skid marks, we would need to evaluate the double integral using appropriate numerical methods, such as numerical integration techniques or software tools.

Please note that the specific limits of integration are missing in the given information, which prevents us from providing a precise numerical answer.

Learn more about  speed  : brainly.com/question/17661499

#SPJ11

What is the particular solution to the differential equation dy = x²(2y — 3)² with the initial condition y(0) = -1? Answer: y = Submit Answer attempt 1 out of 2

Answers

Therefore, The particular solution to the given differential equation is y(x) = (-3/(x³ + 3)) + 3/2.

The given differential equation dy = x²(2y — 3)² with the initial condition y(0) = -1, we need to follow these steps:
Step 1: Separate variables.
Divide both sides by (2y - 3)² to get dy/(2y - 3)² = x²dx.
Step 2: Integrate both sides.
∫(1/(2y - 3)²)dy = ∫x²dx + C
Step 3: Solve for y.
Let u = 2y - 3, then du = 2dy. Substitute and integrate:
(-1/2)∫(1/u²)du = (1/3)x³ + C
-1/(2u) = (1/3)x³ + C
Step 4: Apply the initial condition y(0) = -1.
-1/(2(-1)) = (1/3)(0)³ + C
C = 1/2
Step 5: Substitute back and solve for y.
-1/(2(2y - 3)) = (1/3)x³ + 1/2
2y - 3 = -6/(x³ + 3)
2y = (-6/(x³ + 3)) + 3

Therefore, The particular solution to the given differential equation is y(x) = (-3/(x³ + 3)) + 3/2.

To learn more about the integration visit:

brainly.com/question/30094386

#SPJ11

$9500 is​ invested, part of it at ​12% and part of it at ​9%.
For a certain​ year, the total yield is ​$1032.00.
1a. How much was invested at 12%
1b. How much was invested at 9%
--------"

Answers

$5,900.00 was invested at 12% and the remaining amount ($9500 - $5,900.00 = $3,500.00) was invested at 9%.

Let's assume that the amount invested at 12% is x dollars. Since the total investment is $9500, the amount invested at 9% would be ($9500 - x) dollars. The total yield for the year is given as $1032.00.

To calculate the yield from the investment at 12%, we multiply the amount invested at 12% (x) by the interest rate of 12% (0.12): 0.12x. Similarly, the yield from the investment at 9% can be calculated by multiplying the amount invested at 9% ($9500 - x) by the interest rate of 9% (0.09): 0.09($9500 - x).

The total yield is the sum of the yields from the two investments, which is given as $1032.00. Therefore, we can write the equation: 0.12x + 0.09($9500 - x) = $1032.00.

Simplifying the equation, we have: 0.12x + 0.09($9500) - 0.09x = $1032.00.

0.03x + 0.09($9500) = $1032.00.

0.03x + $855.00 = $1032.00.

0.03x = $1032.00 - $855.00.

0.03x = $177.00.

x = $177.00 / 0.03.

x ≈ $5,900.00.

Therefore, approximately $5,900.00 was invested at 12% and the remaining amount ($9500 - $5,900.00 = $3,500.00) was invested at 9%.

Learn more about interest rate here:

https://brainly.com/question/28272078

#SPJ11

Other Questions
Which combination of frequencies would produce the lowest beat frequency? (1 point)500 Hz and 501 Hz10 Hz and 20 Hz10 Hz and 15 Hz 500 Hz and 600 Hz Provide an appropriate response 16 Given fo) .x0 find the values of corresponding to local mama and local local maximum at x 4 (no local minimum) no local maximum or minimum local minimum at x = -4 (n (Figure: Fast Food Profits in Monopolistic Competition II) Use Figure: Fast Food Profits in Monopolistic Competition. The profit-maximizing quantity of output is determined by the intersection at point: O a. J. OB.K. OC.L. O d. M. Check all that apply: Which of the following food sources provide iron in the most absorbable form? a. Ground beef b. Tuna c. Spinach d. Brown rice Choose one from the types of viewing materials that you have learned and write down its title. find the derivative for part b(b) y = sec5 () +1 C-1 E (5 points) Let f(x) = (x - 3)(h(x))? Given that h(4) = 10 and W'(4) = 3, find f'(2). Given w = x2 + y2 +2+,x=tsins, y=tcoss and z=st? Find dw/dz and dw/dt a) by using the appropriate Chain Rule and b) by converting w to a function of tands before differentiating, b) Find the directional derivative (Du) of the function at P in the direction of PQ (x,y) = sin 20 cos y. P(1,0), o (5) 1 (, c) Use the gradient to find the directional derivative of the function at Pin the direction of v f(x, y, z) = xy + y2 + 22, P(1, 2, -1), v=21+3 -k d)1.Find an equation of the tangent plane to the surface at the given point and 2. Find a set of symmetric equations for the normal line to the surface at the given point and graph it x + y2 + 2 =9, (1, 2, 2) Find the derivative of the function f(x) = sinx + cosx in unsimplified form. b) Simplify the derivative you found in part a) and explain why f(x) is a constant function, a function of the form f(x) = c for some c E R. Car A is traveling west at 60 mph and Car B is traveling north at50 mph. Both are headed toward the intersection of the two roads.At what rate are the cars approaching each other when Car A is.3miles from the intersection and car B is .4 miles from theintersection? The growing presence of crime resulting from the Russian Mafia has discouraged many foreign firms from setting up operations in the former Soviet Union. This is an example of which of the following environmental factors?A. SecurityB. EconomicC. CulturalD. Legal/politicalE. Infrastructure Find the radius and center of the sphere with equationx2+y2+z28x+6y4z=28.Find the point on this sphere that is closestto the xy-plane. 1- child with mass m rides with constant speed in a circle at the edge of a merry-go-round with diameter d by holding onto a bar with a magnitude F force. Which expression gives the time it takes for the child to go around once?2- Mark, whose mass is 52.0 kg, steps on a scale in an elevator. The elevator begins to accelerate downwards with acceleration 2g/5, where g = 9.80 m/s2 is the magnitude of the acceleration due to gravity. What does the scale read?A. 204 N B. 539 N C. 306 N D. 713 N - How did Humanism influence the art and literature of the Renaissance? Please include two examples of each.-How were the effects of disease on Europe during the Black Plague similar to its effects on the Americas during the Spanish conquest? How did they differ?- How did the Hundred Years War start? What led to the French turn-around and eventual victory in the conflict? is the process of joining two or more tables and storing the result as a single table FILL THE BLANK. organisms only hold on to _____ percent of the energy they ingest. scalable, flexible, and adaptable operational capabilities are included in? a. operational coordination b. whole community c. environmental response/health and safety d. the nrf guiding principles tom is talking to his friend bob, who has an interest in freedom, llc, about purchasing his llc interest. bob's outside basis in freedom, llc, is $12,000. this includes his $2,900 one-fourth share of the llc's debt. bob's 704(b) capital account is $19,000. if tom bought bob's llc interest for $21,000, what would tom's outside basis be in freedom, llc? find the volume of the solid generated by revolving the shaded region about the y-axis. x=3tan(pi/6 y)^2 Multiply the following binomials (2x - 3y)(8x - y) Find the position vector for a particle with acceleration, initial velocity, and initial position given below. a(t) = (4t, 3 sin(t), cos(6t)) 7(0) = (3,3,5) 7(0) = (4,0, - 1) F(t) = Steam Workshop Downloader