at what point is this function continuous? please show work and explain in detail. thank you!
- 13. у = 1 - Зх x — 2 се

Answers

Answer 1

Given function: y = 1 - 3x(x-2)^(1/3)We need to find out the point at which this function is continuous.Function is continuous if the function exists at that point and the left-hand limit and right-hand limit are equal.

So, to check the continuity of the function y, we will calculate the left-hand limit and right-hand limit separately.Let's calculate the left-hand limit.LHL:lim(x → a-) f(x)For the left-hand limit, we approach the given point from the left side of a. Let's take a = 2-ε, where ε > 0.LHL: lim(x → 2-ε) f(x) = lim(x → 2-ε) (1 - 3x(x - 2)^(1/3))= 1 - 3(2 - ε) (0) = 1So, LHL = 1Now, let's calculate the right-hand limit.RHL:lim(x → a+) f(x)For the right-hand limit, we approach the given point from the right side of a. Let's take a = 2+ε, where ε > 0.RHL: lim(x → 2+ε) f(x) = lim(x → 2+ε) (1 - 3x(x - 2)^(1/3))= 1 - 3(2 + ε) (0) = 1So, RHL = 1The limit exists and LHL = RHL = 1.Now, let's calculate the value of the function at x = 2.Let y0 = f(2) = 1 - 3(2)(0) = 1So, the function value also exists at x = 2 since it is a polynomial function.Now, as we see that LHL = RHL = y0, therefore the function is continuous at x = 2.Therefore, the function y = 1 - 3x(x-2)^(1/3) is continuous at x = 2.

Learn more about function is continuous here:

https://brainly.com/question/28228313

#SPJ11


Related Questions

Differentiate the following function. y = CSc(0) (0 + cot ) = y' =

Answers

We can use the product rule to differentiate the function y = Csc() ( + cot()). Find the derivative of the first term, Csc(), first.

The chain rule can be used to get the derivative of Csc(): Csc() = -Csc() Cot() = d/d.

The derivative of the second term, ( + Cot()), will now be determined.

Simply 1, then, is the derivative of with respect to.

The chain rule can be used to get the derivative of Cot(): d/d (Cot()) = -Csc2(d).

The product rule is now applied: y' = (Csc() Cot()) + (1)( + Cot()) = Csc() Cot() + + Cot().

Therefore, y' = Csc() Cot() + + Cot() is the derivative of y with respect to.

Please be aware that while differentiating with regard to, the derivative is unaffected by the constant C and remains intact.

Learn more about derivative  here :

https://brainly.com/question/29144258

#SPJ11

Evaluate the triple integral of
f(x,y,z)=z(x2+y2+z2)−3/2f(x,y,z)=z(x2+y2+z2)−3/2 over the part of
the ball x2+y2+z2≤81x2+y2+z2≤81 defined by z≥4.5z≥4.5.

Answers

The value of the triple integral is 21π/8.

To evaluate the triple integral, we use spherical coordinates since we are dealing with a ball. The bounds for the radius r are 0 to 9, the bounds for the polar angle θ are 0 to 2π, and the bounds for the polar angle φ are arccos(4.5/9) to π. Substituting these bounds into the integral expression, we integrate the function

[tex]f(x, y, z) = z(x^2 + y^2 + z^2)^(-3/2)[/tex]

over the given region. After performing the calculations, the value of the triple integral is found to be 21π/8, representing the volume under the function over the specified region of the ball.

learn more about triple integral here:

https://brainly.com/question/31955395

#SPJ11

only need part 2
Given the vectors v and u, answer a. through d. below. v=6i +3j-2k u=7i+24j BICCHI a. Find the dot product of v and u. u v= 114 Find the length of v. |v|=| (Simplify your answer. Type an exact answer,

Answers

Find the dot product of v and u:

The dot product of two vectors v and u is calculated by multiplying their corresponding components and then summing them up.

v · u = (6)(7) + (3)(24) + (-2)(0)

= 42 + 72 + 0

= 114

Therefore, the dot product of v and u is 114.

c. Find the length of v:

The length or magnitude of a vector v is calculated using the formula:

|v| = √(v₁² + v₂² + v₃²)

In this case, we have v = 6i + 3j - 2k, so the components are v₁ = 6, v₂ = 3, and v₃ = -2.

|v| = √(6² + 3² + (-2)²)

= √(36 + 9 + 4)

= √49

= 7

Therefore, the length of vector v is 7.

d. Find the angle between v and u:

The angle between two vectors v and u can be found using the formula:

θ = cos⁻¹((v · u) / (|v| |u|))

Learn more about multiplying  here;

https://brainly.com/question/30875464

#SPJ11

the csma/cd algorithm does not work in wireless lan because group of answer choices
a. wireless host does not have enough power to work in s duplex mode. b. of the hidden station problem. c. signal fading could prevent a station at one end from hearing a collision at the other end. d. all of the choices are correct.

Answers

The correct option for the csma/cd algorithm does not work in wireless lan because group of answer choices is option d. all of the choices are correct.

The CSMA/CD (Carrier Sense Multiple Access with Collision Detection) algorithm is specifically designed for wired Ethernet networks. In wireless LAN (Local Area Network) environments, this algorithm is not suitable due to multiple reasons, and all of the choices mentioned in the answer options are correct explanations for why CSMA/CD does not work in wireless LANs.

a. Wireless hosts in a LAN typically operate on battery power and may not have enough power to work in a full-duplex mode, which is required for CSMA/CD.

b. The hidden station problem is a significant issue in wireless networks. When multiple wireless stations are present in the network, one station may be unable to sense the transmissions of other stations due to physical obstacles or distance. This can lead to collisions and degradation in network performance, making CSMA/CD ineffective.

c. Signal fading is a common phenomenon in wireless communication, especially over longer distances. Fading can result in variations in signal strength and quality, which can prevent a station at one end of the network from accurately detecting collisions or transmissions from other stations, leading to increased collision rates and decreased efficiency.

Therefore, due to power limitations, the hidden station problem, and signal fading, the CSMA/CD algorithm is not suitable for wireless LANs, making option d, "all of the choices are correct," the correct answer.

To know more about CSMA/CD refer here:

https://brainly.com/question/13260108?#

#SPJ11

Evaluate the definite integral. 7 S 2 (3n-2-n-3) din 4 7 471 -2 1568 4 (Type an integer or a simplified fraction.) S (3n-2---3) dn =

Answers

The value of the definite integral ∫[4 to 7] (3n - 2)/(n - 3) dn is 9 + 7 ln 4.

To evaluate the definite integral [tex]∫[4 to 7] (3n - 2)/(n - 3) dn[/tex], we can start by simplifying the integrand and then apply integration techniques.

First, let's simplify the expression [tex](3n - 2)/(n - 3)[/tex]by performing polynomial division:

[tex](3n - 2)/(n - 3) = 3 + (7)/(n - 3)[/tex] as:

[tex]∫[4 to 7] (3 + (7)/(n - 3)) dn[/tex]

To evaluate this integral, we can split it into two parts:

[tex]∫[4 to 7] 3 dn + ∫[4 to 7] (7)/(n - 3) dn[/tex]

The first integral evaluates to:

[tex]∫[4 to 7] 3 dn = 3n[/tex]evaluated from n = 4 to n = 7

[tex]= 3(7) - 3(4)= 21 - 12= 9[/tex]

For the second integral, we can use the natural logarithm function:

[tex]∫[4 to 7] (7)/(n - 3) dn = 7 ln|n - 3|[/tex] evaluated from[tex]n = 4 to n = 7= 7(ln|7 - 3| - ln|4 - 3|)= 7(ln|4| - ln|1|)= 7(ln 4 - ln 1)= 7 ln 4[/tex]

Learn more about  integral here:

https://brainly.com/question/12507894

#SPJ11




(1 point) Solve the system 4 2 HR) dx X dt -10 -4 -2 with x(0) -3 Give your solution in real form. X1 = x2 = An ellipse with clockwise orientation trajectory. || = 1. Describe the

Answers

The given system of differential equations is 4x' + 2y' = -10 and -4x' - 2y' = -2, with initial condition x(0) = -3. The solution to the system is an ellipse with a clockwise orientation trajectory.

To solve the system, we can use the matrix notation method. Rewriting the system in matrix form, we have:

| 4 2 | | x' | | -10 |

| -4 -2 | | y' | = | -2 |

Using the inverse of the coefficient matrix, we have:

| x' | | -2 -1 | | -10 |

| y' | = | 2 4 | | -2 |

Multiplying the inverse matrix by the constant matrix, we obtain:

| x' | | 8 |

| y' | = | -6 |

Integrating both sides with respect to t, we have:

x = 8t + C1

y = -6t + C2

Applying the initial condition x(0) = -3, we find C1 = -3. Therefore, the solution to the system is:

x = 8t - 3

y = -6t + C2

The trajectory of the solution is described by the parametric equations for x and y, which represent an ellipse. The clockwise orientation of the trajectory is determined by the negative coefficient -6 in the y equation.

To learn more about ellipse: -brainly.com/question/13447584#SPJ11

Question 6 0/1 pt 398 Details An investment will generate income continuously at the constant rate of $12,000 per year for 9 years. If the prevailing annual interest rate remains fixed at 0.9% compounded continuously, what is the present value of the investment?

Answers

The present value of the investment, considering continuous compounding at an annual interest rate of 0.9% for 9 years, is approximately $91,244.10.

To calculate the present value, we can use the continuous compound interest formula:

[tex]P = A / e^{rt}[/tex],

where P is the present value, A is the future value or income generated ($12,000 per year), e is the base of the natural logarithm (approximately 2.71828), r is the annual interest rate (0.9% or 0.009), and t is the time period (9 years).

Plugging the values into the formula, we have:

[tex]P = 12,000 / e^{0.009 * 9}\\P = 12,000 / e^{0.081}\\P = 12,000 / 1.0843477\\P = 11,063.90[/tex]

Therefore, the present value of the investment is approximately $11,063.90.

Learn more about compound interest here:

https://brainly.com/question/22621039

#SPJ11

(1 point) Evaluate the integrals. 9 8 So [√18-² + 16 +24] 16-12 t2 In 9. k dt = [Ste'i + 7e'j + 4 lntk] dt = ⠀ #

Answers

The integral evaluates to [tex]e^i * t + 7e^j * t + 4t * ln(t) - 4t + C.[/tex]

Integrals are fundamental mathematical operations used to calculate the area under a curve or to find the antiderivative of a function.

To evaluate the given integrals, we'll take them one by one:

∫[√(18 - 2t) + 16 + 24] dt

To solve this integral, we'll split it into three separate integrals:

∫√(18 - 2t) dt + ∫16 dt + ∫24 dt

Let's evaluate each integral separately:

∫√(18 - 2t) dt

To simplify the square root, we can rewrite it as (18 - 2t)^(1/2). Then, using the power rule, we have:

(1/3) * (18 - 2t)^(3/2) + 16t + 24t + C

Simplifying further, we get: (1/3) * (18 - 2t)^(3/2) + 40t + C

Now, let's evaluate the other integrals:

∫16 dt = 16t + C1

∫24 dt = 24t + C2

Combining all the results, we have:

∫[√(18 - 2t) + 16 + 24] dt = (1/3) * (18 - 2t)^(3/2) + 40t + 16t + 24t + C

= (1/3) * (18 - 2t)^(3/2) + 80t + C

Therefore, the integral evaluates to (1/3) * (18 - 2t)^(3/2) + 80t + C.

∫[e^i + 7e^j + 4ln(t)] dt

Here, e^i, e^j, and ln(t) are constants with respect to t. Therefore, we can pull them out of the integral: e^i ∫dt + 7e^j ∫dt + 4 ∫ln(t) dt

Integrating each term: e^i * t + 7e^j * t + 4 * (t * ln(t) - t) + C

Simplifying further: e^i * t + 7e^j * t + 4t * ln(t) - 4t + C

Thus, the integral evaluates to e^i * t + 7e^j * t + 4t * ln(t) - 4t + C.

To learn more about “integrals” refer to the https://brainly.com/question/22008756

#SPJ11

Find the vector field F = for
.2 Find the vector field F =Vf for f(x, y, z)=é? Vx² + y2 . +

Answers

The first vector field F is a constant vector field with components (2, -3, 4). The second vector field F is obtained by taking the gradient of the scalar function f(x, y, z) = x^2 + y^2 + z^2. The components of the vector field F are obtained by differentiating each component of the scalar function with respect to the corresponding variable. The resulting vector field is F = (2x, 2y, 2z).

For the first vector field F = (2, -3, 4), the components of the vector field are constant. This means that the vector field has the same value at every point in space. The vector field does not depend on the position (x, y, z) and remains constant throughout.

For the second vector field F = (Fx, Fy, Fz), we are given a scalar function f(x, y, z) = x^2 + y^2 + z^2. To find the vector field F, we take the gradient of the scalar function.

The gradient of a scalar function is a vector that points in the direction of the greatest rate of change of the scalar function at each point in space. The components of the gradient vector are obtained by differentiating each component of the scalar function with respect to the corresponding variable.

In this case, we have f(x, y, z) = x^2 + y^2 + z^2. Taking the partial derivatives, we get:

Fx = 2x

Fy = 2y

Fz = 2z

These partial derivatives give us the components of the vector field F = (2x, 2y, 2z).

Therefore, the second vector field F = (2x, 2y, 2z) is obtained by taking the gradient of the scalar function f(x, y, z) = x^2 + y^2 + z^2.

Learn more about vector here;

https://brainly.com/question/15519257

#SPJ11

Calculate the flux of the vector field 1 = 41 + x27 - K through the square of side 4 in the plane y = 3, centered on the y-axis, with sides parallel to the x and z axes, and oriented in the positive y

Answers

The flux of the vector field F = <4, 1, -K> through the square in the plane y = 3, centered on the y-axis, with sides parallel to the x and z axes and oriented in the positive y direction, is zero.

To calculate the flux, we need to evaluate the surface integral of the vector field F = <4, 1, -K> over the given square. The flux of a vector field through a surface represents the flow of the field through the surface. In this case, the square is parallel to the xz-plane and centered on the y-axis, with sides of length 4. The surface is oriented in the positive y direction.

Since the y-component of the vector field is zero (F = <4, 1, -K>), it means that the vector field is parallel to the xz-plane and perpendicular to the square. As a result, the flux through the square is zero. This implies that there is no net flow of the vector field across the surface of the square. The absence of a y-component in the vector field indicates that the field does not penetrate or pass through the square, resulting in a flux of zero.

Leran more about integral here:

https://brainly.com/question/29276807

#SPJ11

Find the area of the region. 1 y = x2 - 2x + 5 0.4 03 02 1 2 3 -0.2

Answers

To find the area of the region bounded by the curve [tex]y = x^2 - 2x + 5[/tex] and the x-axis within the given interval, we can use definite integration. Area of the region is 11.13867 units

The given curve is a parabola, and we need to find the area between the curve and the x-axis within the interval from x = 0.4 to x = 3. The area can be calculated using the following definite integral: A = ∫[a, b] f(x) dx

In this case, a = 0.4 and b = 3, and f(x) = [tex]x^2 - 2x + 5[/tex]. Therefore, the area is given by: A = [tex]∫[0.4, 3] (x^2 - 2x + 5) dx[/tex] To evaluate this integral, we need to find the antiderivative of ([tex]x^2 - 2x + 5)[/tex]. Let's simplify and integrate term by term: [tex]A = ∫[0.4, 3] (x^2 - 2x + 5) dx = ∫[0.4, 3] (x^2) dx - ∫[0.4, 3] (2x) dx + ∫[0.4, 3] (5) dx[/tex]

Integrating each term: [tex]A = [1/3 * x^3] + [-x^2] + [5x][/tex] evaluated from x = 0.4 to x = 3 Now, substitute the upper and lower limits: A = [tex](1/3 * (3)^3 - 1/3 * (0.4)^3) + (- (3)^2 + (0.4)^2) + (5 * 3 - 5 * 0.4)[/tex] Simplifying the expression: A = (27/3 - 0.064/3) + (-9 + 0.16) + (15 - 2) A = 9 - 0.02133 - 8.84 + 13 - 2 A = 11.13867

Therefore, the area of the region bounded by the curve [tex]y = x^2 - 2x + 5[/tex]and the x-axis within the interval from x = 0.4 to x = 3 is approximately 11.139 square units.

Know more about antiderivative here:

https://brainly.com/question/30764807

#SPJ11

dc = 0.05q Va and fixed costs are $ 7000, determine the total 2. If marginal cost is given by dq cost function.

Answers

The total cost function is TC = 7000 + 0.05q Va and the marginal cost function is MC = 0.05 Va.

Given:dc = 0.05q Va and fixed costs are $7000We need to determine the total cost function and marginal cost function.Solution:Total cost function can be given as:TC = FC + VARTC = 7000 + 0.05q Va----------------(1)Differentiating with respect to q, we get:MC = dTC/dqMC = d/dq(7000 + 0.05q Va)MC = 0.05 Va----------------(2)Hence, the total cost function is TC = 7000 + 0.05q Va and the marginal cost function is MC = 0.05 Va.

learn more about marginal here;

https://brainly.com/question/32625709?

#SPJ11

Use the method of revised simplex to minimize z = 2x, +5x2 Subject to X1 + 2x2 2 4 3x1 + 2x2 23 X1, X2 > 0

Answers

The method of revised simplex is a technique used to solve linear programming problems.

In this case, we want to minimize the objective function z = 2x1 + 5x2, subject to the constraints x1 + 2x2 ≤ 4 and 3x1 + 2x2 ≤ 23, with the additional condition that x1, x2 ≥ 0. To apply the revised simplex method, we first convert the given problem into standard form by introducing slack variables. The initial tableau is constructed using the coefficients of the objective function and the constraints.

We then proceed to perform iterations of the simplex algorithm to obtain the optimal solution. Each iteration involves selecting a pivot element and performing row operations to bring the tableau to its final form. The process continues until no further improvement can be made.

The final tableau will provide the optimal solution to the problem, including the values of x1 and x2 that minimize the objective function z.

To learn more about  revised simplex  click here: brainly.com/question/30387091

#SPJ11.

please show all work and use only calc 2 techniques
pls! thank you
What is the surface area of the solid generated by revolving about the y-axis, y = 1- x², on the interval 0 ≤ x ≤ 1? Explain your work. Write the solution in a complete sentence. The numbers shou

Answers

We can use the formula for surface area of a solid of revolution. The surface area can be calculated by integrating the circumference of each infinitesimally thin strip along the curve.

The formula for surface area of a solid of revolution about the y-axis is given by:

SA = 2π∫[a,b] x√(1 + (dy/dx)²) dx,

where [a,b] represents the interval of revolution, dy/dx is the derivative of the function representing the curve, and x represents the variable of integration.

In this case, the curve is y = 1 - x² and we need to find dy/dx. Taking the derivative with respect to x, we get dy/dx = -2x.

Substituting these values into the surface area formula, we have:

SA = 2π∫[0,1] x√(1 + (-2x)²) dx

= 2π∫[0,1] x√(1 + 4x²) dx.

To evaluate this integral, we can use techniques from Calculus 2 such as substitution or integration by parts. After performing the integration, we obtain the numerical value for the surface area of the solid generated by revolving the curve y = 1 - x² about the y-axis on the interval 0 ≤ x ≤ 1.

Learn more about surface area here:

https://brainly.com/question/29298005

#SPJ11

Consider the function f(x) = 24 - 322? +4, -3 < x < 9. The absolute maximum of f(x) (on the given interval) is at 2= and the absolute maximum of f(x) (on the given interval) is The absolute minimum of f(x) (on the given interval) is at r = and the absolute minimum of f(x) (on the given interval) is

Answers

The absolute maximum of the function f(x) = 24 - 3x^2 + 4x on the interval -3 < x < 9 is at x = 2 and the absolute maximum value is 31. The absolute minimum of the function on the given interval is not specified in the question.

To find the absolute maximum and minimum of a function, we need to evaluate the function at critical points and endpoints within the given interval. Critical points are the points where the derivative of the function is either zero or undefined, and endpoints are the boundary points of the interval. In this case, to find the absolute maximum, we would need to evaluate the function at the critical points and endpoints and compare their values. However, the question does not provide the necessary information to determine the absolute minimum. Therefore, we can conclude that the absolute maximum of f(x) on the given interval is at x = 2 with a value of 31. However, we cannot determine the absolute minimum without additional information or clarification.

Learn more about critical points here:

https://brainly.com/question/32077588

#SPJ11

(a) Using the Comparison Test and the statement on p-series, determine whether the series is absolutely convergent, conditionally convergent, or divergent: (n3 - 1) cos n Σ n5 n=1 (b) Find the Maclaurin series (i.e., the Taylor series at a = 0) of the function y = cos(2x) and determine its convergence radius.

Answers

a. By the Comparison Test, the series Σ ((n^3 - 1) * cos(n)) / n^5 is absolutely convergent.

b. The Maclaurin series of y = cos(2x) is cos(2x) = ∑ ((-1)^n * 2^(2n) * x^(2n)) / (2n)! with a convergence radius of infinity

(a) To determine the convergence of the series Σ ((n^3 - 1) * cos(n)) / n^5, we can use the Comparison Test.

Let's consider the absolute value of the series terms:

|((n^3 - 1) * cos(n)) / n^5|

Since |cos(n)| is always between 0 and 1, we have:

|((n^3 - 1) * cos(n)) / n^5| ≤ |(n^3 - 1) / n^5|

Now, let's compare the series with the p-series 1 / n^2:

|((n^3 - 1) * cos(n)) / n^5| ≤ |(n^3 - 1) / n^5| ≤ 1 / n^2

The p-series with p = 2 converges, so if we show that the series Σ 1 / n^2 converges, then by the Comparison Test, the given series will also converge.

The p-series Σ 1 / n^2 converges because p = 2 > 1.

Therefore, by the Comparison Test, the series Σ ((n^3 - 1) * cos(n)) / n^5 is absolutely convergent.

(b) To find the Maclaurin series (Taylor series at a = 0) of the function y = cos(2x), we can use the definition of the Maclaurin series and the derivatives of cos(2x).

The Maclaurin series of cos(2x) is given by:

cos(2x) = ∑ ((-1)^n * (2x)^(2n)) / (2n)!

Let's simplify this expression:

cos(2x) = ∑ ((-1)^n * 2^(2n) * x^(2n)) / (2n)!

To determine the convergence radius of this series, we can use the ratio test. Let's apply the ratio test to the series terms:

|((-1)^(n+1) * 2^(2(n+1)) * x^(2(n+1))) / ((n+1)!)| / |((-1)^n * 2^(2n) * x^(2n)) / (2n)!|

Simplifying and canceling terms, we have:

|(2^2 * x^2) / ((n+1)(n+1))|

Taking the limit as n approaches infinity, we have:

lim (n→∞) |(2^2 * x^2) / ((n+1)(n+1))| = |4x^2 / (∞ * ∞)| = 0

Since the limit is less than 1, the series converges for all values of x.

Therefore, the Maclaurin series of y = cos(2x) is:

cos(2x) = ∑ ((-1)^n * 2^(2n) * x^(2n)) / (2n)!

with a convergence radius of infinity, meaning it converges for all x values.

Learn more about convergence here:

brainly.com/question/29258536

#SPJ11

2. (10 points) Evaluate the integral using the appropriate substitution. You must use a substitution for this problem. Simplify your answer. You must show your work. 5 cos(x) dx 1+ sin?(x) 2

Answers

The integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex] simplifies to [tex]5tan^2(arcsin(sin(x))) + C.[/tex]

To evaluate the integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex], we can make a substitution to simplify the integral.

Let u = sin(x),

thus du = cos(x)dx.

Using this substitution,

the integral becomes ∫[tex]5 du / (1 + u^2)^2[/tex].

Now, let's simplify this integral  

We can rewrite it as:

∫5 /[tex](1 + u^2)^2 du[/tex]

To evaluate this integral, we can use a trigonometric substitution. Let's substitute u = tan(t), then [tex]du = sec^2(t) dt.[/tex]

The integral becomes:

∫[tex]5 / (1 + tan^2(t))^2[/tex]× [tex]sec^2(t) dt[/tex]

Simplifying further:

∫[tex]5 / (sec^2(t))^2[/tex]× [tex]sec^2(t) dt[/tex]

∫[tex]5 / sec^4(t)[/tex]× [tex]sec^2(t) dt[/tex]

∫[tex]5sec^(-2)(t) dt[/tex]

Using the identity[tex]sec^2(t) = 1 + tan^2(t),[/tex] we can rewrite the integral as:

∫[tex]5(1 + tan^2(t)) dt[/tex]

∫[tex]5 + 5tan^2(t) dt[/tex]

Now, we can integrate each term separately:

∫5 dt = 5t + C1

∫[tex]5tan^2(t) dt[/tex]= 5 (tan(t) - t) + C2

Combining the results, the integral becomes:

[tex]5t + 5tan^2(t) - 5t + C = 5tan^2(t) + C[/tex]

Finally, substituting back u = sin(x), we have:

[tex]5tan^2(t) + C = 5tan^2(arcsin(u)) + C[/tex]

Therefore, the integral ∫[tex]5cos(x)dx / (1 + sin^2(x))^2[/tex] simplifies to [tex]5tan^2(arcsin(sin(x))) + C.[/tex]

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

2 (0,7) such that f'(e) = 0. Why does this Rolle's Theorem? 13. Use Rolle's Theorem to show that the equation 2z+cos z = 0 has at most one root. (see page 287) 14. Verify that f(x)=e-2 satisfies the c

Answers

Rolle's Theorem states that if a function is continuous on a closed interval [a, b] and differentiable on the open interval (a, b), and the function's values at the endpoints are equal, then there exists at least one point c in (a, b) where the derivative of the function is zero.

In question 2, the point (0,7) is given, and we need to find a value of e such that f'(e) = 0. Since f(x) is not explicitly mentioned in the question, it is unclear how to apply Rolle's Theorem to find the required value of e.

In question 13, we are given the equation 2z + cos(z) = 0 and we need to show that it has at most one root using Rolle's Theorem. To apply Rolle's Theorem, we need to consider a function that satisfies the conditions of the theorem. However, the equation provided is not in the form of a function, and it is unclear how to proceed with Rolle's Theorem in this context.

Question 14 asks to verify if f(x) = e^(-2) satisfies the conditions of Rolle's Theorem. To apply Rolle's Theorem, we need to check if f(x) is continuous on a closed interval [a, b] and differentiable on the open interval (a, b). Since f(x) = e^(-2) is a continuous function and its derivative, f'(x) = -2e^(-2), exists and is continuous, we can conclude that f(x) satisfies the conditions of Rolle's Theorem.

Overall, while Rolle's Theorem is a powerful tool in calculus to analyze functions and find points where the derivative is zero, the application of the theorem in the given questions is unclear or incomplete.

To learn more about Rolle's Theorem visit:

brainly.com/question/32056113

#SPJ11

3t Given the vector-valued functions ü(t) = e3+ 3t ; – 4tk ūest € ū(t) = - 2t1 – 2t j + 5k ; find d (ū(t) · ū(t)) when t = 2. dt

Answers

When evaluating d(ū(t) · ū(t))/dt for the given vector-valued functions ū(t) = (-2t)i - (2t)j + 5k, the derivative is found to be -2i - 2j. Taking the dot product of this derivative with ū(t) yields 8t. Thus, when t = 2, the value of d(ū(t) · ū(t))/dt is 16.

We are given the vector-valued functions:

ū(t) = (-2t)i - (2t)j + 5k

To find the derivative of the dot product (ū(t) · ū(t)) with respect to t (dt), we need to differentiate each component of the vector ū(t) separately.

Differentiating each component of ū(t) with respect to t, we get: d(ū(t))/dt = (-2)i - (2)j + 0k = -2i - 2j

Next, we take the dot product of the derivative d(ū(t))/dt and the original vector ū(t).

(d(ū(t))/dt) · ū(t) = (-2i - 2j) · (-2ti - 2tj + 5k)

= (-2)(-2t) + (-2)(-2t) + (0)(5)

= 4t + 4t

= 8t

Therefore, the derivative d(ū(t) · ū(t))/dt simplifies to 8t.

Finally, when t = 2, we can substitute the value into the derivative expression: d(ū(t) · ū(t))/dt = 8(2) = 16. Thus, the value of d(ū(t) · ū(t))/dt when t = 2 is 16.

to know more about dot product, click: brainly.com/question/29097076

#SPJ11

A rectangle measures 2 1/4 Inches by 1 3/4 inches. What is its area?​

Answers

Answer:

3.9375 inches²

Step-by-step explanation:

We Know

Area of rectangle = L x W

A rectangle measures 2 1/4 Inches by 1 3/4 inches.

2 1/4 = 9/4 = 2.25 inches

1 3/4 = 7/4 = 1.75 inches

What is its area?​

We Take

2.25 x 1.75 = 3.9375 inches²

So, the area is 3.9375 inches².

5. (20 pts) Find the Laplace Transform of f(t) = te-tult – 1) Find the inverse Laplace transform of X(s) - (s+2)e-S 92 +4s+8

Answers

The inverse Laplace transform of X(s) is$$x(t) = \frac{9e^{2/9}}{5}e^{-2t/9} + \frac{9}{5\sqrt{10}}\left[\cos\left(\frac{2\pi}{5}t\right) - \sin\left(\frac{2\pi}{5}t\right)\right]u(t)$$where u(t) is the unit step function.

Laplace transform of the given function

In order to find the Laplace transform of f(t) = te^-t u(t),

you need to apply the Laplace transform definition and the property of the Laplace transform of the derivative. By applying Laplace transform to the given function f(t), we get the equation below:

$$F(s) = \int_{0}^{\infty} te^{-st}e^{-t} \ dt$$

Substituting u = st, $du = s \ dt$,

we get$$F(s) = \frac{1}{s+1} \int_{0}^{\infty} u e^{-u} \ du$$

Integrating by parts, we get$$F(s) = \frac{1}{(s+1)^2}$$

Thus, the Laplace transform of the given function is F(s) = 1/(s+1)^2.

Inverse Laplace transform of the given function

To find the inverse Laplace transform of X(s) = (s+2)e^(-s/9)/(s^2+4s+8),

you can use partial fraction decomposition. Decomposing X(s), we get:

$$X(s) = \frac{(s+2)e^{-s/9}}{s^2+4s+8}

= \frac{A}{s+2} + \frac{Bs+C}{s^2+4s+8}$$

Solving for A, B, and C, we get$$A = \frac{9e^{2/9}}{5}, \ B

= -\frac{9}{5}\frac{e^{-2i\pi/5}}{\sqrt{10}}, \ C

= -\frac{9}{5}\frac{e^{2i\pi/5}}{\√{10}}$$

To know more about Laplace Transform

https://brainly.com/question/31424175

#SPJ11

In a town, 30% of the households own a dog, 20% own a cat, and 60% own neither a dog nor a cat. If we select a household at random, what is the chance that they own both a dog and a cat?. Please give a reason as to how you found the answer. Two steps, 1) find the answer and show step by step process and 2) this part is important, please explain in 200 words how you found the answer, give logical and statastical reasoning. Explain how you arrived at your answer.

Answers

To find the probability that a randomly selected household owns both a dog and a cat, we need to calculate the intersection of the probabilities of owning a dog and owning a cat. The probability can be found by multiplying the probability of owning a dog by the probability of owning a cat, given that they are independent events.

Step 1: Calculate the probability of owning both a dog and a cat.

Given that owning a dog and owning a cat are independent events, we can use the formula for the intersection of independent events:             P(A ∩ B) = P(A) * P(B).

Let P(D) be the probability of owning a dog (0.30) and P(C) be the probability of owning a cat (0.20). The probability of owning both a dog and a cat is P(D ∩ C) = P(D) * P(C) = 0.30 * 0.20 = 0.06.

Therefore, the probability that a randomly selected household owns both a dog and a cat is 0.06 or 6%.

Step 2: Explanation and Reasoning

To find the probability of owning both a dog and a cat, we rely on the assumption of independence between dog ownership and cat ownership. This assumption implies that owning a dog does not affect the likelihood of owning a cat and vice versa.

Using the information provided, we know that 30% of households own a dog, 20% own a cat, and 60% own neither. Since the question asks for the probability of owning both a dog and a cat, we focus on the intersection of these two events.

By multiplying the probability of owning a dog (0.30) by the probability of owning a cat (0.20), we obtain the probability of owning both (0.06 or 6%). This calculation assumes that the events of owning a dog and owning a cat are independent.

In summary, the probability of a household owning both a dog and a cat is 6%, which is found by multiplying the individual probabilities of dog ownership and cat ownership, assuming independence between the two events.

Learn more about independent events here:

https://brainly.com/question/30905572

#SPJ11

you want to find the median weight of the apples in a barrel. what do you need to do

Answers

To find the median weight of the apples in a barrel, you need to follow a specific process. You would need to sort the weights of all the apples in ascending order and then determine the middle value.

In more detail, here's how you can find the median weight:

1. Collect the weights of all the apples in the barrel.

2. Arrange the weights in ascending order, from the smallest to the largest.

3. If the number of apples is odd, the median weight is the weight of the apple in the middle of the sorted list.

4. If the number of apples is even, the median weight is the average of the two middle weights.

5. Calculate the median weight using the appropriate method based on the number of apples.

6. Round the median weight to the desired precision if necessary.

By following these steps, you can determine the median weight of the apples in the barrel, providing you with a measure of the central tendency for the apple weights.

Learn more about  median weight here:

https://brainly.com/question/16399306

#SPJ11

a population is modeled by the differential equation dp/dt = 1.3p (1 − p/4200).
For what values of P is the population increasing?
P∈( ___,___) For what values of P is the population decreasing? P∈( ___,___) What are the equilibrium solutions? P = ___ (smaller value) P = ___ (larger value)

Answers

The population is increasing when P ∈ (0, 4200) and decreasing when P ∈ (4200, ∞). The equilibrium solutions are P = 0 and P = 4200.

The given differential equation dp/dt = 1.3p (1 − p/4200) models the population, where p represents the population size and t represents time. To determine when the population is increasing, we need to find the values of P for which dp/dt > 0. In other words, we are looking for values of P that make the population growth rate positive. From the given equation, we can observe that when P ∈ (0, 4200), the term (1 − p/4200) is positive, resulting in a positive growth rate. Therefore, the population is increasing when P ∈ (0, 4200).

Conversely, to find when the population is decreasing, we need to determine the values of P for which dp/dt < 0. This occurs when P ∈ (4200, ∞), as in this range, the term (1 − p/4200) is negative, causing a negative growth rate and a decreasing population.

Finally, to find the equilibrium solutions, we set dp/dt = 0. Solving 1.3p (1 − p/4200) = 0, we obtain two equilibrium values: P = 0 and P = 4200. These are the population sizes at which there is no growth or change over time, representing stable points in the population dynamics.

Learn more about population here: https://brainly.com/question/30935898

#SPJ11

The derivative of f(x) is the function f(x +h)-f(1) f'(x) = lim · (3 points) Find the formula for the derivative f'(x) of f(x) = (2x + 1) using the definition of derivative.

Answers

The formula for the derivative[tex]f'(x) of f(x) = (2x + 1)[/tex]can be found using the definition of the derivative.

The definition of the derivative states that f'(x) is equal to the limit as h approaches[tex]0 of (f(x + h) - f(x))/h.[/tex]

To find the derivative of[tex]f(x) = (2x + 1)[/tex], we substitute the function into the definition:

[tex]f'(x) = lim(h→0) [(2(x + h) + 1 - (2x + 1))/h][/tex]

Simplifying the expression inside the limit, we get:

[tex]f'(x) = lim(h→0) [2h/h][/tex]

Cancelling out h, we have:

[tex]f'(x) = lim(h→0) 2[/tex]

Since the limit does not depend on x, the derivative[tex]f'(x) of f(x) = (2x + 1)[/tex]is simply 2. Therefore, the formula for the derivative is [tex]f'(x) = 2.[/tex]

Learn more about the definition of derivative here:

https://brainly.com/question/30401596

#SPJ11

what is the FUNDAMENTAL THEOREM OF CALCULUS applications? How
it's related to calculus?

Answers

The Fundamental Theorem of Calculus is a fundamental result in calculus that establishes a connection between differentiation and integration. It has various applications in calculus, including evaluating definite integrals, finding antiderivatives, and solving problems involving rates of change and accumulation.

The Fundamental Theorem of Calculus consists of two parts: the first part relates differentiation and integration, stating that if a function f(x) is continuous on a closed interval [a, b] and F(x) is its antiderivative, then the definite integral of f(x) from a to b is equal to F(b) - F(a). This allows us to evaluate definite integrals using antiderivatives. The second part of the theorem deals with finding antiderivatives. It states that if a function f(x) is continuous on an interval I, then its antiderivative F(x) exists and can be found by integrating f(x). The Fundamental Theorem of Calculus has numerous applications in calculus. It provides a powerful tool for evaluating definite integrals, calculating areas under curves, determining net change and accumulation, solving differential equations, and more.

To know more about Fundamental Theorem here: brainly.com/question/30761130

#SPJ11

1. Find the area of the region bounded by y = x2 – 3 and y = –22. Plot the region. Explain where do you use the Fundamental Theorem of Calculus in calculating the definite integral.

Answers

To find the area of the region bounded by the two curves y = x^2 - 3 and y = -22, we need to determine the points of intersection and calculate the definite integral.

Step 1: Finding the points of intersection:

To find the points where the two curves intersect, we set the two equations equal to each other and solve for x: x^2 - 3 = -22

Rearranging the equation, we get:  x^2 = -19

Since the equation has no real solutions (taking the square root of a negative number), the two curves do not intersect, and there is no region to calculate the area for. Therefore, the area of the region is 0. Explanation of the Fundamental Theorem of Calculus The Fundamental Theorem of Calculus is used to evaluate definite integrals. It states that if F(x) is an antiderivative of f(x) on an interval [a, b], then the definite integral of f(x) from a to b is equal to F(b) - F(a). In other words, it allows us to find the area under a curve by evaluating the antiderivative of the function and subtracting the values at the endpoints.

Learn more about curves  here;

https://brainly.com/question/29736815

#SPJ11  

0.8 5 Use MacLaurin series to approximate S x². ln (1 + x²) dx so that the absolute value of the error in this approximation is less than 0.001

Answers

Using  MacLaurin series, we find x must be greater than or equal to 0.99751 in order for the absolute error to be less than 0.001.

Let's have detailed solution:

The MacLaurin series expansion of ln (1 + x²) is,

                            ln (1 + x²) = x² - x⁴/2 + x⁶/3 - x⁸/4 + ...

We can use this series to approximate S x². ln (1 + x²) dx with the following formula:

                         S x². ln (1 + x²) dx = S (x² - x⁴/2 + x⁶/3 - x⁸/4 + ...) dx

                                                      = x³/3 - x⁵/10 + x⁷/21 - x⁹/44 + O(x¹¹)

We can find the absolute error for this approximation using the formula.

           |Error| = |S x². ln (1 + x²) dx - (x³/3 - x⁵/10 + x⁷/21 - x⁹/44)| ≤ 0.001

                                                            or

                                          |x¹¹. f⁹₊₁(x¢)| ≤ 0.001

where f⁹₊₁(x¢) is the nth derivative of f(x).

Using calculus we can find that the nth derivative of f(x) is

                                         f⁹₊₁(x¢) = (-1)⁹. x¹₇. (1 + x²)⁻⁵

Therefore, we can solve for x to obtain  

                                        |(-1)⁹. x¹₇. (1 + x²)⁻⁵| ≤ 0.001

                                        |x¹₇. (1 + x²)⁻⁵| ≤ 0.001

                                        |x¹₇. (1 + x²)| ≥ 0.999⁹⁹¹

From this equation, we can see that x must be greater than or equal to 0.99751 in order for the absolute error to be less than 0.001.

To know more about MacLaurin series refer here:

https://brainly.com/question/32263336#

#SPJ11

Let f(x)=x^3−5x. Calculate the difference quotient f(3+h)−f(3)/h for
h=.1
h=.01
h=−.01
h=−.1
The slope of the tangent line to the graph of f(x) at x=3 is m=lim h→0 f(3+h)−f(3)h=
The equation of the tangent line to the curve at the point (3, 12 ) is y=

Answers

The difference quotient for the function f(x) = x^3 - 5x is calculated for different values of h: 0.1, 0.01, -0.01, and -0.1. The slope of the tangent line to the graph of f(x) at x = 3 is also determined. The equation of the tangent line to the curve at the point (3, 12) is provided.

The difference quotient measures the average rate of change of a function over a small interval. For f(x) = x^3 - 5x, we can calculate the difference quotient f(3+h) - f(3)/h for different values of h.

For h = 0.1:

f(3+0.1) - f(3)/0.1 = (27.1 - 12)/0.1 = 151

For h = 0.01:

f(3+0.01) - f(3)/0.01 = (27.0001 - 12)/0.01 = 1501

For h = -0.01:

f(3-0.01) - f(3)/-0.01 = (26.9999 - 12)/-0.01 = -1499

For h = -0.1:

f(3-0.1) - f(3)/-0.1 = (26.9 - 12)/-0.1 = -149

To find the slope of the tangent line at x = 3, we take the limit as h approaches 0:

lim h→0 f(3+h) - f(3)/h = lim h→0 (27 - 12)/h = 15

Therefore, the slope of the tangent line to the graph of f(x) at x = 3 is 15.

To find the equation of the tangent line, we use the point-slope form: y - y₁ = m(x - x₁), where (x₁, y₁) is the point on the curve (3, 12) and m is the slope we just found:

y - 12 = 15(x - 3)

y - 12 = 15x - 45

y = 15x - 33

Hence, the equation of the tangent line to the curve at the point (3, 12) is y = 15x - 33.

Learn more about tangent line here:

https://brainly.com/question/23416900

#SPJ11

Evaluate the derivative of the function. f(x) = sin - (6x5) f'(x) =

Answers

The derivative in the given question is: f'(x) = [tex]-30x^4 cos(6x^5)[/tex]

To evaluate the derivative of the function f(x) = sin - (6x5), we need to use the chain rule of differentiation. Here's how:

The derivative in mathematics depicts the rate of change of a function at a specific position. It gauges how the output of the function alters as the input changes. As dy and dx stand for the infinitesimal change in the function's input and output, respectively, the derivative of a function f(x) is denoted as f'(x) or dy/dx.

The slope of the tangent line to the function's graph at a particular location can be used to geometrically interpret the derivative. It is essential to calculus, optimisation, and the investigation of slopes and rates of change in mathematical analysis. Different differentiation methods and rules, including the power rule, product rule, quotient rule, and chain rule, can be used to calculate the derivative.

The function is f(x) = [tex]sin - (6x5)[/tex]

Let's write[tex]sin - (6x5) as sin(-6x^5)So, f(x) = sin(-6x^5)[/tex]

Now, applying the chain rule of differentiation, we get:[tex]f'(x) = cos(-6x^5) × d/dx(-6x^5)[/tex]

Using the power rule of differentiation, we have:d/dx(-6x^5) = -30x^4Therefore,f'(x) = [tex]cos(-6x^5) * (-30x^4)[/tex]

We know that cos(-x) = cos(x)So, f'(x) = [tex]cos(6x^5) × (-30x^4)[/tex]

Therefore, f'(x) = [tex]-30x^4 cos(6x^5)[/tex]

Learn more about derivative here:

https://brainly.com/question/28767430


#SPJ11

Other Questions
Find the indefinite integral. -6x 1 (x + 1) - x + 1 dx Evaluate the double integral. Select the order of integration carefully, the problem is easy to do one way and difficult the other. 6y 7xy S88+ 730JA: R=($.7)| O5x58, - 1sys 1) 1x R SS" By + 7xy d E.7. For which of the following integrals is u-substitution appropriate? Possible Answers 1 1. S -dx 2x + 1 6 1 S Se=, 1 2. 3. 4. 5. x + 1 reda dx sin x cos x dx 0 3x + 1 S dx X Option 1 Opti Consider the following double integral 1 = $***** dy dr. dx. By reversing the order of integration of 1, we obtain: 1 = $ L94-ya dx dy 1 = $**** dx dy This option This option : - fi$*** dx dy None of bruce lincoln's definition of religion emphasizes four domains Compute lim (2+h)- - 2-1 h h0 5. Use the Squeeze Theorem to show lim x cos(1/x) = 0. x0 In a previous assignment, you created a set class which could store numbers. This class, called ArrayNumSet, implemented the NumSet interface. In this project, you will implement the NumSet interface for a hash-table based set class, called HashNumSet. Your HashNumSet class, as it implements NumSet, will be generic, and able to store objects of type Number or any child type of Number (such as Integer, Double, etc).Notice that the NumSet interface is missing a declaration for the get method. This method is typically used for lists, and made sense in the context of our ArrayNumSet implementation. Here though, because we are hashing elements to get array indices, having a method take an array index as a parameter is not intuitive. Indeed, Java's Set interface does not have it, so it's been removed here as well.The hash table for your set implementation will be a primitive array, and you will use the chaining method to resolve collisions. Each chain will be represented as a linked list, and the node class, ListNode, is given for you. Any additional methods you need to work with objects of ListNode you need to implement in your HashNumSet class.You'll need to write a hash function which computes the index in an array which an element can go / be looked up from. One way to do this is to create a private method in your HashNumSet class called hash like so:private int hash(Number element)This method will compute an index in the array corresponding to the given element. When we say we are going to 'hash an element', we mean computing the index in the array where that element belongs. Use the element's hash code and the length of the array in which you want to compute the index from. You must use the modulo operator (%).The hash method declaration given above takes a single parameter, the element, as a Number instead of E (the generic type parameter defined in NumSet). This is done to avoid any casting to E, for example if the element being passed to the method is retrieved from the array.When the number of elements in your array (total elements among all linked lists) becomes greater than 75% of the capacity, resize the array by doubling it. This is called a load factor, and here we will define it as num_elements / capacity, in which num_elements is the current number of elements in your array (what size() returns), and capacity is the current length of your array (what capacity() returns).Whenever you resize your array, you need to rehash all the elements currently in your set. This is required as your hash function is dependent on the size of the array, and increasing its size will affect which indices in the array your elements hash to. Hint: when you copy your elements to the new array of 2X size, hash each element during the copy so you will know which index to put each one.Be sure to resize your array as soon as the load factor becomes greater than 75%. This means you should probably check your load factor immediately after adding an element.Do not use any built-in array copy methods from Java.Your HashNumSet constructor will take a single argument for the initial capacity of the array. You will take this capacity value and use it to create an array in which the size (length) is the capacity. Then when you need to resize the array (ie, create a new one to replace the old one), the size of the new array will be double the size of the old one.null values are not supported, and a NullPointerException should be thrown whenever a null element is passed into add/contains/remove methods.Example input / outputYour program is really a class, HashNumSet, which will be instantiated once per test case and various methods called to check how your program is performing. For example, suppose your HashNumSet class is instantiated as an object called numSet holding type Integer and with initialCapacity = 2:NumSet numSet = new HashNumSet(2);Three integers are added to your set:numSet.add(5);numSet.add(3);numSet.add(7);Then your size() method is called:numSet.size();It should return 3, the number of elements in the set. Your capacity() method is called:numSet.capacity();It should return 4, the length of the primitive array. Now add another element:numSet.add(12);Now if you call numSet.size() and numSet.capacity(), you should get 4 and 8 returned, respectively. Finally, lets remove an element:numSet.remove(3);Now if you call numSet.size() and numSet.capacity(), you should get 3 and 8 returned, respectively. The test cases each have a description of what each one will be testing. Determine whether the series is convergent or divergent. 5n + 18 n(n + 9) n = 1 Prove that if a convex polygon has three angles whose sum is 180, then the polygon must be a triangle. (Note: Be careful not to accidentally prove the converse of this!) Please first read the uploaded article; after that, you will have two tasks for this assignment. 1)Summarize the article in a logical flow. (10 points) Note: You do not have to be able to understand the analyzes under the RESULTS section. 2)Based on the given article and the knowledge, share your personal brand experience and evaluate its effect on your brand relationship quality, brand commitment, and brand trust. Which sentence is written correctly? A. Your standing in my way. B. Isnt that woman youre next door neighbor? C. I think you should consider giving some of your dolls to Becky. D. ALL sentences are written correctly. The Central Division of AAA, Inc, has operating income of $64,000 on sales revenue of $640,000. Divisional operating assets are $320,000 and management of AAA has determined that a minimum return of 12% should be expected from all investments. (0) Using the DuPont model calculate the Central Division's margin, turnover, and ROI. (b) Calculate the Central Division's residual income. Abstracting the implementation details means we can modify it without dramatic effects on the system. Which of the following concepts represent this idea?- none of the above- polymorphism- encapsulation- information hiding- inheritance Given (10) = 3 and/(10) - 7 find the value of (10) based on the function below. h(x) = 6) Answer Tables Keyboard Short (10) = Why can grits and polenta be used interchangeably? A process fluid having a specific heat of 3500 J/kgK and flowing at 2 kg/s is to be cooled from 80C to 50C with chilled water, which is supplied at a temperature of 15C and a flow rate of 2.5 kg/s. Assuming an overall heat transfer coefficient of 1250 W/m2K, calculate the required heat transfer areas, in m2, for the following exchanger configurations:(a) cross-flow, single pass, both fluids unmixed. Use the appropriate heat exchanger effectiveness relations. Your work can be reduced by using IHT. T/F: One function of the kidney is to produce renin, an enzymatic hormone that triggers a chain reaction important in salt conservation by the kidneys. The map above shows an 1857 project for the constructoin of new streets and city blocks in the austrian capitol vienna. The old city is in the middle, bordered by a proposed ring of new boulevards and neighbourhoods. Using the map and your knowledge of european history, answer:A) briefly explain 2 features of european city life in the mid 1800s that prompted governments to embark on urban redesign programs such as the one illustrated aboveB) Briefly explain 1 way urban redesign programs such as the one in vienna altered european social life. if every 4th person gets a free cookie and every 5th person gets a free coffee how many out of 100 people will receive a free cookie and free coffee.A:4 peopleB:5 peopleC:6 peopleD:7 people the town of hamlet has $3$ people for each horse, $4$ sheep for each cow, and $3$ ducks for each person. which of the following could not possibly be the total number of people, horses, sheep, cows, and ducks in hamlet? 41 47 59 61 66 Steam Workshop Downloader