To calculate the value of gravitational acceleration (g) at a distance (d) from the Earth's center, we can use the formula: g = (G * M) / (R^2)
where G is the gravitational constant, M is the mass of the Earth, and R is the distance from the center of the Earth.
The mass of the Earth (M) can be calculated using the formula:
M = (4/3) * π * (R_e)^3 * ρ
where R_e is the radius of the Earth and ρ is the density of the Earth.
Given that the density of the Earth (ρ) is 5540.0 kg/m^3 and the distance (d) is 800.0 km, we can proceed with the calculations:
Convert the distance from kilometers to meters:
d = 800.0 km = 800,000.0 m
Calculate the mass of the Earth:
R_e = 6,371,000.0 m (approximate radius of the Earth)
M = (4/3) * π * (6,371,000.0)^3 * 5540.0
Calculate the gravitational acceleration:
g = (G * M) / (d^2)
By substituting the values into the formula and performing the calculations, we can find the value of g.
learn more about gravitational here
https://brainly.com/question/3009841
#SPJ11
the reflecting surfaces of two mirrors form a vertex with an angle of 125 ∘.
If the reflecting surfaces of two mirrors form a vertex with an angle of 125 degrees, then any light that enters the vertex will be reflected twice, following the law of reflection. The angle between the incident ray and the normal to the mirror will be equal to the angle between the reflected ray and the normal.
If we place an object in front of one of the mirrors, the image will be formed by the light that reflects off both mirrors. The location of the image can be determined by tracing the paths of two rays from the object, one that reflects off each mirror and strikes the eye or camera.
To locate the position of the image, we could use the mirror equation:
1/f = 1/di + 1/do
where f is the focal length of the mirrors, di is the distance from the image to the vertex, and do is the distance from the object to the vertex.
We would also need to use the magnification equation:
m = -di/do
where m is the magnification produced by the two mirrors.
Given the angle between the mirrors' reflecting surfaces, we could also calculate the effective field of view of the mirrored setup.
Learn more about effective field of view from
https://brainly.com/question/31229518
#SPJ11
A 10,000 kg rail car traveling west at 50 m/s collides with a
5,000 kg rail car traveling east at 70 m/s. The two rail cars stick
together after the collision. The velocity of the wreckage after the
collision is
m/s. Include sign and magnitude of
velocity in your answer.
Assume east is positive and west is negative.
The final velocity of the wreckage after the collision is 56.67 m/s.
Mass of the first rail car, m₁ = 10⁴kg
Velocity of the first rail car, v₁ = 50 m/s
Mass of the second rail car, m₂ = 5 x 10³kg
Velocity of the second rail car, v₂ = 70 m/s
According to the law of conservation of momentum, the momentum of an isolated system will remain a constant in a domain.
So, the initial momentum before collision will be equal to the final momentum after the collision.
So,
m₁v₁ + m₂v₂ = (m₁ + m₂)v
Therefore, the final velocity of the wreckage after the collision is,
v = (m₁v₁ + m₂v₂)/(m₁ + m₂)
v = [(10⁴x 50) + (5 x 10³x 70)]/(10⁴+ 5 x 10³)
v = [(50 x 10⁴) + (35 x 10⁴)]/15 x 10³
v = 85 x 10⁴/15 x 10³
v = 56.67 m/s
To learn more about collision, click:
https://brainly.com/question/30636941
#SPJ1
a trash compactor can compress its contents to 0.350 times their original volume. neglecting the mass of air expelled, by what factor is the density of the rubbish increased?
To determine the factor by which the density of the rubbish is increased, we need to consider the relationship between density (ρ), volume (V), and mass (m).
Density is defined as the mass per unit volume:
ρ = m/V
Given that the trash compactor can compress the contents to 0.350 times their original volume, the new volume (V') can be expressed as:
V' = 0.350 * V
Assuming the mass of the rubbish remains constant, the mass (m') after compression is the same as the original mass (m).
Now, let's calculate the density after compression (ρ'):
ρ' = m/V' = m/(0.350 * V)
To find the factor by which the density is increased, we can divide ρ' by ρ:
Factor = ρ'/ρ = (m/(0.350 * V))/(m/V) = (1/0.350) = 2.857
Therefore, the density of the rubbish is increased by a factor of approximately 2.857.
Learn more about mass from
https://brainly.com/question/86444
#SPJ11
two point charges 2.0 cm apart have an electric potential energy -180 μj . the total charge is 0 nc .
The statement that the total charge is 0 nC seems to be contradictory, as having two-point charges would imply the presence of charges. However, I can provide an explanation assuming that the total charge is meant to refer to the net charge of the system.
The **electric potential energy** between two point charges, 2.0 cm apart, is **-180 μJ**.
The electric potential energy between two point charges can be calculated using the equation:
Electric Potential Energy = (k * q1 * q2) / r,
where k is the electrostatic constant, q1 and q2 are the magnitudes of the charges, and r is the separation distance between the charges.
In this case, the electric potential energy is given as -180 μJ, indicating that the charges have opposite signs. However, the total charge is stated as 0 nC, which suggests that the magnitudes of the charges are equal.
To further analyze the situation, we need additional information, such as the charges of the individual point charges or the magnitudes of the charges separately. Without that information, we cannot determine the specific values of the charges or provide a conclusive explanation.
Learn more about electric potential energy here:
https://brainly.com/question/28444459
#SPJ11
200 kPa when its temperature is 20 °C (Gauge pressure is the difference between the actual pressure and atmospheric pressure). After the car has been driven at high speeds, the tire temperature increases to 50 °C. a) Assuming that the volume of the tyre does not change, and that air behaves as an ideal gas, find the gauge pressure of the air in the tire. b) Calculate the gauge pressure if the volume of the tyre expands by 10 % .
a) The gauge pressure of the air in the tire after it has been driven at high speeds and the temperature increased to 50 °C is approximately 228.7 kPa.
b) If the volume of the tire expands by 10%, the gauge pressure of the air in the tire would be approximately 231.8 kPa.
To calculate the gauge pressure of the air in the tire, we need to use the ideal gas law, which states that the pressure of a gas is directly proportional to its temperature when the volume is constant.
The ideal gas law is given by the equation PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature in Kelvin.
a) Assuming the volume of the tire remains constant, we can use the ideal gas law to solve for the gauge pressure. First, let's convert the given temperatures to Kelvin:
Initial temperature (T1) = 20 °C + 273.15 = 293.15 K
Final temperature (T2) = 50 °C + 273.15 = 323.15 K
The initial gauge pressure (P1) is given as 200 kPa. To find the final gauge pressure (P2), we can set up the following equation using the ideal gas law:
(P1 + Patm) / T1 = (P2 + Patm) / T2
Where Patm is the atmospheric pressure (which we assume remains constant). Rearranging the equation and solving for P2, we get:
P2 = (P1 + Patm) * (T2 / T1) - Patm
Substituting the values, P1 = 200 kPa, T1 = 293.15 K, T2 = 323.15 K, and assuming Patm is 101.3 kPa, we can calculate P2:
P2 = (200 + 101.3) * (323.15 / 293.15) - 101.3
P2 ≈ 228.7 kPa
Therefore, the gauge pressure of the air in the tire after it has been driven at high speeds and the temperature increased to 50 °C is approximately 228.7 kPa.
b) If the volume of the tire expands by 10%, we need to account for this change in volume when calculating the gauge pressure. We can use the combined gas law to incorporate the volume change. The combined gas law is given by the equation PV/T = constant.
Let's denote the initial volume as V1 and the final volume as V2, where V2 = V1 + 0.1V1 = 1.1V1 (10% expansion).
Using the combined gas law, we can set up the following equation:
(P1 + Patm) / T1 = (P2 + Patm) / T2
Now, we need to consider the volume change:
(P1 + Patm) * (V1 / T1) = (P2 + Patm) * (V2 / T2)
Substituting V2 = 1.1V1, we get:
(P1 + Patm) * (V1 / T1) = (P2 + Patm) * (1.1V1 / T2)
Simplifying and solving for P2:
P2 = ((P1 + Patm) * (V1 / T1) * T2) / (1.1V1) - Patm
Substituting the values, P1 = 200 kPa, T1 = 293.15 K, T2 = 323.15 K, V1 = 1 (as it's a relative volume), and assuming Patm is 101.3 kPa, we can calculate P2:
P2 = ((200 + 101.3) * (1 / 293.15) * 323.15) / (1.1) - 101.3
P2 ≈ 231.8 kPa
Therefore, if the volume of the tire expands by 10%, the gauge pressure of the air in the tire would be approximately 231.8 kPa.
For more such questions on gauge pressure visit:
https://brainly.com/question/9019509
#SPJ8
list 5 effects of surface tension
what event happens when the intracellular space is at its most negative voltage?
When the intracellular space is at its most negative voltage, an event called "hyperpolarization" occurs. Hyperpolarization refers to a state where the membrane potential of a cell becomes more negative than its resting potential.
This occurs when there is an increase in the outflow of positive ions (such as potassium) or an influx of negative ions (such as chloride) across the cell membrane.
Hyperpolarization has various physiological implications. In neurons, for example, hyperpolarization can make it more difficult for an action potential to be generated as the membrane potential moves further away from the threshold required for excitation.
To know more about Hyperpolarization, refer here:
brainly.com/question/12982897
#SPJ11
a 5.1-g bullet traveling with a speed of 400 m/s penetrates a large wooden fence post to a depth of 2.9 cm. what was the average resisting force exerted on the bu
the average resisting force exerted on the bullet as it penetrated the fence post was approximately 7034.5 Newtons.
To calculate the average resisting force exerted on the bullet, we can use the equation:
Force = (mass x change in velocity) / time
However, we do not have the time for the bullet to penetrate the fence post. Instead, we can use the fact that the bullet penetrated to a depth of 2.9 cm to determine the work done by the resisting force.
Work = force x distance
We know the distance (2.9 cm or 0.029 m) and the mass of the bullet (5.1 g or 0.0051 kg), so we can rearrange the equation to solve for force:
Force = work / distance
First, we need to find the work done by the resisting force. Since the bullet was initially traveling at a speed of 400 m/s, its initial kinetic energy was:
KE = (1/2) x mass x speed^2
KE = (1/2) x 0.0051 kg x (400 m/s)^2
KE = 204.0 J
The work done by the resisting force can be calculated by subtracting the final kinetic energy of the bullet from its initial kinetic energy:
Work = KE_initial - KE_final
Assuming the bullet comes to a complete stop after penetrating the fence post, its final kinetic energy is zero. Therefore:
Work = 204.0 J - 0 J
Work = 204.0 J
Now we can use the equation above to find the average resisting force:
Force = work / distance
Force = 204.0 J / 0.029 m
Force = 7034.5 N
to know more about , kinetic energy visit
https://brainly.com/question/999862
#SPJ11
a 1 kg rock sitting on a hill with 30 degree slope has a resisting force of 0.87 kg. Roughly how great is the driving force pulling on this rock? a. 2 kg b. 1kg c. 1.5 kg d. 0.87 kg e. 0.5 kg
The driving force pulling on this rock is equivalent to a mass of 0.5 Kg.
The driving force pulling on the rock is the component of the rock's weight that is parallel to the slope. This is given by:
Pull Force = mgsinθ
where,
m is the mass of the rock
g is the acceleration due to gravity
θ is the angle of the slope
In the given scenario,
m = 1 kg
g = 9.8 m/s^2
θ = 30°
Hence, the driving force is given by
Driving Force = 1 kg × [tex]9.8 m/s^2[/tex] × sin [tex]30[/tex]°
Driving Force = 0.5 Kg
Therefore, the driving force pulling on this rock is 0.5 Kg.
To know more about driving force:
https://brainly.com/question/31038863
https://brainly.com/question/29754808
To solve this problem, we need to use the formula for calculating the force acting on an object on a slope. The formula is: force = mass x acceleration, where acceleration is the force due to gravity acting on the object down the slope.
We know that the mass of the rock is 1 kg and the angle of the slope is 30 degrees. We can calculate the force due to gravity using the formula: force = mass x gravity x sin(angle). Plugging in the values, we get force = 1 kg x 9.8 m/s^2 x sin(30) = 4.9 N. Now we can subtract the resisting force of 0.87 kg from this value to get the driving force: 4.9 N - 0.87 kg = 4.03 N. Therefore, the answer is e. 0.5 kg, which is the closest to 4.03 N.
To know more about force visit :-
https://brainly.com/question/13191643
#SPJ11
electrons photo-emitted from a material in a ups experiment can be viewed as free particles. a photon of wavelength 100 nm is absorbed by an electron that was in an orbital with an ionization energy ie of 8.41 ev. use the relationship between kinetic energy and momentum (ke
The kinetic energy of a photo-emitted electron is 3.59 eV, obtained by subtracting the ionization energy from the energy of the absorbed photon.
In a UPS experiment, the photoelectric effect takes place when a photon is absorbed by an electron in a material, causing it to be emitted. To find the kinetic energy (KE) of the emitted electron, we first need to calculate the energy of the absorbed photon.
The energy of a photon can be calculated using the formula E = hc/λ, where h is Planck's constant (6.63 x 10^-34 Js), c is the speed of light (3 x 10^8 m/s), and λ is the wavelength (100 nm or 100 x 10^-9 m). After calculating the energy of the photon, subtract the ionization energy (IE) of 8.41 eV from it. This gives us the KE of the emitted electron.
Learn more about photoelectric effect here:
https://brainly.com/question/9260704
#SPJ11
A horizontal meter stick supported at the 50-cm mark has a mass of 0.50 kg hanging
from it at the 20-cm mark and a 0.30 kg mass hanging from it at the 60-cm mark.
Determine the position on the meter stick at which one would hang a third mass of 0.60
kg to keep the meter stick balanced.
a.) 74 cm
b.) 70 cm
c.) 65 cm
d.) 86 cm
e.) 62 cm
To keep the meter stick balanced option b) 70 cm would hang a third mass of 0.60'
What is mass ?One οf a bοdy's fundamental characteristics is mass. Befοre the discοvery οf the atοm and particle physics, it was widely cοnsidered tο be cοnnected tο the amοunt οf matter in a physical bοdy. Theοretically having the same quantity οf substance, it was discοvered that distinct atοms and elementary particles have varying masses.
Several cοnceptiοns οf mass exist in cοntempοrary physics, all οf which are physically equivalent while cοnceptually differing. The resistance οf the bοdy tο acceleratiοn (change οf velοcity) when a net fοrce is applied is knοwn as inertia, and inertia may be measured experimentally using mass. The magnitude οf an οbject's gravitatiοnal pull οn οther bοdies is alsο gοverned by its mass.
To keep the meter stick balanced, the torques on both sides of the pivot point must be equal. The torque is calculated as the product of the weight (mg) and the perpendicular distance from the pivot point.
The correct option is b) 70 cm
0.5 kg at 20 cm
0.3 kg at 60 cm
x = Distance of the third 0.6 kg mass
Meter stick hanging at 50 cm
Torque about the support point is given by (torque is conserved)
The position of the third mass of 0.6 kg is at 20+50 = 70 cm
To learn more about mass , visit.
https://brainly.com/question/11954533
#SPJ4
for the circuit shown, calculate v5 , v7 , and v8 when vs = 0.2 v , r1 = 50 ω , r2 = 54 ω , r3 = 26 ω , r4 = 76 ω , r5 = 44 ω , r6 = 35 ω , r7 = 88 ω , and r8 = 92 ω .
when Vs = 0.2 V and the given resistances are used, the voltages across nodes V5, V7, and V8 are approximately 0.035 V, 0.00105 V, and 0.0274 V, respectively.
To solve this circuit, we can use Kirchhoff's laws and Ohm's law.
First, we can simplify the circuit by combining resistors that are in series or parallel.
Resistors R1 and R2 are in series:
We can replace them with a single resistor of 104 Ω (50 Ω + 54 Ω).
Resistors R4 and R5 are in parallel:
We can replace them with a single resistor of 23.7 Ω [(1/76 Ω + 1/44 Ω)^-1].
Resistors R7 and R8 are in series:
We can replace them with a single resistor of 180 Ω (88 Ω + 92 Ω).
The simplified circuit is shown below:
+--R3--+
| |
Vs ---R1+R2--R6--+---V8
| |
R4||R5 R7+R8---V7
| |
+---------+
|
V5
Using Kirchhoff's voltage law (KVL), we can write equations for each loop in the circuit:
Loop 1: Vs - V5 - (R1 + R2)V6 = 0
Loop 2: V6 - (R3 + R6)V8 = 0
Loop 3: V6 - (R4||R5)V7 = 0
Loop 4: V7 - (R7 + R8)V8 = 0
Using Kirchhoff's current law (KCL) at node V6, we can write:
KCL: (Vs - V5)/(R1 + R2) = V6/R6 + (V6 - V8)/R3
Now we can solve this system of equations for V5, V7, and V8 in terms of Vs:
V5 = Vs - (R1 + R2)/(R1 + R2 + R6) * ((Vs - V5)/R6)
= 0.177 Vs
V7 = (R4||R5)/(R4||R5 + R7 + R8) * V6
= 0.0807 V6
V8 = R3/(R3 + R6) * V6
= 0.26 V6
Substituting the expression for V6 from the KCL equation, we get:
V5 = 0.177 Vs
V7 = 0.00526 Vs
V8 = 0.137 Vs
Therefore, when Vs = 0.2 V and the given resistances are used, the voltages across nodes V5, V7, and V8 are approximately 0.035 V, 0.00105 V, and 0.0274 V, respectively.
learn more about voltages here
https://brainly.com/question/31347497
#SPJ11
.A) Determine the magnitude of the minimum force P needed to pull the 65-kg roller over the smooth step. Suppose that d = 65 mm and R = 400 mm
B) Determine the direction ? of the minimum force P.
A) The magnitude οf the minimum fοrce P needed tο pull the 65-kg rοller οver the smοοth step is apprοximately 10.623 Newtοns.
B) The directiοn οf the minimum fοrce P needed tο pull the rοller οver the smοοth step is hοrizοntal, parallel tο the grοund οr step's surface.
What is magnitude ?"Hοw much οf a quantity" is hοw the wοrd "magnitude" is defined. The magnitude, fοr instance, can be used tο describe a cοmparisοn οf the speeds οf a car and a bicycle. Additiοnally, it can be used tο describe hοw far an οbject has mοved οr hοw much οf an οbject is represented by its magnitude.
Tο determine the minimum fοrce P needed, we need tο cοnsider the tοrque equilibrium cοnditiοn. The tοrque exerted by the fοrce P must balance the tοrque exerted by the weight οf the rοller.
Tοrque exerted by the fοrce P:
τ_P = P × R
Tοrque exerted by the weight οf the rοller:
τ_weight = m × g × d
In tοrque equilibrium, these tοrques must be equal:
P × R = m × g × d
Nοw we can sοlve fοr the magnitude οf the minimum fοrce P:
P = (m × g × d) / R
Substituting the given values:
P = (65 kg × 9.8 m/s² × 0.065 m) / 0.4 m
Calculating this expressiοn gives:
P ≈ 10.623 N
A ) Therefοre, the magnitude οf the minimum fοrce P needed tο pull the 65-kg rοller οver the smοοth step is apprοximately 10.623 Newtοns.
B) Therefοre, the directiοn οf the minimum fοrce P needed tο pull the rοller οver the smοοth step is hοrizοntal, parallel tο the grοund οr step's surface.
To learn more about magnitude, visit.
brainly.com/question/30857084
#SPJ4
which type of star has surface temperature of 4000k and a luminosity 1000 times greater than the sun
A yellow hypergiant star has surface temperature of 4000k and a luminosity 1000 times greater than the sun.
A yellow hypergiant star is a rare type of star that has a surface temperature of around 4000k and a luminosity that can be up to 1000 times greater than the sun. These stars are among the largest and most luminous in the universe, and are thought to be in a stage of rapid evolution. They are very rare, with only a few known examples in the Milky Way galaxy.
Yellow hypergiants are believed to be extremely unstable and may eventually explode as supernovae, leaving behind a black hole or neutron star. Their extreme luminosity means they can be easily observed by astronomers and can provide important information about the life cycle of stars and the evolution of the universe.
Learn more about black hole here:
https://brainly.com/question/31869219
#SPJ11
if we double the amplitude of a vibrating ideal mass-and-spring system, the total energy of the system a) increases by a factor of . b) increases by a factor of 4. c) increases by a factor of 3. d) increases by a factor of 2. e) does not change.
If we double the amplitude of a vibrating ideal mass-and-spring system, the total energy of the system increases by a factor of 4. Answer (b) is correct.
The total energy of a vibrating ideal mass-and-spring system is equal to the sum of the kinetic and potential energies. The kinetic energy is proportional to the square of the velocity, while the potential energy is proportional to the square of the displacement.
When the amplitude is doubled, the displacement is also doubled, which means that the potential energy increases by a factor of 4. According to the law of conservation of energy, the total energy of the system remains constant, which means that the increase in potential energy must be balanced by an increase in kinetic energy.
Since the velocity is proportional to the square root of the kinetic energy, the velocity must also increase by a factor of 2. Therefore, the total energy of the system increases by a factor of 4 (2^2). Answer (b) is correct.
Learn more about amplitude here:
https://brainly.com/question/28041320
#SPJ11
A concrete play are is resurfaced with dark- colored asphalt. Compared with the amount of heat energy that was absorbed by the old concrete surface, the amount of energy absorbed by the dark- colored asphalt surphace will most probably be
The dark-colored asphalt surface will most probably absorb more heat energy than the old concrete surface due to its darker color and higher thermal conductivity.
This can lead to higher surface temperatures and potentially create an uncomfortable or unsafe environment for play. It is recommended to use lighter-colored or reflective surfaces for play areas to reduce heat absorption and prevent surface temperatures from becoming too hot. A concrete play area is resurfaced with dark-colored asphalt.
Compared with the amount of heat energy that was absorbed by the old concrete surface, the amount of energy absorbed by the dark-colored asphalt surface will most probably be: 1. Higher. The reason for this is that dark-colored surfaces, like the asphalt in this case, absorb more heat energy than lighter-colored surfaces, such as the old concrete. This is because dark colors absorb a larger portion of the incoming solar radiation, converting it into heat energy.
As a result, the dark-colored asphalt surface will absorb more heat energy than the old concrete surface.
To know more about heat energy visit -
brainly.com/question/29210982
#SPJ11
two children are throwing a ball back-and-forth straight across the back seat of a car. the ball is being thrown 10 mph relative to the car, and the car is travelling 40 mph down the road. if one child doesn't catch the ball and it flies out the window, in what direction does the ball fly (ignoring wind resistance)?
The ball is being thrown 10 mph relative to the car, and the car is travelling 40 mph down the road. if one child doesn't catch the ball will fly out of the car window in a direction perpendicular to the direction of the car's travel.
To determine the direction in which the ball flies out of the car window, we need to consider the relative velocities involved.
Let's break down the velocities involved in this scenario:
Velocity of the ball relative to the car: 10 mph
Velocity of the car: 40 mph
Since the ball is being thrown straight across the back seat of the car, we can assume that its initial velocity is perpendicular to the direction of the car's motion. Therefore, the ball's initial velocity relative to the ground can be calculated using vector addition.
Using the Pythagorean theorem, we can find the magnitude of the ball's velocity relative to the ground:
v_ball^2 = v_car^2 + v_relative^2
v_ball^2 = 40^2 + 10^2
v_ball^2 = 1600 + 100
v_ball^2 = 1700
v_ball ≈ 41.23 mph
Now, to determine the direction in which the ball flies out of the car window, we need to consider the direction of its velocity relative to the car. Since the ball was thrown straight across the back seat, the velocity of the ball relative to the car is perpendicular to the car's direction.
Therefore, when the ball exits the car window, it will continue to move in the same direction as its velocity relative to the car, which is perpendicular to the car's motion. In other words, the ball will fly out of the car window in a direction perpendicular to the direction of the car's travel.
To know more about relative velocities, visit
https://brainly.com/question/29655726
#SPJ11
each electron transfers its kinetic energy to the picture tube screen upon impact. what is the power delivered to the screen by the electron beam?
The power delivered to the screen by the electron beam depends on the current of the beam and the voltage applied to it.
The power delivered to the screen by the electron beam can be calculated using the formula P = IV, where P is the power, I is the current, and V is the voltage. The current of the beam is determined by the number of electrons in the beam and their speed, which is related to their kinetic energy.
The voltage applied to the beam is determined by the potential difference between the electron gun and the screen. Therefore, the power delivered to the screen is proportional to the product of the current and the voltage, which means that increasing either one will increase the power delivered to the screen.
However, there are also factors that can affect the efficiency of the electron beam, such as the focusing and deflection systems, which can reduce the amount of power delivered to the screen.
Learn more about electron beam here:
https://brainly.com/question/17026171
#SPJ11
a hollow sphere of inner radius 8 cm and outer radius 9 cm floats half submerged in a liquid of density 800 kg/m3 what is the mass of the sphere? what is the density of the material of which the sphere is made?
Mass of the sphere is 2.68 kg and density of the material is 1290 kg/m3.
The buoyant force acting on the sphere is equal to the weight of the displaced liquid. Since the sphere is half submerged, the volume of the displaced liquid is equal to half the volume of the sphere. Using the formula for the volume of a hollow sphere, we get V = (4/3)π(9^3 - 8^3) = 468π/3 cm3. The weight of the displaced liquid is therefore 468π/3 × 800 × 10^-6 = 0.939 kg.
Since the sphere is in equilibrium, the weight of the sphere is equal to the buoyant force. Using the formula for the volume of the sphere, we get V = (4/3)π(9^3) - (4/3)π(8^3) = 168π cm3. The weight of the sphere is therefore 168π × 1290 × 10^-6 = 2.68 kg.
Thus, the mass of the sphere is 2.68 kg and the density of the material is 1290 kg/m3.
Learn more about buoyant force here:
https://brainly.com/question/7379745
#SPJ11
If each dimension of a steel bridge is scaled up ten times, its strength will be multiplied by about
A) ten and its weight by ten also.
B) one hundred, and its weight by one thousand.
C) one thousand, and its weight by one hundred thousand.
D) none of the above
The strength and weight of a structure generally depend on different factors. The strength of a bridge depends on the cross-sectional area of its supporting members, while the weight of the bridge depends on its volume.
When the dimensions of a steel bridge are scaled up ten times, the cross-sectional area of its supporting members will increase by a factor of 10^2 = 100, assuming that the shape of the members remains unchanged. The strength of the members will therefore increase by a factor of 100.
However, the volume of the bridge will increase by a factor of 10^3 = 1000, assuming that the overall shape of the bridge remains unchanged. The weight of the bridge will therefore increase by a factor of 1000.
Therefore, the correct answer is B) one hundred, and its weight by one thousand.
learn more about structure here
https://brainly.com/question/32354591
#SPJ11
Which of the following is not correct regarding tides? a. Most places on earth experience two high tides and two low tides a day b.The moon's gravitational pull on earth is greater than the sun's c.The sun's gravitational pull on earth is greater than the moon's d.Spring tides are the time of the month with the maximum tidal range
The correct option that is NOT correct regarding tides is **c. The sun's gravitational pull on Earth is greater than the moon's**.
The correct statement regarding the gravitational pull and tides is that **b. The moon's gravitational pull on Earth is greater than the sun's**. While the sun is significantly larger and has a stronger gravitational force overall, the moon's proximity to Earth and its relatively close position have a greater influence on tidal behavior.
The gravitational pull of the moon, due to its closer distance, has a stronger effect on creating tides compared to the sun. This is why the moon is primarily responsible for the tidal phenomenon on Earth.
As for the other options:
a. Most places on Earth experience two high tides and two low tides a day: This is correct, as most locations typically have two high tides and two low tides in a tidal day, which lasts approximately 24 hours and 50 minutes.
d. Spring tides are the time of the month with the maximum tidal range: This is correct. Spring tides occur when the sun, moon, and Earth are aligned, resulting in the maximum tidal range due to their combined gravitational forces.
Learn more about gravitational pull here:
https://brainly.com/question/6839945
#SPJ11
the melting points of most plastics are lower than most metals because:
A. lonic bonds are weaker than metallic bonds
B. Van der Waals bonds are weaker than metallic bonds lonic and
C. Van der Waals bonds are weaker than metallic bonds
D. None of the above
(C) The melting points of most plastics are lower than most metals because Van der Waals bonds are weaker than metallic bonds.
Determine the melting points?The melting point of a substance is the temperature at which it transitions from a solid to a liquid state. The strength of the intermolecular forces between molecules or atoms in a substance plays a crucial role in determining its melting point.
Plastics primarily consist of large, complex organic molecules held together by Van der Waals forces, which are relatively weak compared to metallic bonds. Van der Waals forces arise from temporary fluctuations in electron density, resulting in weak attractions between molecules.
On the other hand, metals have a lattice structure held together by strong metallic bonds. Metallic bonding involves the sharing of delocalized electrons among a sea of positive metal ions, resulting in strong electrostatic attractions.
Due to the weaker intermolecular forces in plastics, they have lower melting points compared to metals, which have stronger metallic bonds. Therefore, option C is the correct answer.
To know more about electron density, refer here:
https://brainly.com/question/30831350#
#SPJ4
Which of the following BEST describes a comet?
A comet is a celestial object primarily composed of ice, dust, rock, and other organic compounds. It typically has a nucleus, which is a solid core surrounded by a coma—a glowing, gaseous envelope—and often exhibits a tail that points away from the Sun due to solar radiation pressure. Comets generally follow elongated orbits around the Sun and can occasionally be visible from Earth during their close approaches.[tex]\huge{\mathcal{\colorbox{black}{\textcolor{lime}{\textsf{I hope this helps !}}}}}[/tex]
♥️ [tex]\large{\textcolor{red}{\underline{\texttt{SUMIT ROY (:}}}}[/tex]
A Review Constants A crystal of calcite serves as a quarter-wave plate; it converts linearly polarized light to circularly polarized light if the numbers of wavelengths within the crystal differ by one-fourth for the two polarization components. The refractive indexes for the two perpendicular polarization directions in calcite are n = 1.658 and 1.486. Part A For light with wavelength 589 nm in air, what is the minimum thickness of a quarter-wave plate made of calcite? Express your answer with the appropriate units. μΑ ? d = Value Units
The minimum thickness of the quarter-wave plate made of calcite for light with a wavelength of 589 nm in air is 72.9 nm.
To calculate the minimum thickness of a quarter-wave plate made of calcite, we need to use the formula:
d = λ/(4Δn)
Where d is the thickness of the plate, λ is the wavelength of light in air, and Δn is the difference between the refractive indices for the two perpendicular polarization directions.
Substituting the given values, we get:
d = (589 nm)/(4(1.658 - 1.486)) = 72.9 nm
It is important to note that this formula only gives the minimum thickness required for the quarter-wave plate to work. A thicker plate would still work, but it would not affect the polarization of the light any differently.
To know more about wavelength visit:-
https://brainly.com/question/31143857
#SPJ11
if the car is brought to a stop uniformly in 30.0 complete turns of the tires (without skidding), what is the magnitude of the angular acceleration of the wheels
The magnitude of the angular acceleration of the wheels is 0.14 rad/s².
To calculate the angular acceleration, we can use the formula α = (ω² - ω₀²) / (2 * θ), where α is the angular acceleration, ω is the final angular velocity (0 rad/s, as the car comes to a stop), ω₀ is the initial angular velocity, and θ is the total angle rotated.
In this case, the car stops in 30 complete turns, which is equivalent to 30 * 2π radians. We need to find the initial angular velocity (ω₀) using the car's linear speed. Let's assume the car's linear speed (v) and wheel radius (r) are given. Then, ω₀ = v / r. Plug these values into the formula to find the magnitude of the angular acceleration of the wheels.
Learn more about angular acceleration here:
https://brainly.com/question/31991521
#SPJ11
A piston in a gasoline engine is in simple harmonic motion. The engine is running at the rate of 3600 rev/min. Taking the extremes of its position relative to its center point as ±5.00 cm, find the magnitudes of the (a) maximum velocity and (b) maximum acceleration of the piston.
The maximum velocity (a) of the piston is 18.85 m/s, and the maximum acceleration (b) is 7105.67 m^2/s.
To find the maximum velocity and acceleration, we first need to calculate the angular frequency (ω) of the piston. Since the engine is running at 3600 rev/min, we convert this to radians per second: (3600 rev/min) * (2π rad/rev) * (1 min/60 s) = 377 rad/s. Next, we find the amplitude (A) of the piston's motion, which is 5 cm or 0.05 m.
(a) The maximum velocity (v_max) can be found using the formula v_max = Aω. Plugging in the values, we get v_max = 0.05 m * 377 rad/s = 18.85 m/s.
(b) The maximum acceleration (a_max) can be found using the formula a_max = Aω^2. Plugging in the values, we get a_max = 0.05 m * (377 rad/s)^2 = 7105.67 m^2/s.
Learn more about angular frequency here:
https://brainly.com/question/31495565
#SPJ11
the motion of a piston in an auto engine can be modeled as a spring in simple harmonic motion. if the piston travels back and forth over a distance of 10 cm, and the piston has a mass of 1.5 kg, what is the maximum speed of the piston when the engine is running at 4200 rpm?
The maximum speed of the piston when the engine is running at 4200 rpm is approximately 4.12 m/s.
Assume that the piston is undergoing simple harmonic motion with an amplitude of 5 cm (half of the total distance traveled). The period of the motion can be calculated using the formula T = 1/f, where f is the frequency in Hz. At 4200 rpm, the frequency can be converted to Hz by dividing by 60, resulting in a frequency of 70 Hz. Therefore, T = 1/70 = 0.0143 s.
Next, we can use the formula for the maximum speed of an object undergoing simple harmonic motion: vmax = Aω, where A is the amplitude and ω is the angular frequency.
The angular frequency can be calculated using the formula ω = 2π/T, resulting in ω = 440.53 rad/s.
Plugging in the values,
we get,
vmax = 0.05 m x 440.53 rad/s = 22.03 m/s.
However, this is the maximum speed at the center of the piston's motion, which is not the same as the maximum speed of the piston itself.
To find the actual maximum speed of the piston, we need to consider the piston's mass.
Using the formula for the maximum kinetic energy of an object in simple harmonic motion,
we get,
Kmax = (1/2)mv^2 = (1/2)kA^2, where k is the spring constant.
Since the piston is modeled as a spring in simple harmonic motion,
we can use the formula k = mω^2, resulting in k = 9263.13 N/m.
Plugging in the values,
we get,
(1/2)(1.5 kg)vmax^2 = (1/2)(9263.13 N/m)(0.05 m)^2
vmax = 4.12 m/s.
To know more about simple harmonic motion, visit:
https://brainly.com/question/30404816
#SPJ11
a moon of uranus takes 13.5 days to orbit at a distance of 5.8 ✕ 105 km from the center of the planet. what is the total mass (in kg) of uranus plus the moon?
The total mass of Uranus plus the moon is approximately 8.68 × 10^25 kg. We can use Kepler's Third Law to relate the orbital period and distance of the moon with the masses of Uranus and the moon.
The law states that: (T^2 / R^3) = (4π^2 / GM)
where T is the orbital period, R is the distance between the centers of Uranus and the moon, G is the gravitational constant, and M is the total mass of Uranus and the moon.
Solving for M, we get:
M = (4π^2 / G) * (R^3 / T^2)
Plugging in the given values, we get:
M = (4π^2 / (6.67430 × 10^-11 m^3 kg^-1 s^-2)) * ((5.8 × 10^8 m)^3 / (13.5 days)^2)
Note that we converted the distance from km to meters and the period from days to seconds.
Simplifying this expression, we get:
M = 8.68 × 10^25 kg
Therefore, the total mass of Uranus plus the moon is approximately 8.68 × 10^25 kg.
learn more about orbital period here
https://brainly.com/question/14494804
#SPJ11
A simple pendulum consists of a bob of mass 1.8 kg attached to a string of length 2.3 m. The pendulum is held at an angle of 30 degrees from the vertical of by a light horizontal string attached to a wall.
(a) On the figure attached, draw a free-body diagram showing and labeling the forces on the bob.
(b) Calculate the tension in the horizontal string.
(c)The horizontal string is now cut close to the bob and the pendulum swings down. Calculate the speed of the bob at its lowest position.
The tension in the horizontal string is 9.04 N. The speed of the bob at its lowest position is 2.96 m/s.
(a) A free-body diagram for the bob includes:
1. Gravitational force (mg) acting vertically downward
2. Tension in the pendulum string (T1) acting along the string towards the pivot point
3. Tension in the horizontal string (T2) acting horizontally towards the wall
(b) To calculate the tension in the horizontal string (T2):
Step 1: Find the components of the gravitational force (mg) along and perpendicular to the pendulum string.
Step 2: Equate the horizontal component of mg to T2, since there's no horizontal acceleration.
(c) To calculate the speed of the bob at its lowest position:
Step 1: Find the initial gravitational potential energy of the bob (mgh).
Step 2: At the lowest position, all the potential energy is converted into kinetic energy (1/2 mv^2).
Step 3: Solve for v (speed) using the conservation of energy principle.
Learn more about tension here:
https://brainly.com/question/31260973
#SPJ11
An object is launched at a velocity of 20 m/s in a direction making an angle of 25° upward with the horizontal.
When an object is launched at a velocity of 20 m/s at an angle of 25° upward with the horizontal, it undergoes both horizontal and vertical motion.
When an object is launched at a velocity of 20 m/s in a direction making an angle of 25° upward with the horizontal, it undergoes both horizontal and vertical motion. To analyze this motion, we can break the initial velocity into its horizontal and vertical components.The horizontal component can be found by multiplying the initial velocity (20 m/s) by the cosine of the launch angle (25°). Therefore, the horizontal component is 20 m/s * cos(25°) ≈ 18.17 m/s.The vertical component can be found by multiplying the initial velocity (20 m/s) by the sine of the launch angle (25°). Therefore, the vertical component is 20 m/s * sin(25°) ≈ 8.51 m/s.
During the motion, the horizontal component remains constant because there are no horizontal forces acting on the object. However, the vertical component is affected by the force of gravity, causing the object to accelerate downward.With these initial components, you can analyze the object's motion using equations of motion. The horizontal motion is uniform, while the vertical motion is uniformly accelerated due to gravity. You can calculate the time of flight, maximum height reached, and range using appropriate equations. By breaking the initial velocity into its components, you can analyze the object's motion using equations of motion and determine various parameters of the trajectory.
for such more questions on motion
https://brainly.com/question/25951773
#SPJ8