An olympic archer has a 65% probability of hitting a bulls eye. If this archer attempts seven shots at the target what is the probability of making at least 6 out of 7 attempts?
A .158
B .234
C .453
D .793
E .842

Answers

Answer 1

We can see that none of the provided options matches the calculated probability of 0.0942. Thus, none of the given options is the correct answer.

To calculate the probability of making at least 6 out of 7 attempts, we need to consider the different possible outcomes and their respective probabilities.

Let's denote a successful attempt as "S" and a failed attempt as "F". The archer has a 65% probability of hitting a bulls eye, which means the probability of a successful attempt is 0.65, and the probability of a failed attempt is 1 - 0.65 = 0.35.

Now, let's consider the possible combinations of successful and failed attempts for making at least 6 out of 7 attempts:

6 successful attempts and 1 failed attempt: SSSSSSF

7 successful attempts: SSSSSSS

To calculate the probability of each combination, we multiply the probabilities of the individual attempts. For example, the probability of the first combination (SSSSSSF) is:

0.65 * 0.65 * 0.65 * 0.65 * 0.65 * 0.65 * 0.35.

Since there are two possible combinations, we calculate the probability for each combination and then sum them up to find the probability of making at least 6 out of 7 attempts:

Probability of 6 successful and 1 failed attempt: 0.65^6 * 0.35 = 0.0727734375

Probability of 7 successful attempts: 0.65^7 = 0.0214340625

Total probability of making at least 6 out of 7 attempts: 0.0727734375 + 0.0214340625 = 0.0942075.

Therefore, the probability of making at least 6 out of 7 attempts is approximately 0.0942.

Now, let's compare this result with the options provided:

A. 0.158

B. 0.234

C. 0.453

D. 0.793

E. 0.842

It's important to note that the calculated probability is an approximation due to rounding in the intermediate steps. However, it allows us to determine that none of the given options accurately represents the probability of making at least 6 out of 7 attempts.

Learn more about probability at: brainly.com/question/32117953

#SPJ11


Related Questions

58. determine (parametrically) all vectors that are orthogonal to = (4, −1, 0).

Answers

The orthogonal vector can be expressed parametrically as: (x, y, z) = (t, 4t, t)

Determine parametrically all vectors orthogonal to the given vector (4, -1, 0).

Let the orthogonal vector be (x, y, z). Since the dot product of orthogonal vectors is zero, we have:

(4, -1, 0) · (x, y, z) = 0

This translates to:

4x - y + 0z = 0

To determine the vector parametrically, we can set one of the variables to a parameter t (let's choose z):

z = t

Now, we can solve the equation for x and y in terms of t:

y = 4x

Substituting z = t into the equation:

4x - (4x) + 0t = 0

Since the equation is satisfied for all x, we can also set x = t:

x = t

So, the orthogonal vector can be expressed parametrically as:

(x, y, z) = (t, 4t, t)

To learn more about orthogonal vector here:

brainly.com/question/31971350#

#SPJ11

Construct a triangle XYZ such that XY= 7.5cm, <XYZ=30° and <YXZ=10°. Measure
a. XY
b. /YZ/​

Answers

The value of XY is 7.5 cm and YZ is 20.261 cm.

To construct triangle XYZ, follow these steps:

Draw a line segment XY of length 7.5 cm.At point X, construct an angle of 30 degrees using a protractor.At point Y, construct an angle of 10 degrees using a protractor.The intersection point of the two constructed angles will be point Z, completing the triangle XYZ.

a. XY is given as 7.5 cm.

b.  Using Sine law:

XY/ sin 140 = YZ / sin 10

7.5 / 0.64278 = YZ / 0.173648

YZ = 20.261 cm

Learn more about Construction here:

https://brainly.com/question/31910042

#SPJ1

if an object of height 2cm is placed 4 cm in front of a concave mirror whose focal length is 3 cm, what will the height of the image

Answers

The height of the image formed by a concave mirror when an object of height 2 cm is placed 4 cm in front of the mirror and the focal length is 3 cm can be calculated using the mirror equation and magnification formula. The height of the image will be -1.5 cm.

To find the height of the image formed by a concave mirror, we can use the mirror equation:

1/f = 1/d_o + 1/d_i

Where:

f is the focal length of the concave mirror,

d_o is the object distance (distance between the object and the mirror),

and d_i is the image distance (distance between the image and the mirror).

In this case, the object distance (d_o) is 4 cm and the focal length (f) is 3 cm. Plugging these values into the mirror equation, we can solve for the image distance (d_i):

1/3 = 1/4 + 1/d_i

To simplify the equation, we can find the common denominator:

1/3 = (1 * d_i + 4) / (4 * d_i)

Now, cross-multiply and solve for d_i:

4 * d_i = 3 * (d_i + 4)

4 * d_i = 3 * d_i + 12

d_i = 12 cm

The image distance (d_i) is positive, indicating that the image is formed on the same side of the mirror as the object. Since the object is placed in front of the mirror, the image is also in front of the mirror.

Next, we can calculate the magnification (m) using the formula:

m = -d_i / d_o

Plugging in the values, we have:

m = -12 / 4

m = -3

The negative sign in the magnification indicates that the image formed is inverted compared to the object.

Finally, we can find the height of the image (h_i) using the magnification formula:

m = h_i / h_o

Where h_o is the height of the object.

Plugging in the values, we have:

-3 = h_i / 2

Solving for h_i:

h_i = -3 * 2

h_i = -6 cm

The negative sign indicates that the image is inverted compared to the object, and the absolute value of the height tells us the magnitude. Therefore, the height of the image formed by the concave mirror when the object of height 2 cm is placed 4 cm in front of the mirror is 6 cm, but the image is inverted.

Learn more about concave mirror here

https://brainly.com/question/27841226

#SPJ11

how to find the length of a line segment using pythagorean theorem

Answers

To find the length of a line segment using Pythagorean Theorem, you need to have two of its coordinates. Let's say we have the coordinates (x1, y1) and (x2, y2) for the endpoints of the line segment.

First, we need to find the difference between the x-coordinates and the y-coordinates of the two endpoints. So, we have:

Δx = x2 - x1

Δy = y2 - y1

Next, we can use the Pythagorean Theorem to find the length of the line segment, which states that the square of the length of the hypotenuse (the line segment) is equal to the sum of the squares of the other two sides (Δx and Δy). Therefore, we have:

Length of line segment = √(Δx² + Δy²)

This formula will give us the length of the line segment in the same units as the coordinates (e.g., if the coordinates are in meters, the length will be in meters).

So, to summarize, to find the length of a line segment using Pythagorean Theorem, we need to find the difference between the x-coordinates and y-coordinates of the endpoints, and then use the formula √(Δx² + Δy²) to calculate the length of the line segment.

To know more about Pythagorean  visit :

https://brainly.com/question/28032950

#SPJ11

Find the expected value E(X), the variance Var(X) and the standard deviation σ(X) for the density function. (Round your answers to four decimal places.) f(x) = ex on [0, ln 2] E(X) = Var(X) = σ(X) =

Answers

1. To find the expected value, we integrate the product of x and the density function over the given interval [0, ln 2]:

E(X) = ∫₀^ln2 x e^x dx

Using integration by parts with u = x and dv = e^x dx, we get:

E(X) = [x e^x]₀^ln2 - ∫₀^ln2 e^x dx

E(X) = ln 2 - 1

2. To find the variance, we use the formula:

Var(X) = ∫₀^ln2 (x - E(X))^2 e^x dx

Expanding the square and simplifying, we get:

Var(X) = ∫₀^ln2 x^2 e^x dx - 2E(X) ∫₀^ln2 x e^x dx + E(X)^2 ∫₀^ln2 e^x dx

Var(X) = ∫₀^ln2 x^2 e^x dx - (ln 2 - 1)^2

Using integration by parts twice with u = x^2 and dv = e^x dx, we get:

Var(X) = [x^2 e^x]₀^ln2 - 2∫₀^ln2 x e^x dx + ∫₀^ln2 e^x dx - (ln 2 - 1)^2

Var(X) = ln 2 - (3/2) + (ln 2 - 1)^2

3. Finally, the standard deviation is the square root of the variance:

σ(X) = √Var(X) = √[ln 2 - (3/2) + (ln 2 - 1)^2] ≈ 0.5218

To know more about expected value refer here:

https://brainly.com/question/13749480#

#SPJ11

15 points :) include steps please

use trigonometry to find the measure of the arc cut off by a chord 12 cm long in a circle of radius 10 cm

Answers

Check the picture below.

let's find the angle θ, then we'll find the length of the arc whose angle is 2θ and has a radius of 10.

[tex]\sin( \theta )=\cfrac{\stackrel{opposite}{6}}{\underset{hypotenuse}{10}} \implies \sin( \theta )= \cfrac{3}{5} \implies \sin^{-1}(~~\sin( \theta )~~) =\sin^{-1}\left( \cfrac{3}{5} \right) \\\\\\ \theta =\sin^{-1}\left( \cfrac{3}{5} \right)\implies \theta \approx 36.87^o \\\\[-0.35em] ~\dotfill[/tex]

[tex]\textit{arc's length}\\\\ s = \cfrac{\alpha \pi r}{180} ~~ \begin{cases} r=radius\\ \alpha =\stackrel{degrees}{angle}\\[-0.5em] \hrulefill\\ r=10\\ \alpha \approx \stackrel{ 2\theta }{73.74} \end{cases}\implies s\approx \cfrac{(73.74)\pi (10)}{180}\implies s\approx 12.87~cm[/tex]

Alice and Bob play the following game. First, on the two-dimensional (x,y) plane, Alice is located at (-X2,0) and Bob at (0, -YB). Then, they both start moving toward the origin, (0,0), with the constant velocities VA, VB, respectively. The winner is the one who reaches to the origin earlier. (a) Assuming VA = 1, VB = 2, if XA , ~ ~ Exp(1) and YB ~ Exp(2) are independent, what is P (Alice wins)? ) Note that the time taken to travel a distance d with a constant velocity v is t = .. (b) (bonus) If VA, XA are iid, VB, YB are iid, XA ~ Exp(1), YB ~ Exp(2), and all four RVs are independent, what is P (Alice wins)? (Hint: There is a much shorter solution than integration: write down the event ‘Alice wins' in terms of VA, XA, VB, YB, note that all RVs are independent, and then use your intuition.) a , ,

Answers

(a) To find P(Alice wins), integrate the joint PDF over appropriate ranges. (b) P(Alice wins) can be calculated using independence and properties of exponential distributions without integration.

Define integration ?

Integration is a fundamental mathematical operation that involves finding the area under a curve or the accumulation of quantities.

(a) To find the probability that Alice wins the game, we need to determine the probability that Alice reaches the origin before Bob. Let's denote this probability as P(Alice wins).

Given that VA = 1, VB = 2, XA ~ Exp(1), and YB ~ Exp(2) are independent random variables, we can approach this problem using the concept of arrival times.

The time taken by Alice to reach the origin is given by tA = XA/VA, and the time taken by Bob is tB = YB/VB.

Since XA ~ Exp(1) and YB ~ Exp(2), the probability density functions (PDFs) are given by:

fXA(x) = e^(-x) for x >= 0

fYB(y) = 2e^(-2y) for y >= 0

To calculate P(Alice wins), we need to find the probability that tA < tB. So, we can express it as:

P(Alice wins) = P(tA < tB)

Using the PDFs and the properties of exponential random variables, we can calculate this probability by integrating over appropriate ranges:

P(Alice wins) = ∫∫[x>0,y>2x] fXA(x) * fYB(y) dx dy

By performing the integration, we can determine the value of P(Alice wins).

(b) The bonus question suggests a simpler approach by utilizing independence and intuition.

If VA, XA are independent of VB, YB, and all four random variables are independent, we can express the event "Alice wins" as the conjunction of two independent events:

Event 1: XA < YB

Event 2: tA < tB (i.e., XA/VA < YB/VB)

Since XA and YB are exponentially distributed with different parameters, their comparison is independent of the comparison of their arrival times. Thus, P(Alice wins) can be written as:

P(Alice wins) = P(XA < YB) * P(tA < tB)

The probability P(XA < YB) can be calculated directly using the properties of exponential distributions.

Similarly, P(tA < tB) can be determined by considering the ratio of the rate parameters (1/1 and 2/1) and their relationship with the exponential distributions.

By evaluating these probabilities separately and multiplying them, we can obtain the value of P(Alice wins) without resorting to integration.

Learn more about probability density functions :

https://brainly.com/question/31039386

#SPJ4

Which of the following is false? A) Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edge. B) Every graph that contains a Hamiltonian cycle also contains a Hamiltonian path and vice versa is true. C) There may exist more than one Hamiltonian paths and Hamiltonian cycle in a graph. D) A connected graph has as Euler trail if and only if it has at most two vertices of odd degree

Answers

Option A) Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edge is a false statement.

A Hamiltonian cycle is a cycle that visits each vertex exactly once, whereas a Hamiltonian path is a path that visits each vertex exactly once. If we remove an edge from a Hamiltonian cycle, the resulting path will no longer visit each vertex exactly once, since the endpoints of the removed edge will be visited twice (once as the start and end points of the path, and once as adjacent vertices along the path). Therefore, a Hamiltonian cycle cannot be converted to a Hamiltonian path by removing one of its edges.

Option B) Every graph that contains a Hamiltonian cycle also contains a Hamiltonian path and vice versa is a true statement.

If a graph has a Hamiltonian cycle, we can obtain a Hamiltonian path by simply removing any one of the edges in the cycle. Conversely, if a graph has a Hamiltonian path, we can obtain a Hamiltonian cycle by adding an edge between the endpoints of the path. Therefore, every graph that contains a Hamiltonian cycle also contains a Hamiltonian path, and vice versa.

Option C) There may exist more than one Hamiltonian paths and Hamiltonian cycle in a graph is a true statement.

It is possible for a graph to have multiple Hamiltonian paths or cycles. For example, consider a cycle graph with four vertices. There are two distinct Hamiltonian cycles in this graph, and four distinct Hamiltonian paths.

Option D) A connected graph has as Euler trail if and only if it has at most two vertices of odd degree is a true statement.

An Euler trail is a path that uses every edge in a graph exactly once, while an Euler circuit is a closed walk that uses every edge in a graph exactly once. A connected graph has an Euler trail if and only if it has at most two vertices of odd degree. If a graph has more than two vertices of odd degree, it cannot have an Euler trail or circuit, since each time we enter and leave a vertex of odd degree, we use up one of the available edges incident to that vertex, leaving none for later use.

Learn more about Hamiltonian path here:

https://brainly.com/question/30639418

#SPJ11

In OW, YZ = 17, UX = 11, and mUX = 80. 6°. Find VY. Round to the nearest hundredth, if necessary.

Answers

VY is approximately 16.90.

To find VY, we can use the law of sines in triangle UYV.

The law of sines states that for any triangle with sides a, b, and c, and opposite angles A, B, and C, the following relationship holds:

a/sin(A) = b/sin(B) = c/sin(C)

In our triangle UYV, we have the following information:

UY = 11 (given)

m(UX) = 80.6° (given)

YZ = 17 (given)

We need to find VY.

Let's label the angle at V as angle VYU (m(VYU)).

We know that the sum of the angles in a triangle is 180°, so we can find m(VYU) as follows:

m(VYU) = 180° - m(UX) - m(UYV)

= 180° - 80.6° - 90°

= 9.4°

Now, applying the law of sines:

VY/sin(9.4°) = UY/sin(90°) [Angle UYV is a right angle]

= 11

To find VY, we can rearrange the equation:

VY = sin(9.4°) × 11 / sin(90°)

Using a calculator, we find:

VY ≈ 1.536 × 11 / 1

≈ 16.896

Rounded to the nearest hundredth:

VY ≈ 16.90

Therefore, VY is approximately 16.90.

for such more question on triangle

https://brainly.com/question/17335144

#SPJ11

a company wants to estimate the time its trucks take to drive from city a to city b. the standard deviation is known to be 12 minutes. what sample size is requited so that the error does not exceed

Answers

Since, a company wants to estimate the time its trucks take to drive from city a to city b. the standard deviation is known to be 12 minutes. Therefore, the required sample size is approximately 139 trucks.

In order to estimate the time it takes for trucks to drive from city A to city B, a company wants to determine the sample size required to ensure that the error does not exceed 2 minutes, with 95 percent confidence. The standard deviation is known to be 12 minutes.

To calculate the required sample size, we can use the formula for sample size determination in estimation problems. The formula is given by:

n = ((Z * σ) / E)²

Where:

n = required sample size

Z = Z-score corresponding to the desired confidence level (in this case, 95% confidence corresponds to a Z-score of approximately 1.96)

σ = standard deviation of the population (known to be 12 minutes)

E = maximum allowable error (2 minutes)

Substituting the values into the formula, we get:

n = ((1.96 * 12) / 2)²

n = (23.52 / 2)²

n = 11.76²

n ≈ 138.1776

Since we cannot have a fraction of a sample, we round up the result to the nearest whole number. Therefore, the required sample size is approximately 139 trucks.

By collecting a sample of 139 trucks and calculating the mean travel time, the company can estimate the average time it takes for trucks to drive from city A to city B with a margin of error not exceeding 2 minutes, with 95 percent confidence.

Complete Question:

A company wants to estimate the time its trucks take to drive from city A to city B. Assume that the standard deviation is known to be 12 minutes. What is the sample size required in order that error will not exceed � 2 minutes, with 95 percent confidence?

Learn more about Sample size:

brainly.com/question/30100088

#SPJ11

why did the girl wear glasses during math class

Answers

Answer:

Because she found it improves division.

Step-by-step explanation:

Pls help I'm a little confused on this bc we just started it today tbh so if someone explains how they got the answers as well I'll be very thankful

Answers

The solution is:

1.) y = 3x-7       => linear

2.) (0,5), (1,2), (0,8)  => non-linear

3.) y = 4x² - 3          => non-linear

4.) (0,1), (1,2), (2,9)      => non-linear.

Here, we have,

given that,

the expressions are:

1.) y = 3x-7

2.) (0,5), (1,2), (0,8)

3.) y = 4x² - 3

4.) (0,1), (1,2), (2,9)

now, we know that,

Linear equations have the highest degree to be 1.

we have,

1.) y = 3x-7, so this is linear.

2.) (0,5), (1,2), (0,8) is representing a curve, so its highest degree is not  1.

It is non-linear

3.) y = 4x² - 3, The degree of this equation is 2.

It is non-linear.

4.) (0,1), (1,2), (2,9) is representing a curve, so its highest degree is not  1.

It is non-linear.

Hence, The solution is:

1.) y = 3x-7       => linear

2.) (0,5), (1,2), (0,8)  => non-linear

3.) y = 4x² - 3          => non-linear

4.) (0,1), (1,2), (2,9)      => non-linear.

To learn more on equation click:

brainly.com/question/24169758

#SPJ1

Sum of roots of the equation

Answers

[tex]x_1+x_2=6x_1x_2[/tex]

We're going to use Vieta's formula to solve the problem.

[tex]x_1+x_2=-\dfrac{b}{a}\\\\x_1x_2=\dfrac{c}{a}[/tex]

Therefore

[tex]x_1+x_2=-\dfrac{-3}{2}=\dfrac{3}{2}\\\\x_1x_2=\dfrac{4m}{2}=2m[/tex]

And so

[tex]\dfrac{3}{2}=6\cdot2m\\\\4m=\dfrac{1}{2}\\\\m=\dfrac{1}{8}[/tex]

find the taylor series of F(x)=11−x centered at =8. choose the taylor series.

Answers

The Taylor series of F(x) = 11 - x centered at x = 8 is F(x) = 3 - (x - 8). To find the Taylor series of the function F(x) = 11 - x centered at x = 8, we need to determine the coefficients of the series by calculating the function's derivatives and evaluating them at the center point.



The Taylor series for F(x) centered at x = 8 is:

F(x) = F(8) + F'(8)(x - 8) + F''(8)(x - 8)^2/2! + F'''(8)(x - 8)^3/3! + ...

First, let's find the derivatives of F(x):

F(x) = 11 - x
F'(x) = -1
F''(x) = 0 (and all higher-order derivatives will also be 0)

Now, let's evaluate the derivatives at x = 8:

F(8) = 11 - 8 = 3
F'(8) = -1
F''(8) = 0

Since the second and higher-order derivatives are all 0, the Taylor series simplifies to:

F(x) = 3 - 1(x - 8)

So, the Taylor series of F(x) = 11 - x centered at x = 8 is:

F(x) = 3 - (x - 8)

Learn more about coefficients here:

brainly.com/question/13431100

#SPJ11

Proof Let T: R2 → R2 such that T(v) = Av + b, where A is a 2 × 2 matrix. (Such a transformation is called an affine transformation.) Prove that T is a linear transformation if and only if b = 0.

Answers

T is a linear transformation if and only if b = 0.

To prove that the transformation T is a linear transformation if and only if b = 0, we can consider the properties of linear transformations and analyze the effect of the translation vector b on the transformation. Here is an explanation in bullet points:

Assume T: R^2 -> R^2 is defined as T(v) = Av + b, where A is a 2x2 matrix and b is a translation vector.

1.Linear transformations have two main properties:

a. Additivity: T(u + v) = T(u) + T(v)

b. Homogeneity: T(cu) = cT(u), where c is a scalar and u, v are vectors.

2.Let's first assume T is a linear transformation (T satisfies the additivity and homogeneity properties).

3.By considering the additivity property, let's evaluate T(0) where 0 represents the zero vector in R^2.

T(0) = T(0 + 0) = T(0) + T(0) (Using additivity)

Subtract T(0) from both sides: T(0) - T(0) = T(0) + T(0) - T(0)

Simplify: 0 = T(0) + 0

Thus, T(0) = 0, meaning the transformation of the zero vector is the zero vector.

4.Now, let's consider the transformation T(v) = Av + b and analyze the effect of b on the linearity of T.

If b ≠ 0, the translation vector introduces a constant term to the transformation.

When we evaluate T(0), which should be the zero vector according to linearity, we get T(0) = A0 + b = b ≠ 0.

This violates the linearity property, as T(0) should be the zero vector.

5.Therefore, if T is a linear transformation, it must satisfy T(0) = 0, which implies that b must be equal to 0 (b = 0).

6.Conversely, if b = 0, the transformation T(v) = Av + 0 simplifies to T(v) = Av.

In this case, the transformation does not involve a constant term and satisfies the additivity and homogeneity properties.

Thus, T is a linear transformation when b = 0.

In conclusion, T is a linear transformation if and only if b = 0, as the presence of a non-zero translation vector violates the linearity property.

To know more about  linear transformation refer here:

https://brainly.com/question/13595405

#SPJ11

What is the volume of this rectangular prism? 7/2 7/5 5

Answers

The volume of the rectangular prism with the given dimensions is 24.5 cubic units.

What is the volume of the prism?

Remember that the volume of a rectangular prism is equal to the product between the dimensions of the prism (the product between the length, width, and height).

Here we know that the dimensions of the prism are:

7/2 units by 7/5 units by 5 units.

Then the volume of this prism is given by the product below:

P = (7/2)*(7/5)*5

P = 24.5

The volume of the rectangular prism is 24.5 cubic units.

Learn more about volumes at:

https://brainly.com/question/1972490

#SPJ1

Join the point to get AB BC CD DA. name the figure obtained, A(0,-2) B(1,-2) C(6,-4) D(0,4) (Grade 9)(coordinate geometery)

Answers

The figure obtained by joining the coordinate points A(0, -2), B(1, -2), C(6, -4), and D(0, 4) is a parallelogram.

The coordinates of A and B are (0, -2) and (1, -2) respectively.

The difference in the x-coordinates is 1 - 0 = 1, and the difference in the y-coordinates is (-2) - (-2) = 0.

Since the differences in both the x- and y-coordinates are equal to 1 and 0 respectively, AB is a horizontal line segment, and its length is 1 unit.

The coordinates of B and C are (1, -2) and (6, -4) respectively.

The difference in the x-coordinates is 6 - 1 = 5, and the difference in the y-coordinates is (-4) - (-2) = -2 - (-2) = -2.

The differences in both the x- and y-coordinates are proportional, indicating that BC is also a straight line segment.

The opposite sides AB and CD are parallel and have equal lengths, and the opposite sides BC and DA are also parallel and have equal lengths, the figure formed by joining the given points A, B, C, and D is a parallelogram.

To learn more on Quadrilateral click:

https://brainly.com/question/29934440

#SPJ1

you arrive at the subway platform at exactly 10am knowing that the next train will arrive at some time uniformly distributed between 10:00 and 10:10am. a. what is the probability that you will have to wait longer than 3 minutes? b. if at 10:05, the train has not yet arrived, what is the probability that you will have to wait an additional 4 minutes?

Answers

(a) Probability that you have to wait more than 3 minutes is 0.7,

(b) If train has not arrived by 10 : 05, then probability that you will have to wait an additional 4 minutes is 0.8.

Part (a) To calculate the probability of waiting longer than 3 minutes, we need to find the portion of total time interval (10:00 to 10:10) that represents waiting longer than 3 minutes.

The total time interval is 10 minutes (from 10:00 to 10:10), and waiting longer than 3 minutes means waiting for more than 3 out of those 10 minutes.

The probability is given by the ratio of the remaining-time (10 - 3 = 7 minutes) to the total time (10 minutes):

Probability = (Remaining time)/(Total time),

= 7/10

= 0.7 or 70%

Therefore, the probability that you will have to wait longer than 3 minutes is 0.7.

Part (b) : If at 10:05 the train has not yet arrived, it means you have already waited for 5 minutes. We need to find the probability of waiting an additional 4 minutes, given that train has not arrived by 10:05.

To calculate the probability of having to wait an additional 4 minutes, we consider the remaining time interval from 10:05 to 10:10.

Since the arrival time is uniformly distributed within the remaining 5-minute interval, the probability of waiting an additional 4 minutes is given by the ratio of the duration of the waiting-time (4 minutes) to the remaining duration of the interval (5 minutes):

Probability = (Duration of waiting time of 4 minutes) / (Remaining duration of the interval)

= 4 minutes / 5 minutes

= 0.8 or 80%

Therefore, the probability that you will have to wait an additional 4 minutes, given that the train has not yet arrived at 10:05, is 0.8.

Learn more about Probability here

https://brainly.com/question/15118362

#SPJ4

a sample of 41 observations yielded a sample variance of 36. if we want to test h0: 2 = 36, what is the test statistic? 6.67 30 31 40

Answers

To test the hypothesis H0: σ^2 = 36, where σ^2 represents the population variance, we can calculate the test statistic using the sample variance and the degrees of freedom. Answer :  test statistic for testing H0: σ^2 = 36 is 40.

In this case, the sample variance is given as 36 and the sample size is 41 observations. The degrees of freedom for the sample variance is equal to n - 1, where n is the sample size.

Degrees of freedom = 41 - 1 = 40

The test statistic for this hypothesis test is calculated by dividing the sample variance by the hypothesized population variance and multiplying it by the degrees of freedom:

Test statistic = (sample variance / hypothesized population variance) * degrees of freedom

Substituting the values:

Test statistic = (36 / 36) * 40 = 40

Therefore, the test statistic for testing H0: σ^2 = 36 is 40.

Learn more about hypothesized  : brainly.com/question/28331914

#SPJ11

When games were sampled throughout a season, it was found that the home team won 138 of 168 basketball games, and the home team won 65 of 88 football games. The result from testing the claim of equal proportions are shown on the right. Does there appear to be a significant difference between the proportions of home wins? What do you conclude about the home field advantage? Does there appear to be a significant difference between the proportions of home wins? (Use the level of significance a = 0.05.)
A. Since the p-value is large, there is a significant difference. B. Since the p-value is large, there is not a significant difference. C. Since the p-value is small, there is a significant difference. D. Since the p-value is small, there is not a significant difference. What do you conclude about the home field advantage? (Use the level of significance a = 0.05.) A. The advantage appears to be higher for football B. The advantage appears to be higher for basketball C. The advantage appears to be about the same for basketball and football. D. No conclusion can be drawn from the given information

Answers

The home field advantage is Since the p-value is small, there is a significant difference. (option c)

The test statistic can be computed using the formula:

z = (p₁ - p₂) / √(p(1 - p) * (1/n₁ + 1/n₂))

Where:

p₁ and p₂ are the proportions of home wins in basketball and football, respectively.

p is the pooled proportion, calculated as (x₁ + x₂) / (n₁ + n₂), where x₁ and x₂ are the total number of home wins in each sport, and n₁ and n₂ are the total number of games played in each sport.

In our case, p₁ = 0.8214, p₂ = 0.7386, n₁ = 168, and n₂ = 88.

Using these values, we can calculate the test statistic. After calculating the test statistic, we can find the p-value associated with it. The p-value represents the probability of obtaining a test statistic as extreme as the observed value, assuming the null hypothesis is true.

Finally, we compare the p-value to the chosen significance level (α = 0.05 in this case). If the p-value is less than α, we reject the null hypothesis and conclude that there is a significant difference between the proportions of home wins. Conversely, if the p-value is greater than α, we fail to reject the null hypothesis and conclude that there is not a significant difference.

In this case, we don't have the actual p-value or test statistic, so we cannot determine the correct answer without performing the calculations. However, we can provide a general explanation of what each answer choice implies:

C. Since the p-value is small, there is a significant difference.

If the p-value is small, it suggests that the observed difference between the proportions of home wins is unlikely to be due to random chance. In this case, there would be a significant difference between the two sports.

Hence the correct option is (c)

To know more about proportions here

https://brainly.com/question/24232216

#SPJ4

ILL MARK BRAINLIEST FOR CORRECT ANSWER:

Answers

To share £747 in the ratio 2:7 between Tom and Ben, we need to determine the respective amounts each person will receive.

Step 1: Calculate the total parts in the ratio (2 + 7) = 9.

Step 2: Divide the total amount (£747) by the total parts (9) to find the value of one part.

One part = £747 / 9 = £83.

Step 3: Multiply the value of one part by the respective ratio amounts:

Tom's share = 2 parts * £83 = £166.

Ben's share = 7 parts * £83 = £581.

Therefore, Tom will get £166 and Ben will get £581.

[tex]\huge{\mathcal{\colorbox{black}{\textcolor{lime}{\textsf{I hope this helps !}}}}}[/tex]

♥️ [tex]\large{\textcolor{red}{\underline{\texttt{SUMIT ROY (:}}}}[/tex]




f) Suppose that you have the following data: 6 E(r-r) 0.03 var(₁) = 0.04 cov(r1, 12) = 0.02 0.04 cov(r2, 1) = 0.04 var(₂) = 0.06 Asset 0 is the (domestic) risk-free asset, and asset weights in a p

Answers

The given data includes expected returns, variances, and covariances of assets, including the risk-free asset, for portfolio analysis.

The provided data is essential for portfolio analysis. It includes the following information: the expected excess return of asset 1 (E(r-r1)) is 0.03, the variance of asset 1 (var(₁)) is 0.04, the covariance between asset 1 and asset 2 (cov(r1, r2)) is 0.02, the covariance between asset 2 and asset 1 (cov(r2, r1)) is 0.04, and the variance of asset 2 (var(₂)) is 0.06.

Additionally, it is mentioned that asset 0 represents the risk-free asset. This data allows for the calculation of various portfolio performance measures, such as expected returns, standard deviation, and the correlation coefficient. By incorporating these values into portfolio optimization techniques, an investor can determine the optimal asset allocation to maximize returns while considering risk and diversification.

Learn more about Assets here: brainly.com/question/32234971

#SPJ11

A breast cancer test has a sensitivity of 92% and a specificity of 97.7%. Sensitivity means the probability of a positive result, given that you have the disease. Specificity means the probability of a negative result, given that you do NOT have the disease. The American breast cancer rate is 13%.
a) Based on these numbers, compute the probability that a patient has breast cancer, given that they get a positive test. b) What if the breast cancer rate is actually 8%? How does your answer to part (a) change?

Answers

a) The probability that a patient has breast cancer, given that they get a positive test is 0.13961

b) If the breast cancer rate is actually 8%, then the probability of the breast cancer rate is 0.094

a) First, we need to compute the probability that a patient has breast cancer, given that they receive a positive test result. This is known as the conditional probability.

Let's denote the following:

P(C) represents the probability of having breast cancer, which is given as 13% or 0.13.

P(Pos) represents the probability of a positive test result.

P(Pos|C) represents the sensitivity of the test, which is 92% or 0.92.

To calculate P(Pos), we can use Bayes' theorem, which states:

P(Pos) = P(Pos|C) * P(C) + P(Pos|~C) * P(~C)

P(Pos|~C) represents the probability of a positive test result given that the person does not have breast cancer, which can be calculated as 1 - specificity. Specificity is given as 97.7% or 0.977.

P(Pos|~C) = 1 - specificity = 1 - 0.977 = 0.023

P(~C) represents the probability of not having breast cancer, which is 1 - P(C) = 1 - 0.13 = 0.87.

Now we can calculate P(Pos):

P(Pos) = P(Pos|C) * P(C) + P(Pos|~C) * P(~C)

= 0.92 * 0.13 + 0.023 * 0.87 = 0.13961

b) In this case, let's assume the breast cancer rate is 8% or 0.08 instead of 13%. We need to recalculate the probability that a patient has breast cancer, given a positive test result (P(C|Pos)).

Using the same approach as before, we'll calculate P(Pos) with the updated values:

P(C) = 0.08

P(~C) = 1 - P(C) = 1 - 0.08 = 0.92

P(Pos) = P(Pos|C) * P(C) + P(Pos|~C) * P(~C)

= 0.92 * 0.08 + 0.023 * 0.92 = 0.094

To know more about probability here

https://brainly.com/question/11234923

#SPJ4

Choose the correct answer for the function M(x,y) for which the following vector field F(x,y) = (- 8x – 5y)i + M(x,y); is conservative O None of the others = = O M(x,y) = 16x + 8y O M(x,y) = 16x – 8y O M(x,y) = – 5x + 16y O M(x,y) = - 8x + 16y =

Answers

The vector field, [tex]F(x,y) = (-8x-5y)i + M(x,y)[/tex], is conservative. The correct function [tex]M(x,y)[/tex] for the given vector field is [tex]M(x,y) = 16x + 8y.[/tex]

A vector field F is said to be conservative if and only if the line integral of the vector field F along every closed path in the region of its existence is zero.

Conservative vector fields can be represented by the gradient of a scalar function, called the potential function.

Conservative vector fields have some unique properties like:

If a vector field is conservative, then the work done by the field on a particle moving along a closed path is zero.

If a vector field is conservative, then the line integral of the vector field around any closed path is zero.

Now, for the given vector field [tex]F(x,y) = (-8x-5y)i + M(x,y)[/tex], to be conservative,

we need to verify the curl of the vector field.

[tex]ϵ_{ijk} x_i (∂ F_k/∂ x_j)=0.[/tex]

Here, we have [tex]F(x,y) = (-8x-5y)i + M(x,y).[/tex]

So, [tex]∂ F_y/∂ x = -8 and ∂ F_x/∂ y = -5.∴ curl(F) = ∂ F_y/∂ x - ∂ F_x/∂ y= -8 - (-5)= -3.[/tex]

Now, as the curl of the vector field is non-zero (-3),

the vector field is not conservative.

Now, to make the given vector field [tex]F(x,y) = (-8x-5y)i + M(x,y)[/tex], we need to find [tex]M(x,y)[/tex] such that the curl of the vector field is zero.∴ [tex]∂ M/∂ x = -∂ F_x/∂ y= 5[/tex] and [tex]∂ M/∂ y = -∂ F_y/∂ x= 8.∴ M(x,y) = 16x + 8y.[/tex]

Hence, the correct answer is: [tex]M(x,y) = 16x + 8y.[/tex]

To know more about conservative vector visit:

https://brainly.com/question/30069908

#SPJ11

we draw a random sample of size 36 from the normal population with variance 2.1. if the sample mean is 20.5, what is a 95% confidence interval for the population mean?

Answers

The 95% confidence interval for the population mean is approximately [20.03, 20.97].

What is confidence interval?

The percentage (frequency) of acceptable confidence intervals that include the actual value of the unknown parameter is represented by the confidence level.

To calculate the 95% confidence interval for the population mean based on a sample of size 36 with a known variance of 2.1 and a sample mean of 20.5, we can use the formula for a confidence interval for a population mean:

CI = [tex]\bar X[/tex] ± z * (σ / √n),

where:

CI is the confidence interval,

[tex]\bar X[/tex] is the sample mean,

z is the z-score corresponding to the desired level of confidence (in this case, 95% confidence),

σ is the population standard deviation,

n is the sample size.

Since we have the population variance (2.1), we can calculate the population standard deviation as σ = √2.1 ≈ 1.45.

Now, let's calculate the confidence interval:

CI = 20.5 ± z * (1.45 / √36).

The z-score corresponding to a 95% confidence level is approximately 1.96 (you can look this up in a standard normal distribution table or use a statistical software).

Substituting the values:

CI = 20.5 ± 1.96 * (1.45 / √36).

Calculating the values within the confidence interval:

CI = 20.5 ± 1.96 * 0.2417.

CI = 20.5 ± 0.4741.

Finally, we can calculate the lower and upper bounds of the confidence interval:

Lower bound = 20.5 - 0.4741 ≈ 20.03.

Upper bound = 20.5 + 0.4741 ≈ 20.97.

Therefore, the 95% confidence interval for the population mean is approximately [20.03, 20.97].

Learn more about confidence interval on:

https://brainly.com/question/17034620

#SPJ4

PLEASE HELP 11 POINTS
Find the missing side.
19
36° y
y = [?]
Round to the nearest tenth.
Remember: SOHCAHTOA

Answers

The missing side has a length of 15 in the given triangle.

The given triangle is a right angle triangle.

The hypotenuse is 19.

The angle between the hypotenuse and adjacent side is 36 degrees.

We have to find the length of adjacent side.

As we know the cosine function is a ratio of adjacent side and hypotenuse.

Cos36=y/19

0.809=y/19

y=19×0.809

y=15

To learn more on Triangles click:

https://brainly.com/question/2773823

#SPJ1

cos(36) = y/19

y = 19 * 0.809

y = 15.4 (Rounded)

I need help been struggling hard with this one. ​

Answers

The equation of the line in slope intercept form is y = - 5 / 3 x - 7.

How to find equation of a line in slope intercept form?

The equation of the line can be represented in slope intercept form as follows:

Therefore,

y = mx + b

where

m = slopeb = y-intercept

Therefore, using (0, -7)(-3, -2) let's find the slope.

slope = -2 + 7 / -3 - 0

slope = 5 / -3

slope = - 5 / 3

Therefore, let's find the y-intercept using (0, -7).

y = - 5 / 3 x + b

-7 = - 5 / 3 (0) + b

b = -7

Therefore, the equation of the line is y = - 5 / 3 x - 7.

learn more on slope intercept form here:https://brainly.com/question/29146348

#SPJ1

What is the sampling distribution of the sample mean of Hours Worked?
A. Uniform because the distribution of the sample is uniform
B. Approximately normal because n > 30
C. Unknown because the distribution of the sample is not normal

Answers

The sampling distribution of the sample mean of Hours Worked depends on the underlying distribution of the population and the sample size.

If the population distribution of Hours Worked is approximately normal, then regardless of the sample size, the Central Limit Theorem states that the sampling distribution of the sample mean will be approximately normal.

If the population distribution of Hours Worked is not normal, but the sample size is large enough (typically n > 30), then the Central Limit Theorem still applies, and the sampling distribution of the sample mean will be approximately normal.

However, if the population distribution of Hours Worked is not normal and the sample size is small (typically n < 30), then the sampling distribution of the sample mean may not be normal. In this case, the shape of the sampling distribution will depend on the specific distribution of the population.

Therefore, the correct answer is:

C. Unknown because the distribution of the sample is not normal.

To learn more about Sample:

brainly.com/question/27860316

#SPJ11

50. Write the given expression as the sine of an angle. sin 105ºcos 35° + sin 35° cos 105° a. sin(-70) b. sin(140) (350) d. sin(70) e. sin(105°)

Answers

The answer is option (b).

Thus, we have found that the sine of an angle for the given expression, sin 105ºcos 35° + sin 35° cos 105°, is equal to sin(140°).

We know that the formula for sine (A+B) is:

                       sin(A+B) = sin(A)cos(B) + cos(A)sin(B)

Let's apply this formula to the given expression, which is sin 105ºcos 35° + sin 35° cos 105°:

              sin 105ºcos 35° + sin 35° cos 105° = sin(105 + 35)

using the formula sin(A+B) = sin(A)cos(B) + cos(A)sin(B)

                                                                     = sin 105° cos 35° + cos 105° sin 35°

Now, the expression is in the form:

               sin(A)cos(B) + cos(A)sin(B) = sin(A+B)

Therefore, the given expression is equal to sin(105° + 35°).

The sum of the angles 105° and 35° is 140°.

Hence, the expression is equal to sin(140°).

Therefore, the answer is option (b).

Thus, we have found that the given expression, sin 105ºcos 35° + sin 35° cos 105°, is equal to sin(140°).

To know more about sine of an angle, visit:

https://brainly.com/question/30339243

#SPJ11

The given expression can be written as the sine of an angle is sin(70°). The correct option is (d) sin(70).

The given expression can be written as the sine of an angle is sin(70°).

The given expression is sin 105ºcos 35° + sin 35° cos 105°.

The expression sin 105ºcos 35° + sin 35° cos 105° is of the form sin A cos B + sin B cos A, which is equal to sin (A + B).Now, substitute

A = 105° and

B = 35°sin 105ºcos 35° + sin 35° cos 105°

= sin (105° + 35°)

= sin 140°The value of sin 140° is the same as that of sin (-40°). It can be seen from the standard unit circle below that the sine function is symmetric across the x-axis.

It follows that sin (-40°) = -sin 40°.

Therefore, sin 140° = - sin 40°It is not one of the given options.

The correct option is (d) sin(70).Thus, the given expression can be written as the sine of an angle is sin(70°).

Answer: The correct option is (d) sin(70).

To know more about angle, visit:

https://brainly.com/question/31818999

#SPJ11

Evaluate the following integrals (a) ∫3x³ + 3x-2 dx
(b) ∫ 3x²+√x/√x dx
(c) ∫^4 0 z (z ^1/² − z^-1/²) dz (d) ∫^2 0(3-u) (3u+1) du

Answers

(a)  The integral of 3x³ + 3x - 2 dx is x⁴ + (3/2)x² - 2x + C. (b) The integral of 3x² + √x/√x dx simplifies to x³ + 2√x + C. (c) The integral of z(z^(1/2) - z^(-1/2)) dz from 0 to 4 evaluates to (2/3)z^(3/2) - 2z^(1/2) + C.

(a)  To evaluate the integral, we use the power rule of integration, which states that the integral of x^n dx is (1/(n+1)) * x^(n+1) + C, where C is the constant of integration. Applying this rule to each term in the integrand, we get:

∫3x³ dx = (3/4) * x^4

∫3x dx = (3/2) * x²

∫-2 dx = -2x

Now we can sum up the individual integrals:

∫3x³ + 3x - 2 dx = (3/4) * x^4 + (3/2) * x² - 2x + C

(b) We can simplify the integrand by canceling out the square roots:

∫3x² + √x/√x dx = ∫3x² + 1 dx = x³ + x + C

However, since the integral sign is present, we need to include the constant of integration. Thus, the final result is:

∫3x² + √x/√x dx = x³ + x + C

(c) To solve this integral, we can distribute the z and then apply the power rule of integration. The power rule states that the integral of x^n dx is (1/(n+1)) * x^(n+1) + C.

Expanding the integrand, we get:

∫z(z^(1/2) - z^(-1/2)) dz = ∫z^(3/2) - z^(1/2 - 1) dz

                          = (2/3)z^(3/2) - 2z^(1/2) + C

Substituting the limits of integration (0 and 4) into the expression, we can evaluate the definite integral:

∫^4 0 z(z^(1/2) - z^(-1/2)) dz = [(2/3)(4)^(3/2) - 2(4)^(1/2)] - [(2/3)(0)^(3/2) - 2(0)^(1/2)]

                             = (2/3)(8) - 2(2)

                             = 16/3 - 4

                             = 4/3

Therefore, the integral of z(z^(1/2) - z^(-1/2)) dz from 0 to 4 is (2/3)z^(3/2) - 2z^(1/2) + C.

To learn more about integration  Click Here: brainly.com/question/31744185

#SPJ11

Other Questions
Required: Fill in the blanks for planned detection risk and planned evidence using the terms, low, medium, or high. Then, using your knowledge of the relationships among the foregoing factors, state the effect on planned evidence (increase or decrease) of changing each of the following five factors, while the other three remain constant. The following table gives the number of women age 16 years and older (inmillions) in a country's civilian workforce for selected years from 1950 andprojected to 2050.Complete parts (a) and (b) below.CTTSX+Women in theYear Workforce (millions)19501960197019801990200018.221.331.745.555465.5a. Use x as the number of years past January 1st, 1950 to create a cubic model, y, using these data.y=x+x+x+4(Type integers or decimals rounded to five decimal places.)Clear allWomen in theYear Workforce (millions)20102015202020302040205075.378.178.580.586.691.5Check answer the ballard scoring system evaluates newborns on which two factors? what category of organic molecule is the enzyme catalase In the figure, the 2 speakers emit a sound that is 180 degrees outof phase and of a single frequency f. a) Does the middle guy hear asound intensity that is a maximum or minimum? Does the answerdepend on the frequency of the sound? Explain. b)Find thelowest two frequencies that produce a maximum sound intensity atthe positions of the other two guys.Details: Centers of speakers are 0.800 m apart. Thethree guys are 3.00 m away from the speakers and each person isseperated by 1.00m in which medicare supplemental policies are the core benefits found? an ambulance is traveling south at 51.6 away from a car that is traveling at what frequency does the driver of the car hear the ambulances siren Which of the following is TRUE about the moon illusion?A.) It is due to the mind's misapplication of size constancy.B.) It is due to convergence.C.) It is explained by binocular disparity.D.) It has to do with the angle at which one views the moon. What plan have Walter, Willy Harris, and Bobo making? unrestrained occupants in utah accounted for what percentage of deaths? 19. Find the expected count under the null hypothesis. A sociologist was interested in determining if there was a relationship between the age of a young adult (18 to 35 years old) and the type of movie preferred. A random sample of 93 adults revealed the following data. Use a Chi-Square independence test to determine if age and type of movie preferred are independent at the 5% level of significance.18-23 years old 24-29 years old 3 0-35 years old TotalsDrama 8 15 11 34Science Fiction 12 10 8 30Comedy 9 8 12 29Totals 29 33 31 93Provided the assumptions of the test are satisfied, find the expected number of 24-29 year-olds who prefer comedies under the null hypothesis.a) 8b) 11.56c) 10.29d) 7.34 what capacitance, in ff , has its potential difference increasing at 6.0105 v/sv/s when the displacement current in the capacitor is 0.80 aa ? express your answer using two significant figures. in the context of adoption over time, which of the following is true of an s-shaped diffusion curve? Which are common financial obstacles faced by newly financially independent adults? excess inventory well beyond what is needed for the year may: Conditional acceptance occurs when: the offeree tells the offeror that he or she is willing to agree to the offer If some changes are made in its terms or that some condition or event occurs. the offeree is agreeable to the terms of the offer but proposes that the parties negotiate a formal contract based on the offer. the offeree tells the offeror that he or she is needs more time to think about the offer. the offeree makes a counter-offer. an element of just-in-time processing is: an element of just-in-time processing is: all of the above. dependable suppliers who are willing to deliver on short notice. a multi-skilled workforce. a total quality control system. Tech Inc. issues a 5% common stock dividend on 50,000 shares of $1 par common stock issued and outstanding on August 1. 2020. The market price of its common stock is $20 per share. The small stock dividend will be distributed on August 15, 2020, to stockholders of record on August 7, 2020. Assume that of the 2,500 stock dividend shares, 2,200 were whole shares and the remaining were fractional shares making up 300 equivalent whole shares. The company's policy is to pay cash to shareholders for fractional shares. Given the information above, which of the following statements is correct? a Total assets decreases b Total shareholders' equity increases c Total assets increases. d Total shareholders' e equity does not change. breaking down items to be remembered into smaller sets of meaningful units is a way to fool stm into holding more information than usual. this process is referred to as: earnings per share is most useful in comparing earnings performance of one company with another. group startstrue or falsetrue, unselectedfalse, unselected