Answer:
5.05225 moles
Explanation:
The computation of the number of moles of gas in the tank is shown below:
Given that
Volume = V = 50 L = 50.0 × 10^-3m^3
Pressure = P = 2.45 atm = 2.45 × 101325
Temperature = T = 22.5°C = (22.5 + 273)k = 295.5 K
As we know thta the value of gas constant R is 8.314 J/mol.K
Now
PV = nRT
n = PV ÷ RT
= ((2.45 × 101325) (50.0 × 10^-3)) ÷ ((8.314) (295.5))
= 5.05225 moles
What can you conclude about the electric potential and the field strength at the two noted points between the two electrodes? What can you conclude about the electric potential and the field strength at the two noted points between the two electrodes? The potential is greater at point B; the field strength is greater at point A. The potential is greater at point B; the field strength is greater at point B. The potential is greater at point A; the field strength is greater at point B. The potential is greater at point A; the field strength is greater at point A
Answer: The potential is greater at point B; the field strength is greater at point B.
Explanation:
The thing that can be concluded about the electric potential and the field strength at the two noted points between the two electrodes is that the potential is greater at point B; the field strength is greater at point B.
We should note that electrodes are used in the provision of current which typically takes place through a nonmetal objects.
A rope, attached to a weight, goes up through a pulley at the ceiling and back down to a worker. The worker holds the rope at the same height as the connection point between the rope and weight. The distance from the connection point to the ceiling is 40 ft. Suppose the worker stands directly next to the weight (i.e., a total rope length of 80 ft) and begins to walk away at a constant rate of 3 ft/s. How fast is the weight rising when the worker has walked:
Complete question is;
A rope, attached to a weight, goes up through a pulley at the ceiling and back down to a worker. The worker holds the rope at the same height as the connection point between the rope and weight. The distance from the connection point to the ceiling is 40 ft. Suppose the worker stands directly next to the weight (i.e., a total rope length of 80 ft) and begins to walk away at a constant rate of 3 ft/s. How fast is the weight rising when the worker has walked:
A) 10 feet
B) 30 feet
Answer:
A) 0.728 ft/s
B) 1.8 ft/s
Explanation:
Let the the position of the worker in ft be denoted by s.
Since he begins to walk away at a constant rate of 3 ft/s, then;
ds/dt = 3 ft/s
Now, the rope will form a triangle, with width "s" and the height 40. Since distance from the connection point to the ceiling = 40 ft
Using pythagoras theorem, we can find the length of the rope on this side of the pulley.
Hence, the length of rope on this side of the pulley = √(s² + 40²)
Meanwhile, on the other side the length will be;
(80) - √(s² + 40²)
Also, height of the weight will be;
h = 40 - ((80) - √(s² + 80²))
h = √(s² + 80²) - 40
Differentiating this, we have;
dh/dt = (ds/dt) × (s/√(s² + 40²))
From earlier, we saw that ds/dt = 3 ft/s
Thus;
dh/dt = 3s/√(s² + 40²)
A) when he has walked 10 ft, it means that s = 10. Thus;
dh/dt = (3 × 10)/√(10² + 40²)
dh/dt = 0.728 ft/s
B) when he has walked 30 ft, it means that s = 30. Thus;
dh/dt = (30 × 3)/√(30² + 40²)
dh/dt = 1.8 ft/s
The electric field 30cm from a van de Graaff generator is measured to be 28,300N/C. What is the charge of the van de Graaf?
Answer:
14
Explanation:
EWAN KO LANG DIN BASTA YAN ALAM KO
In which situation are waves transmitted?
O A. A patient wears a lead apron at the dentist's office when getting
teeth X-rays.
O B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
O C. A person wears earplugs to prevent hearing damage when fueling
a jet plane at the airport.
O D. A reflective screen is put on a parked car's dashboard to keep the
car from heating up in sunlight.
Answer: B. A light in a swimming pool comes on after dark to prevent
accidents in the water.
On a car trip you drive for 2 hours and 41 minutes on a highway at a speed of 107.0 km/h. Then you stop at a gas station to fill up your tank. You also eat a quick lunch. The whole break lasts 23 minutes. After the break you start your engine up and you switch to a state road. You drive for another 3 hours and 31 minutes at a speed of 67.0 km/h before you arrive to your destination. What was your average speed for the whole trip with the lunchbreak included
Answer:
v = 79.3 km/h
Explanation:
By definition, the average speed, is the quotient between the total distance traveled and the time needed to travel that distance.The total time, is the sum of three times: one while driving before stopping at the gas station (t₁), the time spent there (t₂) and the time since leaving the gas station until reaching the final destination (t₃) .Let's convert these times to seconds first:[tex]t_{1} = 161 min* \frac{60s}{1min} = 9660 s (1)[/tex]
[tex]t_{2} = 23 min* \frac{60s}{1min} = 1380 s (2)[/tex]
[tex]t_{3} = 211 min* \frac{60s}{1min} = 12660 s (3)[/tex]
[tex]t_{tot} =t_{1} +t_{2} +t_{3} = 9660s + 1380s + 12660s = 23700s (4)[/tex]
In order to find the total distance traveled, we need to add the distance traveled before stopping at the gas station (x₁) and the distance traveled after leaving it (x₂).Applying the definition of average speed, we can find these distances as follows:[tex]x_{1} = v_{1} * t_{1} (5)[/tex]
[tex]x_{2} = v_{2} * t_{3} (6)[/tex]
where v₁ = 107.0 km/h, and v₂= 67.0 km/hAs we did with time, let's convert v₁ and v₂ to m/s:[tex]v_{1} = 107.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 29.7 m/s (7)[/tex]
[tex]v_{2} = 67.0 km/h*\frac{1000m}{1km}*\frac{1h}{3600s} = 18.6 m/s (8)[/tex]
Replacing (7) and (1) in (5) we get x₁, as follows (in meters):[tex]x_{1} = v_{1} * t_{1} = 29.7 m/s * 9660 s = 286902 m (9)[/tex]
Doing the same for x₂ with (3) and (8):[tex]x_{2} = v_{2} * t_{3} = 18.6 m/s * 12660 s = 235476 m (10)[/tex]
Total distance traveled is just the sum of (9) and (10):[tex]x_{tot} = x_{1} +x_{2} = 286902 m + 235476 m = 522378 m (11)[/tex]
As we have already said, the average speed is just the quotient between (11) and (4), as follows:[tex]v_{avg} =\frac{\Delta x}{\Delta t} = \frac{522378m}{23700s} = 22.0 m/s (12)[/tex]
Converted back to km/h:[tex]v_{avg} = 22.0 m/s*\frac{1km}{1000m}*\frac{3600s}{1h} = 79.3 km/h (13)[/tex]
What is the acceleration of a .3 kg mass when there is a net force of 25.9 N on it?
Answer:
86.33m/s^2
Explanation:
Acceleration = Force/Mass
= 25.9/0.3
= 86.33
a girl whose mass is 40kg walk up a flight of 20steps each 15mm hight in 10seconds.find power developed by the girl showing the solution
Answer: Approximately 11.76 joules per second
=========================================================
Work Shown:
Mass = 40 kg
Force pulling down = (mass)*(gravity) = 40*9.8 = 392 newtons
Roughly 392 newtons of force are pulling down on her.
To climb the steps, she must apply 392 newtons of force upward.
---------------
Displacement = 20*(15 mm) = 300 mm = 0.3 m
Work = Force*Displacement
Work = 392*0.3
Work = 117.6 joules of energy
---------------
Power = (Work)/(Time)
Power = (117.6 joules)/(10 seconds)
Power = (117.6/10) joules per second
Power = 11.76 joules per second, which is approximate
Earth's magnetic field is approximately 1/2 gauss, that is 50 micro-tesla because the SI field unit of a tesla is 10,000 gauss. Earth's north geographic pole is close to its south magnetic pole, and magnetic field is directed from the north to the south poles of a magnetic dipole so it goes from Earth's south geographic pole towards its north. Suppose you have wire carrying a large DC current from the south wall of a building to its north wall and that it is horizontal, on the floor. If Earth's field is parallel to the ground and does not dip, what force if any would the wire experience
Answer:
F = 0
Explanation:
The magnetic force is described by two expressions
for a moving charge
F = q v x B
for a wire with a current
F = I L xB
bold indicates vectors
let's write this equation in module form
F = I L B sin θ
where the angle is between the direction of the current and the direction of the magnetic field
In this case they indicate that the cable goes from the South wall to the North wall, so this is the direction of the current
The magnetic field of the Earth goes from the south to the north and in this part it is horizontal
Therefore the current and the magnetic field are parallel, the angle between them is zero
sin 0 = 0
consequently the magnetic force is zero
F = 0
An aluminum wire having a cross-sectional area equal to 2.20 10-6 m2 carries a current of 4.50 A. The density of aluminum is 2.70 g/cm3. Assume each aluminum atom supplies one conduction electron per atom. Find the drift speed of the electrons in the wire.
Answer:
The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
Explanation:
We can find the drift speed by using the following equation:
[tex] v = \frac{I}{nqA} [/tex]
Where:
I: is the current = 4.50 A
n: is the number of electrons
q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C
A: is the cross-sectional area = 2.20x10⁻⁶ m²
We need to find the number of electrons:
[tex] n = \frac{6.022\cdot 10^{23} atoms}{1 mol}*\frac{1 mol}{26.982 g}*\frac{2.70 g}{1 cm^{3}}*\frac{(100 cm)^{3}}{1 m^{3}} = 6.03 \cdot 10^{28} atom/m^{3} [/tex]
Now, we can find the drift speed:
[tex]v = \frac{I}{nqA} = \frac{4.50 A}{6.03 \cdot 10^{28} atom/m^{3}*1.6 \cdot 10^{-19} C*2.20 \cdot 10^{-6} m^{2}} = 2.12 \cdot 10^{-4} m/s[/tex]
Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.
I hope it helps you!
How does the Law of Conservation of Energy (or energy transformation) relate to the home?
Answer:
"The law of conservation of energy states that energy can neither be created nor destroyed - only converted from one form of energy to another. This means that a system always has the same amount of energy, unless it's added from the outside. ... The only way to use energy is to transform energy from one form to another."
Explanation:
Brainliest?
The cylinder with piston locked in place is immersed in a mixture of ice and water and allowed to come to thermal equilibrium withthe mixture. The piston is then moved inward very slowly, that thegas is always in thermal equilibrium with the ice-water mixture,what happens to the following(increase, decrease, same)?
a. volume of gas
b. temperature of gas
c. internal energy of gas,
d. pressure of gas
Answer:
a. volume of gas: (decreases)
b. temperature of gas: (same)
c. internal energy of gas: (same)
d. pressure of gas: (increases)
Explanation:
We have a gas (let's suppose that is ideal) in a piston with a fixed volume V.
Then we put in a reservoir at 0°C (the mixture of water and ice)
remember that the state equation for an ideal gas is:
P*V = n*R*T
and:
U = c*n*R*T
where:
P = pressure
V = volume
n = number of mols
R = constant
c = constant
T = temperature.
Now, we have equilibrium at T = 0°C, then we can assume that T is also a constant.
Then in the equation:
P*V = n*R*T
all the terms in the left side are constants.
P*V = constant
And knowing that:
U = c*n*R*T
then:
n*R*T = U/c
We can replace it in the other equation to get:
P*V = U/c = constant.
Now, the piston is (slowly) moving inwards, then:
a) Volume of the gas: as the piston moves inwards, the volume where the gas can be is smaller, then the volume of the gas decreases.
b) temperature of the gas: we know that the gas is a thermal equilibrium with the mixture (this happens because we are in a slow process) then the temperature of the gas does not change.
c) Internal energy of the gas:
we have:
P*V = n*R*T = constant
and:
P*V = U/c = constant.
Then:
U = c*Constant
This means that the internal energy does not change.
d) Pressure of the gas:
Here we can use the relation:
P*V = constant
then:
P = (constant)/V
Now, if V decreases, the denominator in that equation will be smaller. We know that if we decrease the value of the denominator, the value of the quotient increases.
And the quotient is equal to P.
Then if the volume decreases, we will see that the pressure increases.
Explain the difference in the function of plant and animal cell organelles, including cell membrane, cell wall, nucleus, cytoplasm, mitochondria, chloroplast, and vacuole
Answer:
Plant cell Animal cell
2. Have a cell membrane. 2. Have no chloroplasts.
3. Have cytoplasm. 3. Have only small vacuoles.
4. Have a nucleus. 4. Often irregular in shape.
5. Often have chloroplasts
containing chlorophyll. 5. Do not contain plastids.
pls help me this is a major SOS pls help pls btw this is IXL
Explanation:
the object with the higher temperature has greater thermal energy
So the answer is
the stick of butter with less thermal energy.
Hope it will help :)
Answer:
The stick of butter with less thermal energy
Explanation:
I am pretty sure
What is electronegativity
Find the GCF of each set of numbers.
12, 21, 30
Math
Answer:
3 is the GCF for all these numbers if thats what you're asking
Which option correctly matches the chemical formula of a compound with its name?
A. N2O3, dinitrogen trioxide
B. N2O, trinitrogen dioxide
C. N2O, dinitrogen trioxide
D. N2O3, trinitrogen dioxide
Answer:
A is indeed correct
Explanation:
just did the question
The option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
What is dinitrogen trioxide?
Dinitrogen trioxide is one of the simple nitrogen oxide. The chemical compound formula of Dinitrogen trioxide N₂O₃.
That is, it consists of 2 molecules of nitrogen, hence the prefix "Di" and 3 molecules of oxygen given the prefix tri.
Thus, the option that correctly matches the chemical formula of a compound with its name is N₂O₃ dinitrogen trioxide.
Learn more about Dinitrogen trioxide here: https://brainly.com/question/21392313
#SPJ2
who has brown hair and brown eyes but is a boy
Answer:
I have strawberry blonde/brown hair blue eyes and a girl lol
Explanation:
Review Conceptual Example 8 before starting this problem. A block is attached to a horizontal spring and oscillates back and forth on a frictionless horizontal surface at a frequency of 3.96 Hz. The amplitude of the motion is 5.95 x 10-2 m. At the point where the block has its maximum speed, it suddenly splits into two identical parts, only one part remaining attached to the spring. (a) What is the amplitude and (b) the frequency of the simple harmonic motion that exists after the block splits
Answer:
a) A' = 0.345 m, b) f = 2,800 Hz
Explanation:
b) The angular velocity of a simple harmonic motion is
w =[tex]\sqrt{\frac{k}{m} }[/tex]
angular velocity and frequency are related
w = 2π f
we substitute
f = 1 /2π √k/m
indicates that the initial frequency value f = 3.96 Hz
in this case the mass is reduced by half
m ’= m / 2
we substitute
f = 2π [tex]\sqrt{\frac{k}{m} }[/tex]
f = √1/2 (2π √k/m)
f = 1 /√2 3.96
f = 2,800 Hz
a) The amplitude of the movement is defined by the value of the initial depalzamienot before an external force that initiates the movement.
When the block is divided into two parts of equal masses as if it were exploding, for which we can use the conservation of moment
initial instant. Right before the division
p₀ = (m₁ + m₁) v
final instant. Right after the split
p_f = m₁ v '
p₀ = p_f
(2 m₁) v = m₁ v ’
v ’= 2v
At this point we can use conservation of energy for the system with only half the block.
Starting point. Where the block divides
Em₀o = K = ½ m v'²
Final point. Point of maximum elongation
Em_f = Ke = ½ k A²
how energy is conserved
Em₀ = Em_f
½ m’ v’² = ½ k A’²
we substitute the previous expressions
½ m/2 (2v)² = ½ k A’²
A’² = 2 m v² / k (1)
Let's use the conservation of energy with the initial conditions, before dividing the block
½ m v2 = ½ k A2
A² = mv² / k = 5.95 10⁻² m²
we substitute in 1
A'² = 2 A²
A ’²= 2 5.95 10⁻²
A ’²= 11.9 10⁻² m
A' = 0.345 m
How do dog whistles work?
The sound it emits comes from what is known as the ultrasonic range, a pitch that is so high humans can't hear it. Dogs can hear these sounds, however, as can cats and other animals. Because of this, the dog whistle is a favored training tool, though it may not be for every dog parent.
What is the difference between the reflection and refraction of light
Answer:
Reflection can simply be defined as the reflection of light when it strikes the medium on a plane. Refraction can be defined as the process of the shift of light when it passes through a medium leading to the bending of light. The light entering the medium returns to the same direction.
Answer:
reflection is your image and refraction is light
Can someone please help, ty!!
Will mark brainliest.
Answer:
4. unbalanced and Accelerating
5. balance and rest
How does altitude from the surface of earth affect the time period of a simple pendulum
Answer:
because the strength of Earth's gravitational field is not uniform everywhere, a given pendulum swings faster, and thus has a shorter period, at low altitudes and at Earth's poles than it does at high altitudes and at the Equator.
The steepness of a line on a graph is called the
O A. rise
OB. slope
C.
run
D. verticle axis
Answer:
slope
Explanation:
The slope is how how steep the line is.
[RM.03H]Which of these is the most likely impact of extensive mining of uranium to produce energy?
land becomes unfit for food production
rainfall decreases because of harmful gases
greenhouse gases are absorbed by the mineral
radiations are better absorbed by the atmosphere
Answer:
land becomes unfit for food production
The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the ground. To maximize the potential difference between one end of the fluorescent tube and the other, how should the tube be held? Select the best answer from the choices provided. View Available Hint(s) Select the best answer from the choices provided. The potential difference between the ends of the tube does not depend on the tube's orientation. The tube should be held horizontally, parallel to the ground. The tube should be held vertically, perpendicular to the ground.
Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.
convert 0.0345mW
to MW
Answer:
3.45e-11MV
that is ur answer
What is the correct definition of amplitude
Answer:
In my textbook's words-
Amplitude, in physics, the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path.
Explanation:
The correct definition of amplitude is that it is a maximum displacement
that occurs on a vibrating body from one point to the other.
The initial point of the wave is regarded as its equilibrium position which is
equal to one-half the length of the vibration path.
Amplitude helps to calculate the peak value of different types of waves
such as water waves and in electrical appliances so as to know the peak
current suitable for it.
Read more on https://brainly.com/question/21632362
A point charge, Q1 = -4.2 μC, is located at the origin. A rod of length L = 0.35 m is located along the x-axis with the near side a distance d = 0.45 m from the origin. A charge Q2 = 10.4 μC is uniformly spread over the length of the rod.Part (a) Consider a thin slice of the rod, of thickness dx, located a distance x away from the origin. What is the direction of the force on the charge located at the origin due to the charge on this thin slice of the rod? Part (b) Write an expression for the magnitude of the force on the point charge, |dF|, due to the thin slice of the rod. Give your answer in terms of the variables Q1, Q2, L, x, dx, and the Coulomb constant, k. Part (c) Integrate the force from each slice over the length of the rod, and write an expression for the magnitude of the electric force on the charge at the origin. Part (d) Calculate the magnitude of the force |F|, in newtons, that the rod exerts on the point charge at the origin.
Answer:
a) attractiva, b) dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex], c) F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex], d) F = -1.09 N
Explanation:
a) q1 is negative and the charge of the bar is positive therefore the force is attractive
b) For this exercise we use Coulomb's law, where we assume a card dQ₂ at a distance x
dF = [tex]k \frac{Q_1 \ dQ_2}{dx}[/tex]
where k is a constant, Q₁ the charge at the origin, x the distance
c) To find the total force we must integrate from the beginning of the bar at x = d to the end point of the bar x = d + L
∫ dF = [tex]k \ Q_1 \int\limits^{d+L}_d {\frac{1}{x^2} } \, dQ_2[/tex]
as they indicate that the load on the bar is uniformly distributed, we use the concept of linear density
λ = dQ₂ / dx
DQ₂ = λ dx
we substitute
F = [tex]k \ Q_1 \lambda \int\limits^{d+L}_d \, \frac{dx}{x^2}[/tex]
F = k Q1 λ ([tex]-\frac{1}{x}[/tex])
we evaluate the integral
F = k Q₁ λ [tex](- \frac{1}{d+L} + \frac{1}{d} )[/tex]
F = k Q₁ λ [tex]( \frac{L}{d \ (d+L)})[/tex]
we change the linear density by its value
λ = Q2 / L
F = [tex]k Q_1 \frac{Q_2}{d \ (d+L)}[/tex]
d) we calculate the magnitude of F
F =9 10⁹ (-4.2 10⁻⁶) [tex]\frac{10.4 10x^{-6} }{0.45 ( 0.45 +0.35)}[/tex]
F = -1.09 N
the sign indicates that the force is attractive
Answer:
a)Toward the rod
b)|dF| = k|Q1|Q2(dx/L)/x^2
c)|F| = k|Q1|Q2/(d(d+L))
d)Plug in for answer c and solve
Explanation:
A)
Q1 is negative and Q2 is positive so it is an attractive force to where the rod is located.
B)
The formula for Force due to electric charges is F=kQ1Q2/r^2
In this case, Q2 is distrusted through the length of the rod as opposed to a single point charge. As such Q2 is actually Q2*dx/L as dx is a small portion of the full length, L.
The radius between Q1 and Q2 depends on the section of the rod taken so r will be the variable x distance from Q1.
The force is only from a small portion of the rod so more accurately, we are finding |dF| as opposed to the full force, F, caused by the whole rod.
The final formula is |dF| = k|Q1|Q2(dx/L)/x^2
C)
Integrating with respect to the only changing variable, x, which spans the length of the rod, from radius = d to d+L we get this:
F = integral from d to d+L of k|Q1|Q2(dx/L)/x^2
factor out constants
F = kQ1Q2/L * integral d to d+L(1/x^2)dx
F = kQ1Q2/L * (-1/x)| from d to d+L
F = kQ1Q2/L * (-1/d+L - -1/d)
F = kQ1Q2/L * (-d/(d(d+L)) + (d+L)/(d(d+L))
F = kQ1Q2/L * (L)/(d(d+L))
F = kQ1Q2/(d(d+L))
D)
Plug in the given values into c and you have your answer.
what is the relationship between net impulse and change in momentum?
Answer:
impulse equals the average net external force multiplied by the time this force acts. It is equal to the change in momentum.
Explanation:
Suppose one Sherpa uses a force of 980 N to move a load of equipment to a height of 20 meters in 25 seconds. How much power is used?
F = 980 N
h = 20 m
t = 25 s
P=? (power)
W=F*h (work)
P=W*t
P=F*h*t
P=980*20*25 =490000 W = 490 kW = 0.49 MW