An ideal gas expands quasi-statically and isothermally from a state with pressurepand volumeVto a state with volume 4V. How much heat is added to the expanding gas?

Answers

Answer 1

Answer:

Q = PV(In 4)

Explanation:

We are told that the volume expands from V to a state with volume 4V.

Thus, initial volume is V and Final volume is 4V.

We want to find How much heat is added to the expanding gas.

For an isothermal process, the work done is calculated from;

W = nRT(In(V_f/V_i))

Where;

V_f is final volume

V_i is initial volume

Thus;

W = nRT(In(4V/V))

W = nRT(In 4)

Now, from ideal gas equation, we know that;

PV = nRT

Thus;

W = PV(In 4)

Now from first law of thermodynamics, we know that internal energy is zero and thus; Q = W

Where Q is quantity of heat

Thus;

Q = PV(In 4)


Related Questions

A plane is flying due west at 34 m/s. It encounters a wind blowing at 19 m/s south. Find the resultant veloci

Answers

Answer:

The resultant velocity has a magnitude of 38.95 m/s

Explanation:

Vector Addition

Given two vectors defined as:

[tex]\vec v_1=(x_1,y_1)[/tex]

[tex]\vec v_2=(x_2,y_2)[/tex]

The sum of the vectors is:

[tex]\vec v=(x_1+x_2,y_1+y_2)[/tex]

The magnitude of a vector can be calculated by

[tex]d=\sqrt{x^2+y^2}[/tex]

Where x and y are the rectangular components of the vector.

We have a plane flying due west at 34 m/s. Its velocity vector is:

[tex]\vec v_1=(-34,0)[/tex]

The wind blows at 19 m/s south, thus:

[tex]\vec v_2=(0,-19)[/tex]

The sum of both velocities gives the resultant velocity:

[tex]\vec v =(-34,-19)[/tex]

The magnitude of this velocity is:

[tex]d=\sqrt{(-34)^2+(-19)^2}[/tex]

[tex]d=\sqrt{1156+361}=\sqrt{1517}[/tex]

d = 38.95 m/s

The resultant velocity has a magnitude of 38.95 m/s

A jet airplane with a 75.0 m wingspan is flying at 260 m/s. What emf is induced between the wing tips in V if the vertical component of the Earth’s magnetic field is 3.00 × 10-5 T?

Answers

Answer:

0.585V

Explanation:

Given that:

B = 3.00 × 10-5 T

l = 75.0 m

v = 260 m/s

From Blv = emf between the wing tips

= 3.00 × 10-5 T × 75×260

= 117/200

= 0.585V

Hence, the emf between the wing tips is 0.585V

A rolling ball moves from x1 = 8.0 cm to x2 = -4.1 cm during the time from t1 = 2.9 s to t2 = 6.0 s .

Answers

Complete Question

A rolling ball moves from [tex]x_1 = 8.0 \ cm[/tex] to [tex]x_2 = - 4.1 \ cm[/tex] during the time from [tex]t_1 = 2.9 s[/tex]  to  [tex]t_2 = 6.0s[/tex]

What is its average velocity over this time interval?

Answer:

The velocity is  [tex]v = 3.903 \ m/s[/tex]

Explanation:

From the question we are told that

    The first position of the ball is  [tex]x_1 = 8.0 \ cm[/tex]

    The second position of the ball is  [tex]x_2 = - 4.1 \ cm[/tex]

Generally the average velocity is mathematically represented as

       [tex]v = \frac{ x_1 - x_2}{t_2 - t_1}[/tex]

=>    [tex]v = \frac{ 8 - -4.1 }{ 6 - 2.9 }[/tex]

=>    [tex]v = 3.903 \ m/s[/tex]

What would happen if there is more male hyenas than female hyenas in a population?



Choices:
Male hyenas will compete to mate with the females.

Some male hyenas will die.

Male hyenas for wait for more females to join the population.

Answers

A. Because that’s how the wild works.

Answer:

Option 1

Explanation:

I always see animals do that

Acceleration is sometimes expressed in multiples of g, where g = 9.8 m/s^2 is the magnitude of the acceleration due to the earth's gravity. In a test crash, a car's velocity goes from 26 m/s to 0 m/s in 0.15 s. How many g's would be experienced by a driver under the same conditions?

Answers

Answer:

Acceleration = 18g

Explanation:

Given the following data;

Initial velocity, u = 26m/s

Final velocity, v = 0

Time = 0.15 secs

To find the acceleration;

In physics, acceleration can be defined as the rate of change of the velocity of an object with respect to time.

This simply means that, acceleration is given by the subtraction of initial velocity from the final velocity all over time.

Hence, if we subtract the initial velocity from the final velocity and divide that by the time, we can calculate an object’s acceleration.

Mathematically, acceleration is given by the equation;

[tex]Acceleration (a) = \frac{final \; velocity - initial \; velocity}{time}[/tex]

Substituting into the equation, we have;

[tex]a = \frac{0 - 26}{0.15}[/tex]

[tex]a = \frac{26}{0.15}[/tex]

Acceleration = 173.33m/s2

To express it in magnitude of g;

Acceleration = 173.33/9.8

Acceleration = 17.7 ≈ 18g

Acceleration = 18g

How much work is done by the gravitational force on the block?

Answers

Answer:

Work = Mass * Gravity * Height and is measured in Joules. Imagine you find a 2 -Kg book on the floor and lift it 0.75 meters and put it on a table. Remember, that “force” is simply a push or a pull. If you lift 100 kg of mass 1-meter, you will have done 980 Joules of work.

Explanation:

True or false. when objects collide , some momentum is lost

Answers

Answer:

It is neither false nor true. When they collide some of one of the objects goes to the other object.

Explanation:

Answer: True

Explanation:

What is magnet made of

Answers

Answer:

metals like iron or nickel

Explanation:

In the winter sport of curling, players give a 20 kg stone a push across a sheet of ice. The Slone moves approximately 40 m before coming to rest. The final position of the stone, in principle, onlyndepends on the initial speed at which it is launched and the force of friction between the ice and the stone, but team members can use brooms to sweep the ice in front of the stone to adjust its speed and trajectory a bit; they must do this without touching the stone. Judicious sweeping can lengthen the travel of the stone by 3 m.1. A curler pushes a stone to a speed of 3.0 m/s over a time of 2.0 s. Ignoring the force of friction, how much force must the curler apply to the stone to bring it op to speed?A. 3.0 NB. 15 NC. 30 N
D. 150 N2The sweepers in a curling competition adjust the trajectory of the slope byA. Decreasing the coefficient of friction between the stone and the ice.
B. Increasing the coefficient of friction between the stone and the ice.C. Changing friction from kinetic to static.D. Changing friction from static to kinetic.3. Suppose the stone is launched with a speed of 3 m/s and travel s 40 m before coming to rest. What is the approximate magnitude of the friction force on the stone?A. 0 NB. 2 NC. 20 ND. 200 N4. Suppose the stone's mass is increased to 40 kg, but it is launched at the same 3 m/s. Which one of the following is true?A. The stone would now travel a longer distance before coming to rest.B. The stone would now travel a shorter distance before coming to rest.C. The coefficient of friction would now be greater.D. The force of friction would now be greater.

Answers

Answer:82. Since you have a distance and a force, then the easiest principle to use is energy, i.e. work.

The work done by friction is F * d. This work cancels out the kinetic energy of the stone (1/2)mv^2

Fd = (1/2)mv^2

F = (1/2)mv^2/d.

Plug in m = 20 kg, v = 3 m/sec, d = 40 m.

83. With more mass, the kinetic energy is higher now. The work needed is higher. W = F * d and F is the same.

Explanation:Hope I helped :)

A racecar accelerates from rest at 6.5 m/s2 for 4.1 s. How fast will it be going at the end of that time?

Answers

Answer:

The final velocity of the car is 26.65 m/s.

Explanation:

Given;

acceleration of the racecar, a = 6.5 m/s²

initial velocity of the car, u = 0

time of motion, t = 4.1 s

The final velocity of the car is given by;

v = u + at

where;

v is the final velocity of the car

suvstitute the givens

v = 0 + (6.5)(4.1)

v = 26.65 m/s.

Therefore, the final velocity of the car is 26.65 m/s.

. A car going initially with a velocity 15 m/s accelerates at a rate of 2 m/s2 for 10 seconds. It then accelerates at a rate of -1.5 m/s until stop. Find the car’s maximum speed. Calculate the total distance traveled by the car.

Answers

Answer:

The maximum speed of the car is 35 m/s

The total distance traveled by the car is 658.33 m

Explanation:

Given;

initial velocity of the car, u = 15 m/s

acceleration of the car, a = 2 m/s²

time of car motion, t = 10 s

(i)

Initial distance traveled by the car is given by;

d₁ = ut + ¹/₂at²

d₁ = (15 x 10) + ¹/₂(2)(10)²

d₁ = 150 + 100

d₁ = 250 m

The maximum speed of the car during this is given by;

v² = u² + 2ad₁

v² = (15)² + (2 x 2 x 250)

v² = 1225

v = √1225

v = 35 m/s

(ii)

The final distance cover by the car during the deceleration of 1.5 m/s².

Note: the final or maximum speed of the car becomes the initial velocity during deceleration.

v² = u² + 2ad₂

where;

v is the final speed of the car when it stops = 0

0 = u² + 2ad₂

0 = (35²) + (2 x - 1.5 x d₂)

0 = 1225 - 3d₂

3d₂ = 1225

d₂ = 1225 / 3

d₂ = 408.33 m

The total distance traveled by the car is given by;

d = d₁ + d₂

d = 250 m + 408.33 m

d = 658.33 m

A plane is heading due west and climbing at the rate of 80 km/hr. If its airspeed is 540 km/hr and there is a wind blowing 80 km/hr to the northwest, what is the ground speed of the plane?

Answers

Answer:

599.245km/hr

Explanation:

A plane is heading due west and climbing at the rate of 80 km/hr. If its airspeed is 540 km/hr and there is a wind blowing 80 km/hr to the northwest, what is the ground speed of the plane?

We solve the above question using vectors

In vector form Air speed is -540i + 0j Wind speed is (-80/√2)i + (80/√2)j

Vector notation wind speed is given as: -56.5685 i + 56.5685j

The vector for the ground speed of the plane =

-540i + 0j -56.5685i + 56.5685j

= -596.56854249i + 56.5685j

The the ground speed of the plane √[(596.56854249)² + (56.5685)²]

= √359094.021081 km/hr

= 599.24454197 km/hr

Approximately

= 599.245km/hr

Need help ASAP..please help

Answers

Answer:

option 3

Explanation:

can i get brainliest

A household refrigerator consumes electrical energy at the rate of 200 W. lf electricity costs 5 k per kWh, calculate the cost of operating the appliance for 30 days

Answers

Answer:

= 720000 [k]

Explanation:

The cost is equal to 5 [$/kW-h], kilowatt per hour, this value should be multiplied by the power, and then by the time.

[tex]5[\frac{k}{kw*h}]*200[w]*30[day]*24[\frac{h}{day} ][/tex]

= 720000 [k]

A plane mirror is placed to the right of an object. The image formed by the mirror will be a
real image that appears to be on the right of the mirror.
real image that appears to be on the left of the mirror.
virtual image that appears to be on the right of the mirror.
virtual image that appears to be on the left of the mirror.




Hamish is studying what happens when he sends a sound wave through different mediums, and he records his data in a table.
A 2-column table with 4 rows titled Hamish's Waves. The first column labeled Wave has entries 1, 2, 3, 4. The second column labeled Information has entries liquid, solid, gas, liquid.

Which statement could made about the data collected in Hamish’s table?
Wave 1 will move the fastest.
Wave 2 will move the slowest.
Wave 3 will move the slowest.
Wave 4 will move the fastest.



What is common between transverse waves and longitudinal waves?
Both include an amplitude, crest, and rarefactions
Both move faster at higher temperatures
Both move slower through densely packed molecules
Both include a wavelength from compression to compression



An angle of refraction is the angle between the refracted ray and the
incident ray.
normal.
medium.
boundary.

Answers

Answer:

A plane mirror is placed to the right of an object. The image formed by the mirror will be a virtual image that appears to be on the left of the mirror.

Explanation:

Real time that appears to be on the right if the mirror

In principle, when you fire a rifle, the recoil should push you backward. How big a push will it give? Let's find out by doing a calculation in a very artificial situation. Suppose a man standing on frictionless ice fires a rifle horizontally. The mass of the man together with the rifle is 70 kg, and the mass of the bullet is 10 g. If the bullet leaves the muzzle at a speed of 500 m/s, what is the final speed of the man?

Answers

Answer:

Explanation:

m1v1=m2v2

m1=70 kg

m2=10 g=0.01 kg

v2=500 m/s

m1v1=m2v2

v1=m2v2/m1

v1=0.01*500/70

v1=0.07

When particles get close to the surface, they interact with atoms in
the
(Finish the sentence)

Answers

Is there anything else in the page I think it’s missing a part

A car moves forward up a hill at 12 m/s with a uniform backward acceleration of 1.6 m/s2. What is its displacement after 6 s?

Answers

Answer:

The displacement of the car after 6s is 43.2 m

Explanation:

Given;

velocity of the car, v = 12 m/s

acceleration of the car, a = -1.6 m/s² (backward acceleration)

time of motion, t = 6 s

The displacement of the car after 6s is given by the following kinematic equation;

d = ut + ¹/₂at²

d = (12 x 6) + ¹/₂(-1.6)(6)²

d = 72 - 28.8

d = 43.2 m

Therefore, the displacement of the car after 6s is 43.2 m

Power is the rate at which work is done true or false

Answers

Answer:

false

Explanation:

When a potential difference of 10 V is placed across a certain solid cylindrical resistor, the current through it is 2 A. If the diameter of this resistor is now tripled, the current will be:______.A) 18 A.
B) 2/3 A.
C) 3 A.
D) 2/9 A.
E) 2 A.

Answers

Answer:

sorry I wish I could it help you

A 715 kg car stopped at an intersection is rear-ended by a 1490 kg truck moving with a speed of 12.5 m/s. If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of both vehicles after the collision.

Answers

Answer:

The final velocity of the car is 16.893 m/s

The final velocity of the truck is 4.393 m/s

Explanation:

Given;

mass of the car, m₁ = 715 kg

mass of the truck, m₂ = 1490 kg

initial velocity of the car, u₁ = 0

initial velocity of the truck, u₂ = 12.5 m/s

let the final velocity of the car, = v₁

let the final velocity of the truck, = v₂

Apply the principle of conservation of linear momentum for elastic collision;

m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂

(715 x 0) + (1490 x 12.5) = 715v₁ + 1490v₂

18625 = 715v₁ + 1490v₂ -----equation (1)

Apply one-directional velocity formula;

u₁ + v₁ = u₂ + v₂

0 + v₁ = 12.5 + v₂

v₁ = 12.5 + v₂

Substitute v₁ into equation (1)

18625 = 715(12.5 + v₂) + 1490v₂

18625 =8937.5 + 715v₂ + 1490v₂

18625 - 8937.5 = 715v₂ + 1490v₂

9687.5 = 2205v₂

v₂ = 9687.5 / 2205

v₂ = 4.393 m/s

solve for v₁

v₁ = 12.5 + v₂

v₁ =  12.5 + 4.393

v₁ = 16.893 m/s

A 5.3 kg block rests on a level surface. The coefficient of static friction is μ_s=0.67, and the coefficient of kinetic friction is μ_k= 0.48 A horizontal force, x is applied to the block. As x is increased, the block begins moving. Describe how the force of friction changes as x increases from the moment the block is at rest to when it begins moving. Show how you determined the force of friction at each of these times ― before the block starts moving, at the point it starts moving, and after it is moving. Show your work.

Answers

As the pushing force x increases, it would be opposed by the static frictional force. As x passes a certain threshold and overcomes the maximum static friction, the block will start moving and will require a smaller magnitude x to maintain opposition to the kinetic friction and keep the block moving at a constant speed. If x stays at the magnitude required to overcome static friction, the net force applied to the block will cause it to accelerate in the same direction.

Let w denote the weight of the block, n the magnitude of the normal force, x the magnitude of the pushing force, and f the magnitude of the frictional force.

The block is initially at rest, so the net force on the box in the horizontal and vertical directions is 0:

n + (-w) = 0

n = w = m g = (5.3 kg) (9.80 m/s²) = 51.94 N

The frictional force is proportional to the normal force, so that f = µ n where µ is the coefficient of static or kinetic friction. Before the block starts moving, the maximum static frictional force will be

f = 0.67 (51.94 N) ≈ 35 N

so for 0 < x < 35 N, the block remains at rest and 0 < f < 35 N as well.

The block starts moving as soon as x = 35 N, at which point f = 35 N.

At any point after the block starts moving, we have

f = 0.48 (51.94 N) ≈ 25 N

so that x = 25 N is the required force to keep the block moving at a constant speed.

As x  is increasing it will be opposed by a static frictional force and for the object to start moving and maintain its acceleration, the magnitude of x must exceed the magnitude of the static frictional force and kinetic frictional force

Magnitude of normal force ( object at rest );  n = 51.94 N Required magnitude of x before the movement of object ; x = 35 NMagnitude of x  after object start moving   x = 25 N

Given data :

mass of block at rest ( m ) = 5.3 kg

Coefficient of static friction ( μ_s ) =0.67

Coefficient of kinetic friction is ( μ_k ) = 0.48

Horizontal force applied to block = x  

First step : magnitude of normal force ( n ) when object is at rest

n = w            where w = m*g

n - w = 0

n - ( 5.3 * 9.81 ) = 0     ∴  n = 51.94 N

Second step : Required magnitude of x before the movement of object

F =  μ_s * n

F = 0.67 * 51.94  = 34.79 N  ≈ 35 N

∴ The object will start moving once F and x = 35 N

Final step : Magnitude of x  after object start moving

F = μ_k  * n

  = 0.48 * 51.94 = 24.93 N  ≈ 25 N

∴ object will continue to accelerate at a constant speed once F and x = 25N

Learn more : https://brainly.com/question/21444366

A radio wave transmits 38.5 W/m2 of power per unit area. A flat surface of area A is perpendicular to the direction of propagation of the wave. Assuming the surface is a perfect absorber, calculate the radiation pressure on it.

Answers

Answer:

[tex]P=2.57\times 10^{-7}\ N/m^2[/tex]

Explanation:

Given that,

A radio wave transmits 38.5 W/m² of power per unit area.

A flat surface of area A is perpendicular to the direction of propagation of the wave.

We need to find the radiation pressure on it. It is given by the formula as follows :

[tex]P=\dfrac{2I}{c}[/tex]

Where

c is speed of light

Putting all the values, we get :

[tex]P=\dfrac{2\times 38.5}{3\times 10^8}\\\\=2.57\times 10^{-7}\ N/m^2[/tex]

So, the radiation pressure is [tex]2.57\times 10^{-7}\ N/m^2[/tex].

How many significant figures are in 0.0067?

Answers

Answer:

2

Explanation:

there are 2 significant figures in there

An object with a mass of 3.0 kg has a
force of 9.0 newtons applied to it. What
is the resulting acceleration of the
object?

Answers

[tex] \LARGE{ \underline{ \tt{Required \: answer:}}}[/tex]

We have:

Mass of the object = 3 kgForce on the object = 9 N

We need to find:

Resulting accleration of the object?

Solution:

According to Newton's 2nd law of motion, or quantitative measure of Force:

Force = Mass × Accleration

Using this,

➝ F = ma

➝ 9N = 3 kg × a

➝ a = 9/3 m/s²

➝ a = 3 m/s²

Hence,

The resulting accleration of the object is 3 m/s². And we are done! :D

⛱️ [tex] \large{ \blue{ \bf{FadedElla}}}[/tex]

If mass (3.0 kg) multiplying (*) acceleration gives you force (newtons), force dividing mass gives you acceleration; 9/3 =


3 m/s^2

If the particles were moving with a speed much less than c, the magnitude of the momentum of the second particle would be twice that of the first. However, what is the ratio of the magnitudes of momentum for these relativistic particles?

Answers

Answer:

p₂ / p₁ = 2 (v₁ / v₂)

Explanation:

The moment is a very useful concept, since it is one of the quantities that is conserved during shocks and explosions, for which it had to be redefined to be consistent with special relativity,

         p = m v / √[1+ (v/c)² ]

for the case of speeds much lower than the speed of light this expression is close to

         p = m v

 

In this exercise they indicate that the moment of the second particle is twice the moment of the first, when their velocities are small

        p₂ = 2 p₁

       p₂/p₁ = 2

in consecuense

       m v₂ = 2 m v₁

       v₂ = 2 v₁

consider particles of equal mass.

By the time their speeds increase they enter the relativistic regime

        p₂ = mv₂ /√(1 + v₂² /c²)

        p₁ = m v₁ /√(1 + v₁² / c²)

let's look for the relationship between these two moments

       p₂ / p₁ = mv₂ / mv₁   [√ (1+ v₁² / c²) /√ (1 + v₂² / c²)

       

from the initial statement

      p₂ / p₁ = 2 √(c² + v₁²) / (c² + v₂²)

we take c from the root

      p₂ / p₁ = 2 √ [(1+ v₁²) / (1 + v₂²)]

this is the exact result, to have an approximate shape suppose that the velocities are much greater than 1

      p₂ / p₁ = 2 √ [v₁² / v₂²] = 2 √ [(v₁ / v₂)²]

      p₂ / p₁ = 2 (v₁ / v₂)

we see the value of the moment depends on the speed of the particles

How should the magnetic field lines be drawn for the magnets shown below?​

Answers

Answer:

Magnetic field lines can be drawn by moving a small compass from point to point around a magnet. At each point, draw a short line in the direction of the compass needle.When opposite poles of two magnets are brought together, the magnetic field lines join together and become denser between the poles.

Explanation:

True or False when an object speeds up it gains momentum

Answers

Yes ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

Answer: True

Explanation:

A car’s brakes decelerate it at a rate of -2.40 m/s2. If the car is originally travelling at 13 m/s and comes to a stop, then how far, in meters, will the car travel during that time?

Answers

Answer:

Approximately [tex]35.2\; \rm m[/tex].

Explanation:

Given:

Initial velocity: [tex]u = 13\; \rm m \cdot s^{-1}[/tex].

Acceleration: [tex]a = -2.40\; \rm m \cdot s^{-2}[/tex] (negative because the car is slowing down.)

Implied:

Final velocity: [tex]v = 0\; \rm m \cdot s^{-1}[/tex] (because the car would come to a stop.)

Required:

Displacement, [tex]x[/tex].

Not required:

Time taken, [tex]t[/tex].

Because the time taken for this car to come to a full stop is not required, apply the SUVAT equation that does not involve time:

[tex]\begin{aligned} x &= \frac{v^2 - u^2}{2\, a} \\ &= \frac{{\left(0\; \rm m \cdot s^{-1}\right)}^2 - {\left(13\; \rm m \cdot s^{-1}\right)}^2}{2\times \left(-2.40\; \rm m\cdot s^{-2}\right)} \approx 35.2\; \rm m \end{aligned}[/tex].

In other words, this car would travel approximately [tex]35.2\; \rm m[/tex] before coming to a stop.

A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. How far away is the cliff? The speed of sound in air a ordinary temperature is 343 m/s.

Answers

Answer:

480.2 m

Explanation:

The following data were obtained from the question:

Speed of sound (v) = 343 m/s.

Time (t) = 2.8 s

Distance (x) of the cliff =?

The distance of the cliff from the woman can be obtained as follow:

v = 2x /t

343 = 2x /2.8

Cross multiply

2x = 343 × 2.8

2x = 960.4

Divide both side by the coefficient of x i.e 2

x = 960.4/2

x = 480.2 m

Therefore, the cliff is 480.2 m away from the woman.

The distance should be 480.2 m

The calculation is as follows:

Since A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. And, there is the velocity of 343 m/s

[tex]v = 2x \div t\\\\343 = 2x \div 2.8\\\\2x = 343 \times 2.8[/tex]

2x = 960.4

x = 480.2 m

Learn more: https://brainly.com/question/1504221?referrer=searchResults

Other Questions
PLEASE HELP ME IM REALLY REALLY BAD AT SPANISH THE FIRST CORRECT ANSWER WILL GET BRAINLIESTllena el espacio con la mejer opicion(your-formal)_______ lapiz rojo What does Nanjing mean?northern capitalsouthern capitalthree ovenssouthern ovens Which number line correctly shows 0.8 + 0.3? Mario y yo bailamos al _________ de la msica rock. clave giro instrumento ritmo You serve a tennis ball of mass 60g at a speed of 50 m/s, what is the impulse exerted on the ball? ( ball starts from rest ) The classroom has 12 9/10 meters of tape in one area of the building, and 8 3/5 meters of tape in another part. How much tape does the classroom have in all The Dead Sea is _____ times saltier than the worlds oceans.A.threeB.sixC.nineD.twelve A bus traveled on a level road for 2 hours at an average speed 20 miles per hour faster than it traveled on a winding road. The time spent on the winding road was 4 hours. Find the average speed on level road of the entire trip was 310 miles How does colonization still affect us today?ASAP PLEASE.... ALSO WRITE IN YOUR OWN WORDS!I GOT TEST PLEASE FAST 6. Explain why 4 tens is greater than 4 tenths. (2 marks) please help , giving brainliest and a thanks!! HELP ME PLZZ I NEED HELP WITH THIS!! Question: In Boston, Massachusetts, there is a 60% probability of rain on a specific day. How was this probability most likely determined? Options: A. On this day each year, it rains 60% of the time.B. On days with similar conditions as this day, it has rained 60% of the time in Massachusetts.C. During this month, it rains 60% of the days.D. On days with similar conditions as this day, it has rained 60% of the time in Boston, MassachusettsE. The probability was determined randomly. Dan frequently organizes meetings and would like to automate the handling of the meeting responses. What should hedo to automatically move those responses into a subfolder?O Configure an automatic reply.O Configure the default meeting request options.O Configure a Meeting Response Rule.O Nothing, Dan must respond individually. Objects are often given symbolic meaning. write three words that the picture might symbolize in the text box. The floor of a room is 12m long and 7.5m broad i) Find the area of the floor ii) Find the cost of carpeting the floor at rs 80 per sq.m (Unitary method) Mrs. Billings has at most $60 to spend on the clothes. She wants to buy a pair of jeans for $22 and spend the rest on t-shirts. Each t-shirt cost $8. Write an inequality that could be used to find x, the number of t-shirts Mrs. Billings can buy. *20 points6022x-822x+86022-8x6022+8x60 What is the most valuable commodity in the Middle East and which organization took control of its supply in 1960?A: Gold and NAFTAB: Oil and OPECC: Diamonds and OPECD: Oil and NAFTA Help me please I need help kaede's grades for math in first term are 70,80,60,90,100 . what is his average plz help me and thank u