Answer:
41.02m
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 96km/hr
Time taken = 3.07s
Unknown:
Distance traveled by the time the final speed was achieved = ?
Solution:
To solve this problem, we first find the acceleration of the car;
Acceleration = [tex]\frac{v - u }{t}[/tex]
v is the final velocity
u is the initial velocity
t is the time taken
Now convert the the final velocity to m/s;
96km/hr to m/s;
1 km/hr = 0.278m/s
96km/hr = 96 x 0.278 = 26.7m/s
Now;
Acceleration = [tex]\frac{26.7 - 0}{3.07}[/tex] = 8.69m/s²
So;
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
26.7² = 0² + 2 x 8.69 x s
712.89 = 17.38s
s = 41.02m
The least count of stopwatch is 0.2s.The time of 20 oscillations of a pendulum was measured to be 25s.Find the percentage error in the measurement of time
Answer:
0.8%
Explanation:
We are given;
Number of oscillations; n = 20
Time taken; t = 25 s
Formula for period of oscillation;
T = t/n = 25/20 = 1.25 s
We are told that the least count is 0.2 s. Thus, error is; ΔT = 0.2 s
percentage error in the measurement of time is given by;
(0.2/(20 × 1.25)) × 100% = 0.8%
14. After finishing her homework, Sue climbs up a 5.00 m high flight of stairs to her bedroom
Find the magnitude of Sue's weight
and how much
work Sue does in climbing the stairs if she
has a mass of 50.0 kg? (4.90 x 2 N, 2450J)
Explanation:
Given parameters:
Height = 5m
Mass of Sue = 50kg
Unknown:
Magnitude of Sue's weight = ?
Work done by Sue = ?
Solution:
Weight is the vertical force exerted by a body in the presence of gravity.
Mathematically;
W = mg
m is the mass
g is the acceleration due to gravity = 9.8m/s²
Weight = 50 x 9.8 = 490N
Work done = Force x distance = weight x height
Work done = 490 x 5 = 2450J
A(n) 636 kg elevator starts from rest. It moves upward for 4.5 s with a constant acceleration until it reaches its cruising speed of 2.05 m/s. The acceleration of gravity is 9.8 m/s 2 . Find the average power delivered by the elevator motor during this period. Answer in units of kW.
Answer:
The average power delivered by the elevator motor during this period is 6.686 kW.
Explanation:
Given;
mass of the elevator, m = 636 kg
initial speed of the elevator, u = 0
time of motion, t = 4.5 s
final speed of the elevator, v = 2.05 m/s
The upward force of the elevator is calculated as;
F = m(a + g)
where;
m is mass of the elevator
a is the constant acceleration of the elevator
g is acceleration due to gravity = 9.8 m/s²
[tex]a = \frac{v-u}{t} \\\\a = \frac{2.05 -0}{4.5} \\\\a = 0.456 \ m/s^2[/tex]
F = (636)(0.456 + 9.8)
F = (636)(10.256)
F = 6522.816 N
The average power delivered by the elevator is calculated as;
[tex]P_{avg} = \frac{1}{2} (Fv)\\\\P_{avg} = \frac{1}{2} (6522.816 \ \times \ 2.05)\\\\P_{avg} = 6685.89 \ W\\\\P_{avg} = 6.68589 \ kW\\\\P_{avg} = 6.686 \ k W[/tex]
Therefore, the average power delivered by the elevator motor during this period is 6.686 kW.
Help! Help!
___ are a primary way to discourage drinking and driving.
A. High prices for alcohol
B. Scare tactics
C. Laws
Answer:
Laws
Explanation:
Laws are a primary way discourage drinking and driving
A primary way to discourage drinking and driving is Law.
What is drinking and driving?The person who takes in alcohol and then drives on the road. This is strictly prohibited.
Laws against the 'drinking and driving' will make people get scared of getting charged or sentenced to jail for some years. Lot of accidents have caused when there were no laws against the action.
Thus, Laws are a primary way to discourage drinking and driving.
Learn more about drinking and driving.
https://brainly.com/question/11317786
#SPJ2