Answer: B. Mechanical Waves
Explanation:
someone please help with this
Answer:
The new force is 2/3 of the original force
Explanation:
Coulomb's Law
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:
[tex]\displaystyle F=k\frac{q_1q_2}{d^2}[/tex]
Where:
[tex]k=9\cdot 10^9\ N.m^2/c^2[/tex]
q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:
[tex]\displaystyle F'=k\frac{2q_1*q_2/3}{d^2}[/tex]
Factoring out 2/3:
[tex]\displaystyle F'=\frac{2}{3}k\frac{q_1*q_2}{d^2}[/tex]
Substituting the original force:
[tex]F'=\frac{2}{3}F[/tex]
The new force is 2/3 of the original force
Compounds are made from the atoms of two or more______?
Answer:
elements
not really an explanation
Henry designs an experiment to find out why plants without flowers tend to be wind-pollinated and not animal-pollinated. He takes samples from a variety of plants and studies them in the field. He finds that the evidence supports his hypothesis. Which of these was the hypothesis Henry was testing? Choose the correct answer. Nonflowering plants make less pollen than flowering plants. Nonflowering plants lack the structures to attract animal pollinators. Nonflowering plants grow close to the ground and capture fewer pollinators. Nonflowering plants grow close to the ground because they have no pollen grains.
Answer:
option 2
Explanation:
you are very welcom
A wheel of mass 50 kg has a radius of 0.4 m. It is making 480 rpm. What is the
torque necessary to bring it to rest in 40 seconds?
Solution:
Answer:
The torque necessary to bring the wheel to rest in 40 seconds is 10.4 N·m
Explanation:
The question is with regards to rotational motion
The rotary motion parameters are;
The mass of the wheel = 50 kg
The radius of the wheel = 0.4 m
The rate of rotation of the wheel = 480 rpm
The time in which the wheel is to be brought to rest = 40 s
The rotational rate of the wheel in rotation per second is given as follows;
480 r.p.m = 480 r.p.m × 1 minute/(60 seconds) = 8 revolution/second
1 revolution = 2·π radians
Therefore, we have the angular velocity, ω, given as follows;
ω = 2·π × 8 revolutions/second ≈ 50.3 rad/s
The angular acceleration, α, is given as follows;
[tex]\alpha = \dfrac{\Delta \omega}{\Delta t} = \dfrac{\omega _2 - \omega_1}{t_2 - t_1}[/tex]
Whereby the wheel is brought to rest from its initially constant rotational motion in 40 seconds, we have;
ω₁ ≈ 50.3 rad/s, ω₂ = 0 rad/s, and t₂ - t₁ = 40 seconds
Plugging in the values for the variables of the equation for the angular acceleration, "α", we get;
[tex]\alpha = \dfrac{0 - 50.3 \ rad/s}{40 \ s} \approx 1.3 \ rad/s^2[/tex]
The torque on the wheel, τ, is given as follows;
τ = m·r²·α
Where;
m = The mass of the object = 50 kg
r = The radius of the wheel = 0.4 m
α = The acceleration of the wheel ≈ 1.3 rad/s²
Therefore;
τ = 50 kg × (0.4 m)² × 1.3 rad/s² ≈ 10.4 N·m
The torque necessary to bring the wheel to rest in 40 seconds = τ ≈ 10.4 N·m.
Answer:
-10.048 N m
Explanation:
[04.04] Which best describes the current atomic theory?
You blow up a balloon but don't tie it. When you let it go, it flies around the room.
Which of Newton's Laws does the scenario describe?
1st Law
2nd Law
3rd Law
Answer:
3rd law beacuse there a flies