A toy rocket is shot vertically into the air from a launching pad 5 feet above the ground with an initial velocity of 32 feet
per second. The height h, in feet, of the rocket above the ground at t seconds after launch is given by the function
h(t)=1612 +32t+5. How long will it take the rocket to reach its maximum height? What is the maximum height?

Answers

Answer 1
You have to find the vertex.

Find X of the vertex by using -b/2a

Then take X and plug back into equation for y.

X= time
Y= height

Equation makes a parabola that opens down.

Related Questions

Which of the following shows the division problem down below

Answers

Question:

Solution:

Synthetic division is a quick method of dividing polynomials; it can be used when the divisor is of the form x-c. In synthetic division, we write only the essential parts of the long division. Notice that the long division of the given problem is written as:

thus, the synthetic division of the given problem would be:

Writing 6 instead of -6 allows us to add instead of subtracting. We can conclude that the correct answer is:

A.

Ingrid is preparing a budget. She is first calculating her income. She makes $2,000 a month as a tutor, but she is going to school to become a lawyer who will eventually make close to $10,000 a month. What is the BEST thing for Ingrid to do to prepare an accurate budget?A. She should use the difference between both incomes--$8,000.B. She should average both incomes and use $6,000.C. She should use her future income of $10,000.D. She should use her current income of $2,000.

Answers

Given:

Ingrid is preparing a budget. She is first calculating her income.

She makes $2,000 a month as a tutor.

And she is going to school to become a lawyer.

Eventually, she will make close to $10,000 a month

So, the best thing is to calculate her earnings when she becomes a lawyer.

So, the answer will be option A

She should use the difference between both incomes--$8,000.

The confidence interval on estimating the heights of students is given as (5.4, 6.8). Find the sample mean of the confidence interval. A.6.8B.6.1C. 5.4D. 0.7

Answers

Solution

- The formula for finding the sample mean from the confidence interval is given below

[tex]\begin{gathered} \text{Given the Confidence interval,} \\ (A_1,A_2) \\ \\ \therefore\operatorname{mean}=\frac{A_1+A_2}{2} \end{gathered}[/tex]

- Thus, we can find the sample means as follows

[tex]\begin{gathered} A_1=5.4 \\ A_2=6.8 \\ \\ \therefore\operatorname{mean}=\frac{5.4+6.8}{2} \\ \\ \operatorname{mean}=\frac{12.2}{2} \\ \\ \operatorname{mean}=6.1 \end{gathered}[/tex]

Final Answer

The sample mean is 6.1 (OPTION B)

Use the give right triangle to find ratios. In reduced form, for sin A, cos A, and tan A

Answers

[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]

From the figure given, if theta = A

opposite = 28 and hypotenuse =53

substitute the values into the formula

[tex]\sin A=\frac{28}{53}[/tex]

[tex]\cos A=\frac{adjacent}{\text{hypotenuse}}[/tex][tex]\cos A=\frac{45}{53}[/tex][tex]\tan \theta=\frac{opposite}{adjacent}[/tex][tex]\tan A=\frac{28}{45}[/tex]

i need help solving this with the statements and reasons

Answers

Given that:

[tex]\bar{AB}\mleft\Vert \mright?\bar{DC}[/tex]

To prove that:

[tex]\Delta ABE\cong\Delta\text{CDE}[/tex]

We know that congruent parts of congruent triangles are congruent

[tex]\angle\text{AEB }\cong\angle CDE\text{ (vertically opposite angles)}[/tex]

Given that E is the midpoint of AC, therefore,

[tex]\begin{gathered} EA=EC\text{ } \\ EB=ED \end{gathered}[/tex]

By the SAS congruency theorem as illustrated above, it is sufficient to prove that the triangles are congruent

What value n makes the eauqation n x 3/4 = 3/16

Answers

Answer:

N = 1/4

Step-by-step explanation:

Okay, so 1/4 is equal to N.

3/4 x1/4=3/16

Find sin 2x, cos 2x, and tan 2x if tan x= -3/2 and x terminates in quadrant IV.

Answers

Answer:

• sin 2x = -12/13

,

• cos 2x = -5/13

,

• tan 2x = 12/5

Explanation:

Given that

[tex]\tan x=-\frac{3}{2}[/tex]

Then

[tex]\begin{gathered} \sin2x=\frac{2\tan x}{1+\tan^2x} \\ \\ =\frac{2(-\frac{3}{2})}{1+(-\frac{3}{2})^2}=\frac{-3}{\frac{13}{4}} \\ \\ =-3\times\frac{4}{13}=-\frac{12}{13} \end{gathered}[/tex][tex]\begin{gathered} \cos2x=\frac{1-\tan^2x}{1+\tan^2x}=\frac{1-(-\frac{3}{2})^2}{1+(-\frac{3}{2})^2} \\ \\ =\frac{1-\frac{9}{4}}{1+\frac{9}{4}}=\frac{-\frac{5}{4}}{\frac{13}{4}}=-\frac{5}{4}\times\frac{4}{13}=-\frac{5}{13} \end{gathered}[/tex][tex]\begin{gathered} \tan2x=\frac{2\tan x}{1-\tan^2x}=\frac{2(-\frac{3}{2})}{1-(-\frac{3}{2})^2} \\ \\ =\frac{-3}{1-\frac{9}{4}}=\frac{-3}{-\frac{5}{4}}=-3\times\frac{-4}{5}=\frac{12}{5} \end{gathered}[/tex]

Erin is buying produce at a store. She buys c cucumbers at $0.89 each and a apples at $0.99 each. What does the expression 0.89c + 0.99a represent? The expression represents the

Answers

One cucumber costs $0.89, so with Erin buys "c" cucumbers, the price he will pay for the cucumbers is the unitary price (0.89) times the number of cucumbers ("c"), so the price is 0.89c.

One apple costs $0.99, so with Erin buys "a" apples, the price he will pay for the apples is the unitary price (0.99) times the number of apples ("a"), so the price is 0.99a.

Then, to find the final price Erin will pay, we just need to sum both prices: all the cucumbers and all the apples:

Final price = 0.89c + 0.99a

So the expression represents the final price (or cost) Erin will pay for all products.

Monica did an experiment to compare two methods of warming an object. The results are shown in thetable below. Which statement best describes her results?

Answers

The correct answer is,

The temperature using method 2 changed exponentially.

determine the number of real solutions for the following quadratic equation using the discriminate

Answers

Given equation:

[tex]y=x^2-3x-4[/tex][tex]a=1,b=-3,c=-4[/tex]

Discriminant:

[tex]\begin{gathered} b^2-4ac \\ (-3)^2-4(1)(-4) \\ =9+16 \\ =25 \end{gathered}[/tex]

Number of real solutions:

Since the discriminant is > 0 (that is ,it is a positive value)

The high school soccer booster club sells tickets to the varsity matches for $4 for students and $8
for adults. The booster club hopes to earn $200 at each match.
what does the slope mean in terms of the situation?

Answers

4x + 8y = 200
8y= -4x +200
y= -1/2x +25

Slope = -1/2

hi I need on this. $6000 invested at 5.5% interest, compounded annually. how how would i have in 6years?

Answers

In this case, we'll have to carry out several steps to find the solution.

Step 01:

Data:

principal = $6000

rate (interest) = 5.5%

time = 6 years

Step 02:

compound interest:

n = annually

n = 1

r = 5.5 % = 5.5 / 100 = 0.055

A = amount

[tex]A\text{ = P \lparen1 + r/n\rparen}^{nt}[/tex][tex]A\text{ = 6000 * \lparen1 + }\frac{0.055}{1})\placeholder{⬚}^{1*6}[/tex][tex]A\text{ = 6000 * \lparen1.3877\rparen = 8273.06}[/tex]

The answer is:

$8273.06

please help ………………. …………. ………… i already have the answer for part A but im having trouble with Parts B and C

Answers

In part B we must perform the following operation:

[tex](5a^3+4a^2-3a+2)+(a^3-3a^2+3a-9)[/tex]

The key here is to group the terms according to the power of a they have:

[tex](5a^3+4a^2-3a+2)+(a^3-3a^2+3a-9)=(5a^3+a^3)+(4a^2-3a^2)+(-3a+3a)+(2-9)[/tex]

Then, we can use the distributive property of the multiplication but in reverse:

[tex]b\cdot a+c\cdot a=(b+c)\cdot a[/tex]

If we do this in each of the terms between parenthesis we get:

[tex]\begin{gathered} (5a^3+a^3)+(4a^2-3a^2)+(-3a+3a)+(2-9)= \\ =(5+1)a^3+(4-3)a^2+(-3+3)a-7 \\ (5+1)a^3+(4-3)a^2+(-3+3)a-7=6a^3+a^2-7 \end{gathered}[/tex]

Then the answer for part B is:

[tex]6a^3+a^2-7[/tex]

In part C we must simplify:

[tex](4y^3-2y+9)-(2y^3-3y^2+4y+7)[/tex]

Here is important to remember that a negative sign before a parenthesis means that you have to change the sign of all the terms inside it. Then we have:

[tex](4y^3-2y+9)-(2y^3-3y^2+4y+7)=4y^3-2y+9-2y^3+3y^2-4y-7[/tex]

Now we can do the same thing we did in part B, we group the terms according to the powers of y:

[tex]4y^3-2y+9-2y^3+3y^2-4y-7=(4y^3-2y^3)+3y^2+(-2y-4y)+(9-7)[/tex]

Then we apply the distributive property in reverse:

[tex]\begin{gathered} (4y^3-2y^3)+3y^2+(-2y-4y)+(9-7)=(4-2)y^3+3y^2+(-2-4)y+2 \\ (4-2)y^3+3y^2+(-2-4)y+2=2y^3+3y^2-6y+2 \end{gathered}[/tex]

Then the answer for part C is:

[tex]2y^3+3y^2-6y+2[/tex]

The cost of a laptop computer decreased from $600 to $480. By what percentage did the cost of the computer decrease?

Answers

[tex]\begin{gathered} \text{Percentage decrease =} \\ \frac{\text{initial value - new value}}{\text{initial value}}\times100 \end{gathered}[/tex]

Initial value= $600

new value = $ 480

[tex]\begin{gathered} =\frac{600-480}{480}\times100 \\ =\text{ }\frac{120}{480}\times100 \\ =\text{ 25\%} \end{gathered}[/tex]

25% decrease is the answer

Solve for x. Write the reasons next to each step.Submit723x+10

Answers

x = 26/3

Explanation:

We would apply the mid-segment theorem:

The base of the smaller triangle = 1/2 (the base of the bigger triangle)

The base of the smaller triangle = 3x + 10

the base of the bigger triangle = 72

3x + 10 = 1/2(72)

Reason: Mid segment is parallel to the base of the large triangle. And it is equal to half the length of the base of the large triangle

simplifying:

3x + 10 = 72/2

3x + 10= 36

subtract 10 from both sides:

3x + 10 - 10 = 36 - 10

3x = 26

DIvide both sides by 3:

3x/3 = 26/3

x = 26/3

or x = 8 2/3

4-10x = 3+5x subtract 4 from both sides

Answers

S={1/15}

1) Solving that expression

4-10x = 3+5x Subtract 4 from both sides

4-4-10x=3-4+5x

-10x =-1+5x Subtract 5x from both sides, to isolate x on the left side

-10x -5x = -1 +5x -5x

-15x=-1 Divide both sides by -15 to get the value of x, not -15x

x=1/15

S={1/15}

A cannery needs to know the volume-to-surface-area ratio of a can to find the size that will create the greatest profit. Find the volume-to-surface-area ratio of a can.Hint : For a cylinder, S = 2πr2 + 2πrh and V = πr2h.a. 1/2b. 2(r+h) / rhc. πr(2r + 2h − rh)d. rh / 2(r+h)

Answers

SOLUTION

[tex]Volume\text{ }of\text{ }can=\pi r^2h[/tex][tex]Surface\text{ }area\text{ }of\text{ }can=2\pi r^2+2\pi rh[/tex]

The ratio can be established as shown below

[tex]\begin{gathered} \frac{\pi r^2h}{2\pi r^2+2\pi rh} \\ \frac{\pi r^2h}{2\pi r(r+h)} \\ \frac{rh}{2(r+h)} \end{gathered}[/tex]

The correct answer is OPTION D

Part I: Domain and Range-identify the domain and range of each graph. Problem / Work Answe 2+ 6+ 2+ 1. Week 15 Homework Packet pdf 2003

Answers

Domain is the set of input values,

In the graph x axis show the domain

Where the x values is lies at -2,-1,0,1,2

Sothe domain will be :

[tex]\text{Domain =-2}\leq x\leq2[/tex]

Range is the set of output values,

In the graph the value of function at y axis is : 0,2,4,6,8-2,-4.....

So, the range will be :

[tex]\text{Range = -}\infty\leq y\leq\infty[/tex]

Determine whether 17y = 3x − 19 is quadratic or not. Explain.No; there is no x2 term, so a = 0.No; there is no x-term, so b = 0.No; there is no constant term, so c = 0.Yes; it can rewritten in the form y = ax2 + bx + c.

Answers

The standard form of quadratic equation is given as,

[tex]ax^2+bx\text{ + c = 0 where a }\ne\text{ 0}[/tex]

The equation is given as,

[tex]17y\text{ = 3x - 19}[/tex]

Therefore,

[tex]\text{From the given equation x}^2\text{ is not present and also a = 0.}[/tex]

Thus the given equation is not a quadratic equation.

State the rational number represented by each letter on the number line as a decimal.

Answers

The rational number represented by the letter D is -43/100 and by the letter R is -46/100.

What is rational number?

A rational number is one that can be written as the ratio or fraction p/q of two numbers, where p and q are the numerator and denominator, respectively.

Here the number line is divided into 10 division with equal distance.

Each division is of the distance 0.01

So, the decimal number represented by letter D is -0.43 and by the letter R is -0.46.

To convert decimal number into rational number,

-0.43 = -43/100

-0.46 = -46/100

Therefore, the rational number represented by each letter on the number line as a decimal are D = -43/100 and R = -46/100.

To know more about the rational number, click on the link

https://brainly.com/question/12088221

#SPJ13

Brett colors 25% of the total shapes on his paper. He colors 14 shapes. How many total shapes are there on Brett’s paper?

Answers

Answer:

56 i think because if 25% = 1/4 and 14 is 25% you would need to multiply 14 by 4 to get 100% or 4/4

it’s 24, this question has already been answered.

Go on the head 120 eggs delivered to her bakery she used to 98 eggs to bake cakes which equation can she use find the number of eggs r she has left

Answers

Yolanda has 120 eggs, but she used 98 eggs

r represents the equation for the number of eggs that she left:

To find this, subtract the total of eggs by the eggs used

Then, r = 120 - 98

Find the surface area of the cylinderA). 188.4 ft^2B). 226.08 ft^2C). 244.92 ft^2D). 282.6 ft^2

Answers

To solve this problem, we will use the following formula for the surface area of a cylinder:

[tex]A=2\pi rh+2\pi r^2,[/tex]

where r is the radius of the base, and h is the height of the cylinder.

Substituting h= 10 ft, and r = 3 ft in the above formula, we get:

[tex]A=2\pi(3ft)(10ft)+2\pi(3ft)^2.[/tex]

Simplifying, we get:

[tex]A=244.92ft^2.[/tex]

Answer: Option C.

In 1990, the cost of tuition at a large Midwestern university was $104 per credit hour. In 1998, tuition had risen to $184 per credit hour.

Answers

We have to find the linear relationship for the cost of tuition in function of the year after 1990.

The cost in 1990 was $104, so we can represent this as the point (0, 104).

The cost in 1998 was $184, so the point is (8, 184).

We then can calculate the slope as:

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{184-104}{8-0} \\ m=\frac{80}{8} \\ m=10 \end{gathered}[/tex]

We can write the equation in slope-point form using the slope m = 10 and the point (0,104):

[tex]\begin{gathered} y-y_0=m(x-x_0) \\ y-104=10(x-0) \\ y=10x+104 \end{gathered}[/tex]

We can then write the cost c as:

[tex]c=10x+104[/tex]

We then can estimate the cost for year 2002 by calculating c(x) for x = 12, because 2002 is 12 years after 1990.

We can calculate it as:

[tex]\begin{gathered} c=10(12)+104 \\ c=120+104 \\ c=224 \end{gathered}[/tex]

Now we have to calculate in which year the tuition cost will be c = 254. We can find x as:

[tex]\begin{gathered} c=254 \\ 10x+104=254 \\ 10x=254-104 \\ 10x=150 \\ x=\frac{150}{10} \\ x=15 \end{gathered}[/tex]

As x = 15, it correspond to year 1990+15 = 2005.

Answer:

a) c = 10x + 104

b) $224

c) year 2005.

solve 6 + 5 on the sqr root of 249 - 2x = 7

Answers

ANSWER

x = 124

EXPLANATION

First we have to clear the term that contains x in the equation. In this case, this term is the second term. So we have tu subtract 6 from both sides of the equation:

[tex]\begin{gathered} 6-6+\sqrt[5]{249-2x}=7-6 \\ \sqrt[5]{249-2x}=1 \end{gathered}[/tex]

Then, we have to eliminate the root. Note that in the expression inside the root there are two terms. To do this, we have to apply the "opposite" operation on both sides of the equation, which in this case is exponent 5:

[tex]\begin{gathered} (\sqrt[5]{249-2x})^5=1^5 \\ 249-2x=1 \end{gathered}[/tex]

Now we do something similar to the first step. We want to leave on one side of the equation only the term that contains x and the rest on the other side. To do this we can either add 2x on both sides, or subtract 249 from both sides. We'll apply the first option because then we'll have a positive coefficient for x:

[tex]\begin{gathered} 249-2x+2x=1+2x \\ 249=1+2x \end{gathered}[/tex]

However, we now have to subtract 1 from both sides of the equation:

[tex]\begin{gathered} 249-1=1-1+2x \\ 248=2x \end{gathered}[/tex]

Finally, to find x, we have to divide both sides by 2:

[tex]\begin{gathered} \frac{248}{2}=\frac{2x}{2} \\ 124=x \end{gathered}[/tex]

Hence, the solution to the equation is x = 124.

Liam's monthly bank statement showed the following deposits and withdrawals.If Liam's balance in the account was $62.45 at the beginning of the month, what was the account balance at the end of the month?

Answers

First, let's take the inital balance and add all the deposits:

[tex]62.45+32.35+63.09+98.79=256.68[/tex]

Then, we'll take this amount and substract all the withdrawals:

[tex]256.68-114.95-79.41=62.32[/tex]

This way, we can conclude that the account balance at the end of the month was $62.32

May I please get help with this. For I have tried multiple times but still can’t get the right answer or the triangle after dilation?

Answers

Solution:

Given the triangle ABC as shown below:

To draw the image,

step 1: Determine the coordinates of the vertices of the triangle.

In the above graph,

[tex]\begin{gathered} A(6,7) \\ B(9,9) \\ C(8,6) \end{gathered}[/tex]

step 2: Evaluate the new coordinates A'B'C' of the triangle after a dilation centered at the origin with a scale factor of 2.

After a dilation centered at the origin with a scale factor of 2, the iniatial coordinates of the vertices of the triangle are multiplid by 2.

Thus,

[tex]\begin{gathered} A(6,7)\to A^{\prime}(12,14) \\ B(9,9)\to B^{\prime}(18,18) \\ C(8,6)\to C^{\prime}(16,12) \end{gathered}[/tex]

step 3: Draw the triangle A'B'C'.

The image of the triangle A'B'C' is as shown below:

I wanted to know if this is the right answer

Answers

Notice that angles 6 and 4 are alternate exterior angles, therefore:

[tex]m\measuredangle4=m\measuredangle6.[/tex]

Answer: m<4=66.

Complete each equation so that it has infinitely many solutions. 12x - x + 8 + 3x = __x + __ (__ are blanks)

Answers

A linear equation is an algebraic equation of the form y=mx+b, where m is the slope and b is the y-intercept, and only a constant and a first-order (linear) term are included. The variables in the preceding equation are y and x, and it is occasionally referred to as a "linear equation of two variables."

What are a definition and an example of a linear equation?Linear formula first-degree algebraic equation with the variables y = 4x + 3 or similar (that is, raised only to the first power). Such an equation has a straight line for its graph.

-12-x=8-3x

Add what is to the right of the equal sign to both sides of the equation, then rewrite the equation as follows:

-12-x-(8-3*x)=0

Take like variables away:

 -20 + 2x  =   2 • (x - 10)

Solve: 2 = 0There is no answer to this equation.A constant that is not zero can never equal zero.

x-10 = 0

On both sides of the equation, add 10:

x = 10.

To Learn more about  linear equation refer to:

https://brainly.com/question/14323743

#SPJ1

3.2 Similar FiguresIf ASRT - ACBD, find the value of x.Show all work.Hint: Don't let your eyes deceive you pay attention tothe similarity statement.

Answers

Find the ratio of corresponding sides:

SRT to CBD =

70/50 = 1.4

SR / 60 = 1.4

SR = 60 x 1.4

SR = 84

84= 11x-4

Solve for x:

84+4 = 11x

88= 11x

88/11 = x

8=x

Other Questions
Use a polar coordinate system to plot the point with the given polar coordinates. Then find another representation (r,) of this point in which: melissa was learning how to use a clutch for driving a car. every time she let the clutch out slowly the car would start moving. when she let the clutch out too quickly the car would lurch forward and then die. soon melissa was always letting the clutch out slowly (which is a different behavior). what procedure accounts for melissa learning how to use the clutch correctly? A blueprint shows an apartment withan area of 15 square inches. Ifthe blueprint's scale is1 inch : 8 feet, what will the actualsquare footage of the apartment be?The actual area of the apartment willbe -square feet. what is the maximum amount ginger Logan can borrow today if it must be repaid in 23 months with simple interest at 6% and she knows that at the time she will be able to repay no more than $23,000?(round to the nearest dollar as needed) What is a benefit of investing in a certificate of deposit? This year, Buffalo, New York had 45 inches of snow in January. Last year, Buffalo had 19 inches of snow in January. How much more snow did Buffalo receive this January? Show your work in the space below. Don't forget to label the units on your answer. Are y = 3x +7 and y = 3x - 8 parallel to each other? Complete the steps to find the value of x Consider the function f(x) = 6 - 7x ^ 2 on the interval [- 6, 7] Find the average or mean slope of the function on this interval , (7)-f(-6) 7-(-6) = boxed | Find the ordered pair $(x,y)$ if\begin{align*}x+y&=(3-x)+(3-y),\\x-y &=(x-2)+(y-2).\end{align*}Thanks Nayeli bought Jamba juice smoothies for herself and Evelyn after school one day. The smoothies cost $4.95 each plus 8.5% tax. how much change did she receive from a $20 bill Find the quotient of these complex numbers.(4 + 4i) (5 + 4i) =A.B.C.D. technician a says dotted lines between switch wipers indicate that all wipers will move together. technician b says dotted lines around a component indicates the it is part of the component. who is correct? I need help for my assignment I need to submit today A Labrador Retriever puppy named Milo weighed 11 pounds and gained 2 pounds per week.After how many weeks did Milo weigh 39 pounds? Weeks? solving right triangle find the missing side. round to the nearest tenth The following are the standard equation of a circle with center at the origin and radius of 2, except: a. x^2-4=-y^2b. x^2+4=-y^2c. x^2+y^2=2^2d. x^2+y^2=4 Berti is the Shape Factory's top employee. She has received awards every month for having the top salesfigures so far for the year. If she stays on top, she will receive a $5000 bonus for excellence. She currently hassold 16, 250 shapes and continues to sell 340 per month.EMPLSince there are eight months left in the sales year, Sarita is working hard to catch up. While she has only sold8,830 shapes, she is working overtime and on weekends so that she can sell 1, 082 per month. Will Saritacatch up with Berti before the end of the sales year? If so, when? Find the sum of the following infinite series.1/32/21+4/1478/1029+ cellphone should not be allowed to school dialogue