Answer:
V₂ = 918.1 cm³
Explanation:
Given data:
Initial volume = 640 cm³
Initial temperature = 100°C (100+273 = 373 K)
Initial pressure = 1490 mmHg (1490 /760 = 1.96 atm)
Final volume = ?
Final temperature = 273 K
Final pressure = 1 atm
Solution:
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
now we will put the values in formula.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.96 atm × 640 cm³ × 273 K / 373 K × 1 atm
V₂ = 342451.2 atm .cm³ . K / 373 K. atm
V₂ = 918.1 cm³
The definition of having to do with the physical properties and terrain of an area refers to the
term
environmental
forecasting
meticulous
topographical
adjacent
Answer:
Topographical
Explanation:
When it comes to questions such as this one, the thing that could help you the most is a dictionary. A dictionary is an alphabetically arranged listing of words that contains various information about those words, such as their definitions, examples, origin, pronunciation, etc.
The term the given definition refers to is topographical. Topography is the study of the forms and features of land surfaces. The topography of an area refers to its physical properties and terrain or their description (e.g. how they're shown on a map).
If 8.500 g CH is burned and the heat produced from the burning is added to 5691 g of water at 21 °C, what is the final
temperature of the water?
The final temperature = 36 °C
Further explanationThe balanced combustion reaction for C₆H₆
2C₆H₆(l)+15O₂(g)⇒ 12CO₂(g)+6H₂O(l) +6542 kJ
MW C₆H₆ : 78.11 g/mol
mol C₆H₆ :
[tex]\tt \dfrac{8.5}{78.11}=0.109[/tex]
Heat released for 2 mol C₆H₆ =6542 kJ, so for 1 mol
[tex]\tt \dfrac{0.109}{2}\times 6542=356.539~kJ/mol[/tex]
Heat transferred to water :
Q=m.c.ΔT
[tex]\tt 356.539=5.691~kg\times 4.18~kj/kg^oC\times (t_2-21)\\\\t_2-21=15\rightarrow t_2=36^oC[/tex]
What is the pH of a solution with a concentration of 1.0 * 10-4 M?
Answer: pH = 10
Explanation: First solve for pOH using the equation pOH=-log[OH-] = 4
Then plug the pOH in the equation, pH + pOH =14
then solve for pH. pH =14 - 4 = 10
Answer:
pH= 10
Explanation:
The pH really depends on what your solution is.
For example, if we are assuming that the concentration of 1.0M is of a strong monoprotic acid e.g. HCl, it would be safe to assume that almost all of the 1.0M acid has dissociated into its H+ ion, and its conjugate base. Thus, the pH can be determined by taking the negative log(to base 10), of the concentration.
Inversely, if the solution is of a strong base, the pOH value would be found, assuming the steps above. This pOH value can be used to infer a pH from the formula - pH + pOH = 14 then 14 - 4 = 10
Finally, come the weak acids/bases, which follow the rules above, except as they only partially dissociate, one needs its equilibrium constant to determine its extent of ionisation, to substitute into the negative log. This also is the case for the second, and higher order dissociation of polyprotic acids e.g. H2SO4.the answer is 10
Hope it helps
What type of relationship exists between two organisms when one organism benefits from the relationship and the other organism becomes prey? (4 points)
a
Commensalism
b
Competition
c
Mutualism
d
Predation
.
.
[tex]
\bold{\huge{\fbox{\color{red}{answer}}}}[/tex]
b competition .
hope it helps u
A sample of gas is placed into an enclosed cylinder and fitted with a movable piston. Calculate the work (in joules) done by the gas if it expands from 4.22 L to 15.61 L against a pressure of 5.63 atm.
Answer:
The work is -6,497.54 J
Explanation:
Work is the amount of energy transferred from one system to another by a force when a displacement occurs.
The work exchanged for a gas depends on the transformation it performs to go from the initial state to the final state.
The pressure - volume work done by a system that compresses or expands at constant pressure is given by the expression:
W= -P*ΔV
where
W is the work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J), which is equivalent to Pa*m³P: Pressure. Its unit of measurement in the International System is the pascal (Pa). ∆V: Volume variation (∆V = Vfinal - Vinitial). Its unit of measurement in the International System is cubic meter (m³)In this case:
Wsystem=?P= 5.63 atm=570,459.8 Pa (being 1 atm=101325 Pa)ΔV=Vfinal - Vinitial= 15.61 L - 4.22 L= 11.39 L= 0.01139 m³ (being 1 L=0.001 m³)Replacing:
W= -570,459.8 Pa*0.01139 m³
Solving:
W=-6,497.54 J
The work is -6,497.54 J
Suppose you have equal masses of water, ethanol, and oil (in separate containers). You heat each one from 26 °C to 81 °C. Which one requires the most heat?
a. Oil
b. Ethanol
c. Water
Answer: c. Water
Explanation:
Heat capacity can be defined as the physical property of the matter. It is the amount of heat which is required to produce a unit change in the temperature of the material.
Water requires more amount of energy per gram of the liquid to change its temperature as compare to any other liquid like ethanol and oil. Ethanol is a volatile liquid so it will require less heat to boil but heat capacity of oil will be more than the oil. The heat capacity of water will be the highest, and it will require more heat.
What is the % of H20 in Sodium carbonate decahydrate, Na2CO3 • 10H2O
Answer:
Element Symbol # of Atoms
Sodium Na 2
Cobalt Co 3
Hydrogen H 20
Oxygen O 10
Explanation:
1.) A laser emits light of frequency 3.72 x 1014 /s. What is the wavelength of the light in m?
2.) Calculate the energy, in joules, of a single photon associated with frequency of 4.00x105/s
3.) Determine the frequency and energy of a photon whose wavelength is 2.57x10-7 m
explanation and work needed please
Answer:
1. λ = 806nm
2. E = 2.6504 × 10^-28J
3. a) f = 1.167 × 10^15 Hz
b) E = 7.73 × 10^-19J
Explanation:
1) The wavelength denoted by λ can be calculated using the formula:
λ = v / f
Where;
v = speed of light (3×10^8m/s)
f = frequency of light (Hz)
λ = 3 × 10^8/3.72 x 1014
λ = 0.80645 × 10^(8-14)
λ = 0.80645 × 10^-6
λ = 8.06 × 10^-7m
λ = 806nm
2) The energy (J) of a photon is calculated thus;
E = hf
Where;
h = Planck's constant (6.626 × 10^-34J/s)
f = frequency (4.00x10^5/s)
E = 6.626 × 10^-34 × 4.00x10^5
E = 26.504 × 10^(-34+5)
E = 26.504 × 10^-29
E = 2.6504 × 10^-28J
3. λ = v / f
2.57x10^-7 = 3 × 10^8 ÷ f
f = 3 × 10^8/2.57x10^-7
f = 1.167 × 10^(8+7)
f = 1.167 × 10^15 Hz
b) E = hf
E = 6.626 × 10^-34 × 1.167 × 10^15
E = 7.7325 × 10^(-34+15)
E = 7.73 × 10^-19J
Hat is the answer for this
Answer:
C
Explanation:
Answer:
I think is A
Explanation:
Hope it helps
an objects kinetic energy increases as its velocity increases?
Part C
What is a useful application for this new material?
Answer:
The new material Emily invented allows scratches to be repaired quickly, so it would be useful on cars and other surfaces that experience a lot of wear.
Explanation:
I got this right on Plato\Edmentum
Answer:
The new material Emily invented allows scratches to be repaired quickly, so it would be useful on cars and other surfaces that experience a lot of wear.
Explanation:
Is mass conserved when 40 g of sodium hydroxide undergoes a chemical change during an interaction with 37g of hydrogen chloride? Use complete sentences to support your answer by explaining how this can be demonstrated. (10 points)
Answer:
Mass is conserverd
Explanation:
Any chemical reaction must follow the law of conservation of mass. Meaning that mass cannot be created nor destroyed. Since all chemical reactions must follow this law, no matter what reaction happens, mass is conserved.
Q2 A solution has a (OH-) = 4.0x10^-5 M. What are the [H30+) and the pH of the
solution?
Answer:
[H₃O⁺] = 2.5 × 10⁻¹⁰ M
pH = 9.6
Explanation:
Step 1: Given data
Concentration of OH⁻ in the solution ([OH⁻]): 4.0 × 10⁻⁵ M
Step 2: Calculate the concentration of H₃O⁺ in the solution
Let's consider the self-ionization of water.
2 H₂O(l) ⇄ H₃O⁺(aq) + OH⁻(aq)
The ion-product of water (Kw) is:
Kw = 1.0 × 10⁻¹⁴ = [H₃O⁺] × [OH⁻]
[H₃O⁺] = 1.0 × 10⁻¹⁴/[OH⁻]
[H₃O⁺] = 1.0 × 10⁻¹⁴/4.0 × 10⁻⁵
[H₃O⁺] = 2.5 × 10⁻¹⁰ M
Step 3: Calculate the pH of the solution
We will use the following expression.
pH = -log [H₃O⁺]
pH = -log 2.5 × 10⁻¹⁰
pH = 9.6
Taking into account the definition of pH and pOH, the pH and [H₃O⁺] of the solution is 9.602 and 2.5×10⁻¹⁰ M respectively.
First of all, pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance.
The pH is defined as the negative base 10 logarithm of the activity of hydrogen ions, that is, the concentration of hydrogen ions or H₃O⁺:
pH= - log [H⁺]= - log [H₃O⁺]
Similarly, pOH is a measure of hydroxyl ions in a solution and is expressed as the logarithm of the concentration of OH⁻ ions, with the sign changed:
pOH= - log [OH⁻]
The following relationship can be established between pH and pOH:
pH + pOH= 14
In this case, you know that [OH⁻]= 4×10⁻⁵ M. For this concentration, the pOH is calculated as:
pOH= - log (4×10⁻⁵ M)
pOH= 4.398
Then, pH can be calculated as:
pH + 4.398= 14
pH= 14 - 4.398
pH= 9.602
So, the [H₃O⁺] is calculated as:
9.602= - log [H₃O⁺]
[H₃O⁺]= 10⁻⁹ ⁶⁰²
[H₃O⁺]= 2.5×10⁻¹⁰ M
Finally, the pH and [H₃O⁺] of the solution is 9.602 and 2.5×10⁻¹⁰ M respectively.
Learn more:
brainly.com/question/13557815?referrer=searchResultsDiagram shows that both gases occupy the same volume under the same conditions of temperature and pressure. Show a numerical set up for how you will calculate the new volume of the gas, if the pressure remains constant ( at 1.2atm), but the temperature is raised from 293k to 398K.
Answer:
1.70 L
Explanation:
From the question given above, the following data were obtained:
Pressure (P) = constant = 1.2 atm
Initial volume (V1) = 1.25 L
Initial temperature (T1) = 293 K
Final temperature (T2) = 398 K
Final volume (V2) =?
Since the pressure is constant, the gas is obeying Charles' law. Thus, we can obtain the new volume (V2) of the gas by applying the Charles' equation as shown below:
V1/T1 = V2/T2
1.25 / 293 = V2 /398
Cross multiply
293 × V2 = 1.25 × 398
293 × V2 = 497.5
Divide both side by 293
V2 = 497.5 / 293
V2 = 1.70 L
Therefore, the new volume of the gas is 1.70 L.
410X
412
412
410
183
186
183R
Which two are isotopes?
Determine the volume (mL) of 15.0 M sulfuric acid needed to react with 45.0 g of
aluminum to produce aluminum sulfate.
Answer:
167 mL.
Explanation:
We'll begin by calculating the number of moles in 45 g of aluminum (Al). This can be obtained as follow:
Mass of Al = 45 g
Molar mass of Al = 27 g/mol
Mole of Al =?
Mole = mass /Molar mass
Mole of Al = 45/27
Mole of Al = 1.67 moles
Next, the balanced equation for the reaction. This is given below:
2Al + 3H2SO4 → Al2(SO4)3 + 3H2
From the balanced equation above,
2 moles of Al reacted with 3 moles of H2SO4.
Next, we shall determine the number of mole of H2SO4 needed to react with 45 g (i.e 1.67 moles) of Al. This can be obtained as:
From the balanced equation above,
2 moles of Al reacted with 3 moles of H2SO4.
Therefore, 1.67 moles of Al will react with = (1.67 × 3)/2 = 2.505 moles of H2SO4.
Thus 2.505 moles of H2SO4 is needed for the reaction.
Next, we shall determine the volume of H2SO4 needed for the reaction. This can be obtained as follow:
Molarity of H2SO4 = 15.0 M
Mole of H2SO4 = 2.505 moles
Volume =?
Molarity = mole /Volume
15 = 2.505 / volume
Cross multiply
15 × volume = 2.505
Divide both side by 15
Volume = 2.505/15
Volume = 0.167 L
Finally, we shall convert 0.167 L to mL. This can be obtained as follow:
1 L = 1000 mL
Therefore,
0.167 L = 0.167 L × 1000 mL / 1 L
0.167 L = 167 mL
Thus, 0.167 L is equivalent to 167 mL.
Therefore, 167 mL H2SO4 is needed for the reaction.
the layering of rock horizontally is for the __________ only.
A. relative age
B. same age
C. absolute age
Answer:
A
Explanation:
Weathering refers to the effects of exposure to A) insults B)pressure C)weather
How did you organize the tiles in part A? Describe the method that you used.
Periodic table of numbers tiles
Answer:
I ordered the tiles from left to right and top to bottom as the numbers kept increasing. The tiles were also organized based on the color and shape that they were. The tiles with the same color and shape were arranged in the same column.
Explanation:
In the modern periodic table, the elements are listed in order of increasing atomic number and elements having similar chemical properties naturally line up in the same column (group).
2. Which test for iron(II) ions is conclusive
Answer:
please brainlist answer
Explanation:
The addition of K 3 Fe(CN) 6 to a solution causes the formation of a deep blue precipitate which indicates that iron(II) ions are present.
The conclusive test for iron(II) ions is the test by the use of potassium hexacyanoferrate III solution.
In qualitative analysis certain reagents are used to test for the presence of certain cations or anions. Those reagents react in a certain way with those reagents. Usually, a positive test may involve a color change, formation of a precipitate or evolution of a gas.
In the case of iron(II) ions, potassium hexacyanoferrate III solution is used in the conclusive qualitative test for the ion. A positive test involves the appearance of a deep blue precipitate.
Learn more: https://brainly.com/question/6955504
Which describes a speed?
O A. Moving 8 meters in 2 seconds
O B. Falling down at 100 miles/hr
O C. Moving north at 40 km/hr
O D. Speed changing from 2 km/hr to 5 km/hr
is there a relationship between the shape and polarity of the molecule
Answer:hi
Explanation:
________________naturally helps cold-blooded animals warm up so that they can function.
Question 5 options:
Radiation
Convection
Warm Water
Heating pad
Answer:
Warm Water
Explanation:
In warm temperatures, cold-blooded animals are more active and can travel more quickly. This occurs because heat activated reactions provide energy to move muscles. In the absence of heat the animal becomes slow and sluggish. So they are usually inactive and rest when it is cold. As they do not need to feed much, they spend less time looking for food, so this life strategy works for them.
Brainliest?
Answer warm water Explanation:i have the same question
Explain why HCl can be a strong electrolyte, but a dilute HCl solution can be a poor conductor?
Answer:
Because as the concentration is diminished, the capacity to transfer electricity is diminished as well.
Explanation:
Hello!
In this case, since electrolytes are substances that are able to conduct the electricity in aqueous media (solutions in which water is the the solvent) because they have the capacity to form ions with both positive and negative charges, due to the fact that HCl is a strong acid, we notice it is fully ionized in solution and therefore it is a strong electrolyte. However, when the concentration is diminished, we can notice that strength is diminished as well because less ions will have the capacity to transfer the electricity and therefore it'd become a poor conductor or weak electrolyte.
Best regards!
According to valence bond theory, which atomic orbitals of carbon may be hybridized to account for bonding? Why?
.
A. Only 2p orbitals may hybridize; the 2p orbital is carbon’s highest-energy atomic orbital.
B. Only 1s and 2s orbitals of carbon may hybridize; each contains electrons to share in bonding.
C. Only 2s and 2p may hybridize; these orbitals contain valence electrons used in bonding.
D. Only 2s orbitals may hybridize; these orbitals contain valence electrons.
E. 1s, 2s, and 2p orbitals all may hybridize; these orbitals are of the same phase
Answer:
C. Only 2s and 2p may hybridize; these orbitals contain valence electrons used in bonding.
Explanation:
Carbon has four valence electrons (2s² 2p²), in several organic compounds it forms four bonds and as this element has two types of orbitals to join, 2s and 2p, it is expected that a compound like methane has two types of C-H bonds, but this is not the case, as all its orbital atoms are the same.
In a process called hybridization, s orbitals and p orbitals are combined in an atom. Depending on the amount of p orbitals that are combined, the hybrid orbitals can be sp (one orbital 2s and one 2p are combined), sp² (the 2s orbital combines with two 2p orbitals) and sp³(the orbital 2s combines with three 2p orbitals).
The carbon atom has the presence of 6 electrons. The valence bond theory hybridized the 2s and 2p orbital for the bonding, as they have valence bonds.
What is valence bond theory?The valence bond theory has been the atomic hybridization of the atoms that results in the formation of the bonds.
The carbon atom has 4 valence electrons present in the bonding valence orbitals. The orbitals combine as sp, sp2, sp3 orbital in order to form the bond.
Thus, since there has been the presence of valence electrons in the s and p orbitals, the 2s and 2p are involved in the hybridization. Hence, option C is correct.
Learn more about valence bond theory, here:
https://brainly.com/question/10035437
9.
Which of the following molecules has (have) polar bonds?
a water
b carbon dioxide
c formaldehyde
d two of the above
Answer:
two of the above
Explanation:
cK-12 Bond Polarity
1. Sugar in a jar has a volume of 750 cubic centimeters and a mass of 690 grams.
Calculate its density. Write your answer to the hundredths place.
Answer:
The answer is 0.92 g/cm³Explanation:
The density of a substance can be found by using the formula
[tex]density = \frac{mass}{volume} \\ [/tex]
From the question we have
[tex]density = \frac{690}{750} = \frac{69}{75} = \frac{23}{25} \\ [/tex]
We have the final answer as
0.92 g/cm³Hope this helps you
trioxocarbonate iv acid
Answer:
Trioxocarbonate (iv) are salts derived from trioxocarbonate (iv) acid when it reacts with metals and metallic oxides. All trioxocarbonate (iv) salts of Sodium (Na), Potassium (K) and Ammonium(NH4+) are soluble while all others are insoluble.
Ill give you guys brainly and 50 points please answer im struggling
Answer:
check the image
Explanation:
20 POINTS!!
1. 14.07g of solid sucrose (C12H22O11) are dissolved in 0.35 L of water. What is the molarity of the solution?
2. What is the molarity of a sucrose solution with a concentration of 4.5 ppm (mg/L)?
3. What is the molarity of the same sucrose solution if you dilute 40 mL of it into a 500 mL volumetric flask?
Answer:
1. molarity is = 0.1174
2. molarity is = 9.3
3. molarity is =0.009392
Explanation:
Q#1.
mass of sucrose is 14.07g
molar mass of sucrose is 342 3g/mol
so, 14.07x1/342.3 = 0.0411
now the volume is of water is 0.35
so, 0.0411/0.35 = 0.1174
Q#2.
concentration is 4.5
so, 4.5x1/1000= 0.0045
then, 0.0411/0.0045 = 9.13
Q#3.
M1M1=M2M2
molarity of the same sucrose is 0.1174
so, diluted in 40mL
and the volumetric flask is 500mL
so, 0.1174x40/500= 0.009392